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Abstract 18 

 19 

Point-of-care lateral-flow assays (LFAs) are becomingly increasingly prevalent for 20 

diagnosing individual patient disease status and surveying population disease prevalence in a 21 

timely, scalable, and cost-effective manner, but a central challenge is to assure correct assay 22 

operation and results interpretation as the assays are manually performed in decentralized 23 

settings.  A smartphone-based software can automate interpretation of an LFA kit, but such 24 
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algorithms typically require a very large number of images of assays tested with validated 25 

specimens, which is challenging to collect for different assay kits, especially for those released 26 

during a pandemic.  Here, we present an approach – AutoAdapt LFA – that uses few-shot 27 

learning, an approach used in other applications such as computer vision and robotics, for 28 

accurate and automated interpretation of LFA kits that requires a small number of validated 29 

images for training.  The approach consists of three components: extraction of membrane and 30 

zone areas from an image of the LFA kit, a self-supervised encoder that employs a feature 31 

extractor trained with edge-filtered patterns, and few-shot adaptation that enables generalization 32 

to new kits using limited validated images.  From a base model pre-trained on a commercial LFA 33 

kit, we demonstrated the ability of adapted models to interpret results from five new COVID-19 34 

LFA kits (three detecting antigens for diagnosing active infection, and two detecting antibodies 35 

for diagnosing past infection).  Specifically, using just 10 to 20 images of each new kit, we 36 

achieved accuracies of 99% to 100% for each kit.  The server-hosted algorithm has an execution 37 

time of approximately 4 seconds, which can potentially enable quality assurance and linkage to 38 

care for users operating new LFAs in decentralized settings.    39 

  40 
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Main text 41 

 42 

Introduction 43 

 44 

Lateral-flow assays (LFAs) present an increasing opportunity for increasing accessibility 45 

to diagnostic assays, but errors in assay operation and results interpretation hinder their 46 

deployment in decentralized settings, such as primary care clinics and homes1-5.  For example, 47 

improper assay operation could produce absent control bands; alternatively, failure to identify 48 

the presence of faint bands or confusing the zone type (e.g., control vs. test bands) could lead to 49 

an incorrect interpretation of overall assay result6.  For example, in the COVID-19 pandemic, a 50 

number of SARS-CoV-2 antigen tests are now approved for home use7 to support decentralized 51 

testing; consequently,  user errors from incorrect operation and results interpretation are also 52 

likely to become more prominent in the coming months to years.  53 

 54 

Image-processing algorithms to automate the interpretation of LFAs and rapid diagnostic 55 

tests can potentially provide quality assurance to users in decentralized settings and reduce 56 

incidence of these errors, but existing algorithms have shortcomings such as the need to use 57 

images collected by smartphones with physical attachments5,8-14, are designed to work 58 

retrospectively with a library of pre-collected images15,16, or require a large number of labelled 59 

training images ranging in the hundreds17,18 for each assay kit.  By comparison, an ideal 60 

algorithm would be scalable in deployment (for example, working in real time with images 61 

collected by a smartphone camera without an extra adapter) and would not require experimental 62 

collection of a large number of expert-labelled images with validated clinical specimens across a 63 
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large and ever-changing roster of new LFAs, which is especially challenging to achieve during 64 

public health emergencies.   65 

 66 

In this study, we have developed 1) an end-to-end modular workflow to work with assay 67 

kit images taken with a smartphone with no external adapters and 2) a trained algorithm that can 68 

be adapted to a new assay kit with just 10 to 20 images of the new kit in order to accurately 69 

interpret the result (Fig. 1a).  The ideal algorithm should generalize to different LFA kits with 70 

variations in color and size of bands1,19-22: the color and intensity of bands depend on sizes and 71 

shapes of gold nanoparticles20,23, material properties of the membrane, and membrane 72 

pretreatment steps20,21; the sizes of bands depend on liquid-dispensing conditions and capillary 73 

flow time20,21.  Here, we propose a few-shot adaptation strategy – which has been employed in 74 

applications ranging from computer vision to robotics 24-26 to learn a strong classifier for new 75 

domains27-31 – to mitigate the performance drop caused by domain shift stemming from image-76 

pattern variance, using only a few labeled images.  In our few-shot model adaptation strategy, 77 

zone areas from many images of a “base” kit are cropped and used to pre-train a feature-78 

extraction network that employs self-supervised learning with edge-filtered images.  To adapt to 79 

a new assay kit, zone areas from 10 to 20 images are cropped, and the pre-trained model from the 80 

base model (shown as “B” in Fig. 1a) adjusts its weights to a model adapted to a new assay 81 

(shown as “N” in Fig. 1a) using supervised contrastive learning.  Thus, for the end user 82 

operating a new assay kit, zone areas from an image of the kit are cropped, and the adapted 83 

network automatically and accurately interprets the bands at each zone and overall assay result.   84 

 85 
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In this study, we pre-trained a base model using expert-labelled images from the 86 

AssureTech EcoTest COVID-19 IgG/IgM Antibody Test, an assay authorized by FDA, and 87 

adapted the model to interpret LFAs from five other commercial COVID-19 LFAs (Fig. 1b).  88 

The five LFAs include three antigen tests (ACON Flowflex SARS-CoV-2 Antigen Rapid Test, 89 

Anhui DeepBlue SARS-CoV-2 Antigen Test, and Jinwofu SARS-CoV-2 Antigen Rapid Test), 90 

one antibody test (ACON SARS-CoV-2 IgG/IgM Antibody Test), and an AssureTech EcoTest 91 

COVID-19 IgG/IgM Antibody Test kit that uses a different housing (denoted in the paper as 92 

‘EcoTest (housing 2)’) but retains use of the same LFA membrane (Fig. 1b).  Like almost all 93 

commercial LFAs, these kits share rectangular control and test bands, but differ in kit housing 94 

dimensions and membrane dimensions, as well as number, spacing and color of bands (kit-95 

specific dimensions shown in Supplementary Table 1).  To illustrate the challenge for 96 

interpreting new assay kits, without few-shot adaptation, this pre-trained algorithm produced 97 

incorrect predictions (both false positives and false negatives) due to variations in color and 98 

intensities of bands and membranes across new LFA kits (Fig. 1c).   99 

 100 

Overview of pipeline 101 

 102 

In the AutoAdapt LFA algorithm (Fig. 1d), a user takes an image of an LFA kit, which 103 

enters a cloud-hosted pipeline with an instance-segmentation model that corrects the orientation 104 

and perspective of the raw image, segments the assay kit from background and the membrane 105 

from assay kit, and crops individual zones (i.e., regions in the membrane corresponding to bands 106 

and a portion of surrounding area) from the membrane.  Next, images of zones enter a feature-107 

extraction network, which is learned in order to generate robust feature representation as unique 108 
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signatures to discriminate positive cases from negative cases under diverse conditions (e.g., 109 

color, intensity, and width of bands); the feature-extraction network also adapts to new LFA kits 110 

with a small number of images.  From latent feature vectors for each zone, a binary classifier 111 

recognizes colored rectangular bands, the form factor seen in the vast majority of LFAs32,33, and 112 

determines whether a band is present or absent in each zone.  Finally, an assessment of the LFA 113 

kit result is obtained by comparing the output of the binary classifier with a lookup table 114 

containing all combinations of possible zone-level classification results; this kit-level 115 

classification is sent to the user’s smartphone as an interpreted LFA result. The server- hosted 116 

algorithm has a mean execution time of 3.55 ± 2.28 seconds. Overall, this rapid automated 117 

interpretation pipeline could fit within a larger digital platform34-37 that collects demographic 118 

data for epidemiology and provides instructions to carry out the test as well as follow-up linkage 119 

to care; Supplementary Fig. 1. 120 

 121 

To develop this pipeline, we framed the objective as learning the optimal parameters of 122 

the feature-extraction network and the classifier module by minimizing the loss functions given a 123 

set of training images for an assay kit.  Unlike methods that require de novo training on a new 124 

LFA kit, we developed two novel methods to achieve adaptation requiring only a small number 125 

of images of new kits.  First, to ensure the underlying feature representation is robust against 126 

variations in the LFA images, we developed a feature extractor that learns to extract robust latent 127 

representation of zone images for classification; these latent representations are also used to 128 

reconstruct (decode) the edges associated with the images. This auxiliary edge reconstruction 129 

task is in addition to the standard fully-supervised classification task and helps learn feature 130 

representation for effective adaptation, which is based on the observation that edges in an image 131 

tend to remain invariant in diverse LFA images.  As shown in Fig. 2a, edge-preservation can be 132 
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learned in a self-supervised manner (not requiring manually-assigned labels), by using the output 133 

of an automatic edge detection algorithm (Sobel filter38) as the ground truth for decoding.  134 

Second, as shown in Fig. 2b, our system performs supervised contrastive learning using a dataset 135 

combining images from the new LFA kit and the base LFA kit and learns a new classifier for the 136 

new kit.  Here, the neural network model pre-trained on a set of labeled LFA images from the 137 

base kit is adapted to a new target LFA, using 10 to 20 labelled training images of a new kit.   138 

 139 

Image pre-processing  140 

 141 

For model training as well as during inference, the first module corrected for skew and 142 

extracted the zones from the images of LFA kit.  This module first detected the orientation of the 143 

kit and carried out perspective correction using the predicted segmentation mask of the LFA kit 144 

(Supplementary Fig. 2). This mask was generated by using Mask R-CNN39, an instance 145 

segmentation model (more details in Methods). The kit membrane from the perspective corrected 146 

image was then localized and individual test zones were cropped out using the kit-specific 147 

dimensions listed in a JSON file. For this study, the test-specific dimensions, such as kit height, 148 

kit width, membrane width, membrane height, and zone dimensions, were measured from images 149 

of LFA kits using Adobe Photoshop v21.0.2 and saved as a JSON file. These dimensions could 150 

be directly provided by the kit manufacturers in the future.  To measure the accuracy of the 151 

automatic membrane segmentation step, we measure the intersection over union (IoU) scores 152 

between the segmented membrane and the manually annotated ground-truth membrane region. 153 

IoU scores greater than 90% for all the assay kits (Table 1) confirm the robustness of this first 154 

step.   155 
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 156 

Pre-training of feature extractor with edge detection and self-supervised learning 157 

 158 

The cropped test zones were fed into a feature extractor and the extracted features were 159 

passed into a binary classifier and a decoder (Fig. 2a).  The binary classifier (a fully connected 160 

layer) outputs ‘0’ or ‘1’ to denote the absence or presence of the band in the cropped zone, 161 

respectively.  The images from the base LFA kit were manually annotated with the binary labels, 162 

and the classifier was trained to learn specific prototypes associated with the positive and 163 

negative classes using cross-entropy (CE) loss. 164 

 165 

Images of kits with faint bands can lead to false negatives while stained membranes and 166 

lighting artifacts can lead to false positives (Fig. 1c).  Even though such failure cases can be 167 

reduced by training on a large number of relevant examples, acquiring sufficient images on a 168 

new LFA kit present a logistical challenge.  Directly applying the model conventionally trained 169 

on the base LFA kit (i.e., by minimizing only the CE loss) to new LFA kits, resulted in low 170 

classification accuracy on the new kits. Hence, we designed a self-supervised, edge-enhanced 171 

image reconstruction task to improve the generalizability of the feature extractor (Fig. 2a).  The 172 

network was trained to detect the edges of the image pattern (pixels at the junction between the 173 

membrane background and the band in the zone) and reconstruct the corresponding edge-174 

enhanced image.  This task is self-supervised: starting with RGB images of zones from a base 175 

LFA kit, the model converted the image into grayscale and applied a Sobel filter38 to generate the 176 

ground truth image set (Sobel filter is a basic image processing algorithm that generates an 177 

image emphasizing edges). In parallel, the model fed the extracted features into the decoder to 178 
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reconstruct the edge-enhanced image.  This model was then trained to minimize the mean 179 

squared error (MSE) between the reconstructed edge image from the decoder and the ground 180 

truth edge image.  By combining the fully-supervised image classification with the self-181 

supervised edge-enhanced image reconstruction, the feature extractor, classifier, and decoder 182 

were trained jointly to optimize the zone classification accuracy as well as to learn a good feature 183 

representation that is sensitive to edge information.  184 

 185 

Learning a new classifier for a new LFA using few-shot adaptation 186 

 187 

The pre-trained model from a base LFA kit was adapted to a new LFA kit with minimal 188 

retraining via few-shot adaptation (Fig. 2b).  We mixed the labeled data of the base LFA kit and 189 

the new LFA kit and used this as the training set.  We specifically used this mixture of data from 190 

new kit and base kit to avoid overfitting to the small number of images of the new kit.  In 191 

addition to the CE loss used to train the binary classifier for the new LFA kit, we also used 192 

supervised contrastive learning, between the cropped zone images of both the new kit and the 193 

base kit, to refine the feature extractor. 194 

 195 

We gathered the cropped zone images of both the base kit and the new kit, resampled the 196 

data, and calculated the supervised contrastive (SupCT) loss40.  First, we extracted features of the 197 

base kit cropped zone images for both positive and negative classes and considered them as 198 

anchors.  Next, we extracted features from the cropped zone images of the new kit and compared 199 

them with all of the anchors using cosine similarity. The feature extractor was then trained to 200 

maximize the cosine similarity between features of the same class.  For the implementation, we 201 
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resampled the cropped zone images from the mixed dataset to build episodes and then computed 202 

SupCT loss within each episode (more details in Methods).  As a comparison to the adaptation 203 

strategy, we also performed fine-tuning which only calculated the CE loss among samples within 204 

the episodes for network updating. 205 

 206 

Results 207 

 208 

Description of datasets 209 

 210 

While gathering the image dataset, we varied imaging conditions by using different 211 

phones and imaging the assay kits under varied lighting conditions (more details in Methods).  212 

For pre-training of the model, the training dataset from the base kit (AssureTech EcoTest 213 

COVID-19 IgG/IgM Antibody Test) consisted of 383 membrane images (674 positive zones and 214 

475 negative zones). An additional 254 membrane images (441 positive zones and 254 negative 215 

zones) were used as the validation set for model selection under the fully-supervised 216 

classification task.   217 

 218 

In addition, we used a variational autoencoder41 to generate a synthetic dataset composed 219 

of 600 zones each of faint positive and negative zones42.  The synthetic data was mixed with the 220 

training dataset for the self-supervised edge-reconstruction task.   221 

 222 

The performance of base model is reported on an evaluation set consisting of 102 223 

membrane images (168 positive zones and 138 negative zones) of the base kit.  The results 224 

(Table 2) demonstrate that our model works well for both zone-level classification and overall 225 
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kit-level classification on the base kit.  A “zone-level” classification accuracy is the model’s 226 

performance on all the zones for the entire evaluation data set, and “kit-level” classification 227 

accuracy is the model’s performance in classifying all constituent zones of a single kit (e.g., a 228 

kit-level result would be incorrect if any zone in that kit was classified incorrectly).  Details 229 

regarding the dataset for the five new kits are provided in Supplementary Table 2. 230 

 231 

Performance on 5 new COVID-19 tests  232 

 233 

We employed the pre-trained feature extractor using the few-shot adaptation strategy on 234 

five COVID-19 LFA kits, and assessed the effects of our adaptation strategy and self-supervised 235 

edge-detection task separately.  The performance of the base model on the new kits are shown 236 

when applied directly and with the proposed adaptation method using 10-shots (20 zone images) 237 

highlighting the significant performance improvement seen using our few-shot adaptation 238 

strategy (Table 2).  On top of the pretrained base model, adaptation can consistently improve the 239 

performance by including only a few training images of the new LFA kits.  The EcoTest housing 240 

2 kit was identical in all aspects to the base kit expect for the housing, so the direct application of 241 

the base model without any adaptation was able to achieve 100% zone-level and kit-level 242 

accuracies.  243 

 244 

In Fig. 3, we plot the classification accuracy, at zone level and kit level, against the 245 

number of zone images used during the adaptation process, ranging from 0 (direct testing) to 246 

using the entire training dataset.  These figures also serve as the ablation study evaluating the 247 

separate contributions made by self-supervision in pretraining the feature extractor as well as the 248 

supervised contrastive learning during adaptation.  We compare our adaptation approach with 249 
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three alternative approaches: 1) the proposed approach without the self-supervision component 250 

in the pre-training stage, 2) the proposed approach without supervised contrastive loss during 251 

adaptation, and 3) training the network for a new kit from scratch without the two components.  252 

The second approach can be considered as a finetuning process that uses the pre-trained base 253 

model and finetunes it with the standard CE loss.  For all approaches, the base kit and new kit 254 

images were mixed for network training, and the same data sampling strategy was used to ensure 255 

a fair comparison.  256 

 257 

For each kit, a random set of images of each class were selected from the training dataset 258 

for model adaptation and performance of the trained model was validated against a separate 259 

evaluation dataset. The plots for the different approaches are compared against the performance 260 

upper bound achieved when using all the new images available for training mixed with the base 261 

training images for the classification and edge reconstruction tasks.  We showed that for each of 262 

the kits, Flowflex, DeepBlue, Jinwofu, and ACON IgG/IgM we achieved maximum 263 

classification accuracy using just 16, 14, 10, and 18 zone images respectively for the adaptation.  264 

For example, we were able to adapt the base model to the Flowflex kit (Fig. 3a) using only eight 265 

zone images per class (16 zone images) and reach the same performance (99.8% and 99.6% for 266 

the zone and kit levels respectively) as a model trained from scratch using all available training 267 

data (200 zone images).  The results confirm that both self-supervised pretraining and supervised 268 

contrastive loss help, and the combination of these two key ideas helps reach the highest 269 

attainable performance.  Between these two novel ideas, supervised contrastive learning is more 270 

effective: it requires fewer training images during adaptation in order to reach the performance 271 

upper bound that is achieved by using the entire training dataset.  272 

 273 
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 In addition, as the feature extractor is pretrained under self-supervision, the extracted 274 

features are sensitive to the edges and can work well even when zones with faint bands are 275 

encountered. Even though the ACON IgG/IgM kit had the highest frequency of faint bands in 276 

our dataset, our approach was able to reach the same performance as using entire training dataset 277 

(Fig. 3d) using only nine images of each class (18 zone images). Adaptation without supervised 278 

contrastive learning can also reach the same performance using 40-shot adaptation. For the 279 

model trained without self-supervised pretraining 70 images (with SupCT loss) and 100 images 280 

(without SupCT loss) of each class were required to reach the best performance. In addition, 281 

direct testing performance (0-shot adaptation) of the model pretrained on the base kit was higher 282 

when trained using self-supervision than when trained using only the CE loss.  283 

 284 

Table 3 shows the confusion matrices of the performance of the optimum shot adaptation 285 

when evaluated on the evaluation dataset.  By starting with a base model pretrained on an 286 

existing LFA kit (AssureTech EcoTest COVID-19 IgG/IgM antibody assay kit), we have shown 287 

that it is possible to adapt the existing model to different assay kits, which have different 288 

numbers of test lines and form factors, using a small fraction of the images needed to train the 289 

base model with no loss in accuracy.  In addition to evaluating the confusion matrix among on 290 

samples in the evaluation set, we devised an ambiguity region to evaluate the distribution of 291 

detection scores (probability of positive class). The ambiguity region is bounded by the detection 292 

score thresholds such that an image will be correctly classified only if the probability of the 293 

ground truth class is high.  The thresholds can be either manually set or statistically estimated 294 

with 95% area under the curve (more details in Methods). We checked the detection scores of all 295 

the images in the evaluation dataset against the ambiguity regions and those images with scores 296 

falling in ambiguity region were not classified.  We computed the percentage of images that were 297 
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categorized as ambiguous as well as the accuracy over the images that were classified.  Since the 298 

detection score for the false predictions were close to 0.5, they fell into the ambiguity region. 299 

Therefore, by using this concept of the ambiguity region we were able to treat most of the failure 300 

cases as ambiguous while keeping the number of true predictions that fell into the ambiguity 301 

region to a minimum. This further increased the classification accuracy among the classified 302 

samples consistently over four new target kits (Table 3).   303 

 304 

Conclusions and future work 305 

 306 

We have described the development of AutoAdapt LFA, an approach for the adaptation 307 

of a LFA kit interpretation model trained on one kit to new kits, each with a different form 308 

factor.  We showed that this adaptation can be carried out using a much smaller subset of images 309 

than what was used for training the base model.  Compared to de novo training on every new 310 

assay kit, this reduction in the number of images was achieved by adopting a modular approach 311 

to the machine-learning pipeline: starting from an image of the kit, the perspective-corrected 312 

membrane and individual zones were extracted followed by the extraction of the features 313 

preserving edge information, and finally a binary output which indicated whether a band was 314 

present in the cropped zone.  A robust feature extractor is important for handling challenging 315 

images in LFA kits like those with faint or partially formed lines.  Our approach of using self-316 

supervision to extract features preserving edge information addressed this issue, and it is 317 

believed that this use of self-supervised learning to reconstruct edge-enhanced images has not 318 

been previously demonstrated.  To our knowledge, the application few-shot learning, including 319 

this adaptation framework, has not been demonstrated for interpretation of LFA kit images. 320 
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Thus, we have shown that using this novel approach, we can train accurate classification models 321 

using a fraction of kit images that would be required in de novo training.  322 

 323 

 In terms of impact for medicine, this reduction in new training images to achieve assured 324 

user interpretation of rapid test images is significant with the rise of use of rapid diagnostic tests.  325 

Most immediately, the COVID-19 pandemic has thrusted front and forward the need for rapid 326 

testing and population surveillance to track and control the spread of the disease in a scalable and 327 

timely manner.  If effectively implemented, point-of-care testing can contribute significantly to a 328 

rapid and effective public health response – as well as patients’ individual safety, privacy, 329 

physical health and mental well-being – by enabling widespread timely testing in a manner that 330 

does not overwhelm the limited capacity of testing facilities or provoke social crowding at 331 

selected testing sites.  By expediting the process of training a model to newly available rapid 332 

diagnostic tests, the AutoAdapt LFA approach could facilitate reliable decentralized testing and 333 

real-time monitoring of disease prevalence.  In the longer term, the need to achieve assured user 334 

interpretation will rise as patients and consumers will more frequently monitor their health via 335 

self-testing for both infectious diseases and chronic conditions, in an age of precision health.  336 

Future work includes validation on a wider variety of rapid tests, and generalization to LFA kits 337 

beyond rectangular bands (for example, as in some vertical flow assays) and bands of single 338 

colors (for example, some urinalysis kits with color-based readouts).   339 
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Methods 340 

 341 

Dataset Collection 342 

Base kit (AssureTech EcoTest COVID-19 IgG/IgM Antibody Test): train and validation 343 

datasets were gathered using iPhone X at the Mayo Clinic Hospital, Phoenix, AZ. The evaluation 344 

dataset images were gathered using three phones by two users: iPhone X, iPhone 7, Samsung 345 

Galaxy J3 (SM-J337V). Care was taken to ensure that the kits were imaged under three different 346 

ambient lighting conditions (warm white, cool white, and daylight). 347 

 348 

Novel kits (ACON Flowflex SARS-CoV-2 Antigen Rapid Test, Anhui DeepBlue SARS-CoV-2 349 

Antigen Test, Jinwofu SARS-CoV-2 Antigen Rapid Test, and ACON SARS-CoV-2 IgG/IgM 350 

Antibody Test ): training and evaluation sets were gathered using iPhone X at the Mayo Clinic 351 

Hospital, Phoenix, AZ. Serum samples for the antibody tests were collected under Mayo Clinic 352 

IRB 20-004544 or shared by the Department of Laboratory Medicine at the University of 353 

Washington School of Medicine (Seattle, WA)43. The use of excess clinical specimens was 354 

reviewed by the Mayo Clinic Biospecimens Committee and an appropriate Material Transfer 355 

Agreement was drawn up to allow access to de-identified specimens from the University of 356 

Washington School of Medicine. The University of Washington IRB approved this work with a 357 

consent waiver. Nasopharyngeal swabs from Mayo Clinic Hospital patients were heat fixed and 358 

run for the antigen tests under Mayo Clinic IRB 20-010688. All necessary patient/participant 359 

consent has been obtained and the appropriate institutional forms have been archived. 360 

All assay kits were imaged within 10 minutes of running the test.  361 

 362 
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Image acquisition and pre-processing based on Mask R-CNN 363 

 The image processing workflow starts with an image of the assay kit being taken by the 364 

user through the SMARTtest application18 in a fixed portrait orientation.  This image is saved in 365 

an AWS S3 bucket as an JPEG image from the frontend, and the corresponding URL is sent to 366 

the AWS Lambda Function.  The function reads the image data, stores the original resolution 367 

image in a copy, and resizes the image while preserving the aspect ratio by capping the height of 368 

the image to a maximum of 800 pixels. The membrane is localized in the resized image using the 369 

instance segmentation model Mask RCNN (Supplementary Fig. 2), and the predicted bounding 370 

box coordinates in the resized image are then transformed to the corresponding coordinates in the 371 

image of the original resolution to get the highest possible resolution of the membrane which is 372 

then sent to the classifier. 373 

 374 

 Mask R-CNN39 builds on top of the preceding Faster R-CNN44 and Fast R-CNN45 models 375 

and combines them with a fully-convolutional network (FCN) and introduces object mask 376 

prediction (i.e., segmentation46) in parallel to bounding box regression. Given an input image, the 377 

model extracts feature maps via a pretrained deep neural network (e.g., VGG16), and 378 

subsequently passes these in parallel through a ROI-specialized pooling layer followed by 379 

several fully-connected layers and an FCN.  The instance segmentation model has been trained 380 

for two object classes: the kit and the membrane. The model outputs i) detection scores, ii) 381 

bounding boxes, and iii) segmentation masks of a maximum of 100 objects. The bounding box 382 

defines a rectangular area that contains the assay kit or the membrane. The segmentation mask 383 

includes all the pixels that correspond to the actual area of the assay kit or the membrane and do 384 

not necessarily have to be rectangular in shape. From all the detected objects we retain 385 
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information for a kit and membrane object with the highest detection score greater than 0.9. 386 

Supplementary Fig. 3 illustrates different IoU scores and the corresponding membrane 387 

segmentation masks for the EcoTest (base kit). 388 

 389 

 The bounding boxes and segmentation masks of the kit and membrane with the highest 390 

detection score are retrieved and a binary segmentation mask is generated for both kit and 391 

membrane. Next, the rotation angle is estimated by performing contour detection on the 392 

segmentation mask of the kit and membrane, and approximating a minimum-area quadrilateral 393 

mask whose corner coordinates can be used to construct a right-angle triangle. The membrane is 394 

cropped from the input image with the binary segmentation mask, and is subsequently rotated by 395 

the estimated angle. The rotated membrane will have black regions if the estimated angle is 396 

greater than zero, and the largest rectangle that doesn’t include any black pixels is estimated and 397 

extracted as the final membrane to be sent to the classifier. Additionally, we have the capability 398 

to compute the homography matrix47 between the predicted segmentation mask and bounding 399 

box of the kit, and use it to transform the kit of the image to correct for distortion along the pitch 400 

axis. 401 

 402 

Pre-training with self-supervised learning 403 

 404 

The model uses the Mean Squared Error (MSE) between the decoder output (the 405 

reconstructed image) and the ground truth edge-enhanced image as the loss.  For the base kit, the 406 

number of labeled images were sufficient so that both the classification and the edge-enhanced 407 

image reconstruction tasks were carried out to learn a good feature extractor. Thus, as shown in 408 
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Fig. 2a output features of each cropped zone are sent to both the classifier and the decoder. The 409 

model uses the cross-entropy (CE) loss for the classification task and uses the MSE between the 410 

reconstruction and the automatically reconstructed edge filtered image to learn the optimal 411 

convolution kernel in the decoder for the self-supervised edge reconstruction task. By using the 412 

edge-enhanced features, the feature extractor was able to generalize well on new assay kit 413 

images even if the zones were faint. 414 

 415 

To generate the ground-truth of the self-supervision task, the model first converted the 416 

RGB image into a grayscale image, and then performed edge filtering using Sobel filtering to 417 

highlight the pixels in the edge region (if an edge exists). The edge filtered images are then 418 

normalized between 0 and 1 and set as labels for the self-supervision task.  419 

 420 

With the annotated classification label and the self-generated edge detection label, the 421 

equally weighted CE loss and MSE were summed up and used as the objective. In this manner, 422 

the extracted features were made sensitive to the edge region and the encoded edge information 423 

was used for the classification of cropped zone images including those with faint bands. 424 

 425 

Hyperparameter Selection 426 

 427 

Instance segmentation model structure: 428 

We used the ResNet50 CNN as the backbone of the Mask R-CNN and pretrained it on 429 

the ImageNet1K dataset for model initialization. The backbone has been trained on ImageNet1K 430 
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as a fully-supervised image classification task among 1,000 classes. We used a hidden layer size 431 

of 256 for the mask predictor. 432 

 433 

Instance segmentation training:  434 

We used 50 epochs and Adam optimizer for all of the training processes. We pretrained 435 

the model on a training subset of 50 images of the base kit with a learning rate of 5E-5 and 436 

achieved an IOU score of 0.93 on an evaluation set of ten images. We then finetuned the model 437 

on the new assay kits with a learning rate of 5E-6 using 10 training images and evaluated the 438 

performance on 10 evaluation images. We used the following train-time augmentations: (i) 439 

horizontal flip, (ii) scaling, (iii) aspect-ratio modification, (iv) brightness adjustment, (v) contrast 440 

adjustment, (vi) hue adjustment, (vii) saturation adjustment, (viii) color distortion, (ix) jitter 441 

addition, (x) cropping, (xi) padding, and (xii) Gaussian noise addition. Supplementary Table 3 442 

shows the results from the test of robustness of the instance segmentation model using 443 

bootstrapping. 444 

 445 

Classification model structure: 446 

We used the ResNet18 CNN as the feature extractor and pretrained the model on the 447 

ImageNet1K dataset for model initialization48. The feature extractor has been trained on 448 

ImageNet1K as a fully-supervised image classification task among 1,000 classes. As shown in 449 

Fig. 2a, during the pretraining on base kit images, classifier is configured as a fully connected 450 

layer (top output) and the decoder is configured as a stack of three deconvolution layers (bottom 451 

output). 452 

 453 
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Classification model pre-training:  454 

Given a training set, all the images were fed into the model in sequence and the loss was 455 

calculated for both gradient backpropagation and for updating the model. A single epoch is 456 

completed when the model has seen all the images once. 90 epochs were run in our training 457 

process. The performance of the model on the validation dataset was determined after each 458 

epoch and the model achieving the highest accuracy was selected. 459 

 460 

Classification model adaptation & finetuning:  461 

The network was trained for 100 epochs for each of the new kits with a learning rate of 462 

0.001. Within each epoch, we sample 30 episodes and set Q (number of samples per class) as 32 463 

for each episode. The feature extractor was tuned with a learning rate of 0.0001. Adam optimizer 464 

was used for the network parameter update of both the feature extractor and the classifier. The 465 

inbuilt PyTorch image transformation functions were used, namely: 1) horizontal flip, 2) 466 

Random Rotation, 3) Color Jitter (including grayscale).  Supplementary Table 4 shows the 467 

results from the test of robustness of the adapted model on the 4 new test kits using 468 

bootstrapping. 469 

 470 

Classification model training from scratch:  471 

Similar to the initialization step before self-supervision, a ResNet18 CNN is used as the 472 

feature extractor which has been trained with the ImageNet1K dataset as a fully-supervised 473 

image classification task. The network is then trained on the training images of the new assay kit 474 

with Adam optimizer and a learning rate of 0.001. The same transformation functions used for 475 

the adaptation were used here. 476 
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 477 

Threshold Determination and Ambiguity Region  478 

 479 

In general, the thresholds (𝛿𝑛𝑒𝑔, 𝛿𝑝𝑜𝑠) for negative class and positive class were determined 480 

individually by feeding the detection score (probability of positive, 𝑃𝑝𝑜𝑠) of all images of each 481 

class into the statistical model and fitting separately. Using the threshold determination of 482 

positive class as an example, the steps are explained below: 483 

1) Select the Inverse Gaussian Distribution as the model template to be fitted49,50. The 484 

reasons why we select this one-side distribution model are, 485 

a. The inverse gaussian distribution is used to model variables of non-negative 486 

values. 487 

b. Since the probability output from the model is between 0 and 1, the inverse 488 

gaussian distribution is selected as it is tighter within the range [0,1] (i.e., the area 489 

under its probability density function (PDF) curve within [0,1] is closer to one), 490 

compared to other distribution models such as Gamma distribution which may 491 

have an observable tail in [1, infinity) interval. 492 

2) Feed the 𝑃𝑝𝑜𝑠 of all labelled positive zone images into the statistical model and use the 493 

fitted parameters to draw the PDF curve. 494 

3) We set the area under the probability distribution curve (between the threshold and the 495 

extreme value, i.e., 1 for positive and 0 for negative) as 95% and use Divide and Conquer 496 

to find the corresponding threshold value 𝛿, which is threshold for positive class 𝛿𝑝𝑜𝑠. 497 

 498 
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For a negative class, 𝑃𝑝𝑜𝑠 is still used as input to find the classification score threshold 𝛿𝑛𝑒𝑔. 499 

For the convenience of presentation, [𝛿𝑛𝑒𝑔, 𝛿𝑝𝑜𝑠] is used to denote the ambiguity region where 500 

images with 𝛿𝑛𝑒𝑔 ≤ 𝑃𝑝𝑜𝑠 ≤  𝛿𝑝𝑜𝑠 will not be classified since they fall within the region, and the 501 

images with 𝑃𝑝𝑜𝑠 ≤ 𝛿𝑛𝑒𝑔 or  𝑃𝑝𝑜𝑠 ≥ 𝛿𝑝𝑜𝑠 are classified as negative or positive respectively. The 502 

ratio of the unclassified images with respect to the entire evaluation set is reported as the 503 

percentage of ambiguous cases (as shown in Table 3).   504 

 505 
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Tables 675 

 676 

Kit name IOU score 

Flowflex 0.92 

DeepBlue 0.89 

Jinwofu 0.90 

ACON IgG/IgM 0.93 

EcoTest housing 2 0.93 

 677 

Table 1. Intersection over Union scores for membrane segmentation.  The IOU scores for 678 

each of the new kit images was obtained by selecting ten images at random from a labelled pool 679 

of 30 images for training and evaluating the performance on a fixed evaluation set of ten images.  680 

 681 

 682 

 683 

 684 

 685 

 686 

 687 

 688 

 689 

 690 

 691 
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Kit name 

Without adaptation With adaptation 

Zone accuracy 

(%) 

Kit accuracy 

(%) 

Zone accuracy 

(%) 

Kit accuracy 

(%) 

EcoTest (base) 

 
98.8 96.5 - - 

Flowflex 

 
93.1 86.1 99.8 99.6 

DeepBlue 

 
93.2 86.4 99.5 98.9 

Jinwofu 

 
94.7 89.4 100 100 

ACON 

IgG/IgM 

 

91.0 73.6 98.8 96.4 

EcoTest  

housing 2 

 

100 100 - - 

 692 

Table 2. Zone-level and kit-level classification accuracy without adaptation (direct testing) 693 

and with adaptation. For the direct testing case, the model pretrained on the base kit was 694 

directly applied on each of the new kit’s evaluation dataset. For the adaptation approach, the 695 

pretrained model was adapted to each of the new kits, except for EcoTest housing 2 kit, using 696 

10-shot adaptation (20 zone images) and the performance on their respective evaluation datasets 697 

is listed here.  698 

 699 

 700 

 701 

 702 

 703 

 704 

 705 

 706 
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a) EcoTest (base kit) 707 

Label 

Prediction 
Positive Negative 

Positive (TP) 165 (FP) 1 

Negative (FN) 3 (TN) 137 

 708 

b) Flowflex (2-zone kit; 224 zone images) 709 

Label 

Prediction 
Positive Negative 

 Ambiguity 

Region 

[0.50, 

0.50] 

[0.08, 

0.98] 

[0.20, 

0.80] 

Positive (TP) 303 (FP) 0 
 

Accuracy 99.8% 100% 100% 

Negative (FN) 1 (TN) 142 

 Percentage 

ambiguous 

kits 

- 5.2% 1.3% 

 710 

c) DeepBlue (2-zone kits; 184 zone images) 711 

Label 

Prediction 
Positive Negative 

 Ambiguity 

Region 

[0.50, 

0.50] 

[0.21, 

0.95] 

[0.20, 

0.80] 

Positive (TP) 242 (FP) 0 
 

Accuracy 99.5% 100% 100% 

Negative (FN) 2 (TN) 124 

 Percentage 

ambiguous 

kits 

- 4.9% 4.1% 

 712 

d) Jinwofu (2-zone kits; 104 zone image) 713 

Label 

Prediction 
Positive Negative 

 Ambiguity 

Region 

[0.50, 

0.50] 

[0.05, 

0.99] 

[0.20, 

0.80] 

Positive (TP) 164 (FP) 0 
 

Accuracy 100% 100% 100% 

Negative (FN) 0 (TN) 44 

 Percentage 

ambiguous 

kits 

- 1.4% 0 

 714 

e) ACON IgG/IgM (3-zone kits; 193 zone images) 715 
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Label 

Prediction 
Positive Negative 

 Ambiguity 

Region 

[0.50, 

0.50] 

[0.11, 

0.88] 

[0.20, 

0.80] 

Positive (TP) 386 (FP) 1 
 

Accuracy 98.8% 99.5% 99.3% 

Negative (FN) 6 (TN) 192 

 Percentage 

ambiguous 

kits 

- 3.5% 2.8% 

 716 

f) EcoTest housing 2 (3-zone kits; 24 zone image).     717 

Label 

Prediction 
Positive Negative 

Positive (TP) 66 (FP) 0 

Negative (FN) 0 (TN) 6 

 718 

Table 3. Confusion matrices of the best models applied on the evaluation dataset (left) 719 

Accuracy and the percentage of ambiguous kits across varying ambiguity regions (right) 720 

(a) is the confusion matrix for the base model on base kit evaluation set. The performance of the 721 

best performing adapted model on the evaluation dataset for each of the new kits (b – e) without 722 

the enforcement of an ambiguity region is shown in the tables to the left. (f) shows the confusion 723 

matrix for the EcoTest housing 2 kit. The tables on the right show the accuracy for the 724 

corresponding assay kit and percentage of kits classified as ambiguous values for the different 725 

kits when varying the ambiguity region.  726 

 727 

 728 

 729 

730 
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Figures 731 

 732 

Figure 1.  Overview of use case, challenge, and pipeline for image processing and machine 733 

learning.  (a) Envisioned testing process for end user.  The user takes an image of the assay kit 734 
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using a smartphone displaying an on-screen image guide.  The zones containing the bands are 735 

automatically identified, and a model that was pre-trained on a base kit (shown as “B” in the 736 

network) and previously rapidly adapted to a new kit (using few-shot learning, shown as “N” in 737 

the network) processes the images of zones.  The model classifies each zone as positive or 738 

negative, and provides an overall assay result on the screen of the smartphone.  The cloud-hosted 739 

model processes the image and generates the results in ~4 seconds.  (b) Images of a base LFA kit 740 

(EcoTest) for pre-training the model, and five new COVID-19 LFA kits (including both antigen 741 

and antibody tests) to be interpreted.  (c) Images illustrating the challenge for few-shot learning.  742 

A pre-trained model on the base kit, without adaptation, produces failed predictions on the new 743 

kits.  Shown are both false positives and false negatives (likely due to variations in colors and 744 

intensities of membrane background and bands). (d) Overview of AutoAdapt LFA pipeline. 745 

From a raw input image of an assay kit, a correction of orientation and perspective is applied to 746 

segment an image of an assay kit.  From the assay kit image, a segmentation model based on 747 

Mask R-CNN is used to extract the membrane region of interest (RoI).  Based on measured kit-748 

specific parameters, individual zones are cropped, and passed through a software pipeline 749 

consisting of a feature extractor followed by a binary classifier.  Classification of each zone 750 

allows, via a kit-specific lookup table, for a final classification of assay result (“kit-level” 751 

classification or result) as positive, negative, or invalid.  752 
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 753 

Figure 2.  Self-supervision and few-shot adaptation for LFA kits.  (a) The feature extractor is 754 

pretrained on the base kit using self-supervised learning task over edge-filtered patterns and 755 

fully-supervised binary classification task. For each zone, fully-supervised binary classification 756 

is carried out with cross-entropy loss with the annotated binary labels. Sobel filter is used to 757 

highlight the edge pixels between the band and the background of the membrane. The edge 758 

image after normalization is used as ground truth and the learning process is used to reconstruct 759 

an image that resembles the ground truth edge image, with the quality measured in MSE (Mean 760 

Square Error). The solid and dashed arrows indicate forward processing and gradient 761 

backpropagation respectively during the learning process. (b) Model adaptation is carried out by 762 
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supervised contrastive learning to regularize the feature extractor and fully-supervised learning 763 

to learn an adapted classifier for the new kit. A sampling strategy to build an episode with Q 764 

(e.g., 32) images per class is used: for each class (positive or negative), given K (e.g., 10) images 765 

available, P (e.g., 4) images are subsampled from the new kit and mixed with Q-P images of the 766 

base kit.  767 
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 768 
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Figure 3.  Zone-level and kit-level classification accuracies for four new COVID-19 LFA 769 

kits shown with ablated models and number of new kit training images.  Ablation studies 770 

were carried out to analyze the relative contributions of self-supervised learning for feature 771 

extraction and supervised contrastive learning for adaptation. Each model was evaluated by 772 

varying the number of images used in the adaptation. Zone-level accuracy scores (left) and kit-773 

level accuracy scores (right) reported for four new assay kits, (a) Flowflex, (b) DeepBlue, (c) 774 

Jinwofu and (d) ACON IgG/IgM.  (The EcoTest housing 2 kit was identical in all aspects to the 775 

base kit expect for the housing, so the direct application of the base model without any 776 

adaptation was able to achieve 100% zone-level and kit-level accuracies.)  The maximum 777 

accuracy indicates the upper bound attained by training a model from scratch using all training 778 

images for each kit.   779 


