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We describe a repeat SARS-CoV-2 testing model for monitoring and
containing outbreaks in a residential community. The analysis is motivated
by the Ohio State University (OSU)’s approach to monitoring disease at its
Columbus, Ohio campus during the COVID-19 epidemic in autumn 2020.
The model is simple, yet flexible enough to accommodate changes in be-
havior over time and to eliminate bias due to a nonrandom testing scheme.
Model parameters are estimated from individual results of weekly SARS-
CoV-2 testing of residents. Model output serves several purposes, including
estimating the effective reproduction number and monitoring prevalence to
help inform isolation and quarantine bed capacity. An extended version of
the model is also considered where the residential population (on-campus
students) is assumed to interact with another population for whom the testing
regime is more relaxed and possibly less frequent (off-campus students or in-
structional faculty and staff). To illustrate the model application, we analyze
both the synthetic data as well as the actual student SARS-CoV-2 testing data
collected at OSU Columbus campus.

1. Introduction. In response to the COVID-19 pandemic, most American colleges and
universities suspended on-campus residence and instruction in early March 2020, opting in-
stead for predominantly online instruction (Rapanta et al., 2020). During the following sum-
mer, universities faced the decisions of whether and to what extent to resume on-campus
residence and instruction, and, if they were to be resumed, what measures needed to be put in
place to protect the health and safety of students, faculty, staff, and the surrounding commu-
nities (Smola, 2020). Several modeling and evaluation approaches were developed to assess
the feasibility and impact of potential mitigation strategies such as frequent, random test-
ing of asymptomatic individuals, contact tracing and isolation, caps on in-person class sizes.
Some notable approaches involved full-scale agent- or network-based simulations parame-
terized using information from local epidemics and run forward to yield predictions through
the end of an academic term, and thus naturally faced challenges stemming from a lack of
transmission data in the campus setting and quickly increasing uncertainty in predictions of
future trajectories, see, e.g., Christensen et al. (2020); Gressman and Peck (2020); Panovska-
Griffiths et al. (2020); Chang, Crawford and Kaplan (2020). Nevertheless, these studies were
able to robustly highlight the need for large-scale, frequent, randomized (if not comprehen-
sive) testing of asymptomatic individuals (Gressman and Peck, 2020; Losina et al., 2020),
which was adopted by many colleges and universities that ultimately held in-person instruc-
tion during the subsequent autumn semester.

The Ohio State University (OSU) partially resumed in-person instruction for the autumn
2020 semester, and implemented a battery of strategies to control COVID-19 incidence
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among associated individuals, especially students. The university conducted weekly routine
PCR-based screening for SARS-CoV-2 among all (mostly undergraduate) students living on
campus. In addition to aiding in isolation and contact tracing, trends in these data yielded in-
sight into whether incidence on campus was increasing, decreasing or plateauing. The regular
(but less frequent) random testing of asymptomatic undergraduate students living off campus
in Columbus, OH was also initiated later in the semester with the primary intent of yielding
information about incidence patterns off-campus that could then be used to inform mitigation
strategies.

Motivated by the experiences of monitoring the spread of COVID-19 among undergradu-
ate students at OSU on its main campus in Columbus, we present here a simple yet powerful
modeling framework for the analysis of student testing data similar to that used at OSU in
autumn 2020. Although for the purpose of analyzing OSU data we are only concerned with
a single on-campus (residential) student population, our framework is quite general and thus
allows for incorporation of any additional populations of interest, for instance, the off-campus
students in the surrounding area or the university faculty and instructional staff. In both cases
the goal of the analysis remains the same, namely to assess the ability of a repeated testing
program to control on-campus (residential) outbreaks over the course of a fixed time horizon
such as a college semester.

As we demonstrate in the paper, the naive estimates based on a regular testing scheme—
with each member of the monitored population tested once per testing period (e.g., a week) on
a day of their choice—suffer an upward bias when estimating the disease prevalence among
the non-quarantined population, e.g., the daily proportion of tests with positive results. Since
this bias increases in magnitude over the course of the testing period and also changes over
the course of the epidemic, the data analysis of repeated testing needs to be conducted with
extra care. This warrants a more complex, model-based approach that properly adjusts for the
testing scheme effect. One possibility is to borrow the modeling framework from the classical
epidemiology of infectious diseases and that is the strategy pursued in the current paper.

In order to describe our approach we first focus on a single (or closed) population model
and then describe its extension to an open population case where we consider two or more
interacting populations. The closed population model is used below to analyze OSU partial
student SARS-CoV-2 testing data from the autumn of 2020. Despite sharing some similari-
ties with recently proposed mechanistic models of SARS-CoV-2 repeated testing (see, e.g.,
Chang, Crawford and Kaplan 2020 or Paltiel, Zheng and Walensky 2020), it is, to our knowl-
edge, the first detailed statistical model to analyze such data.

The underlying epidemiological framework for both closed and open models is a
susceptible-exposed-infectious-removed (SEIR) compartmental process where changes over
time are allowed in parameter values governing contact patterns, transmissibility, and social
distancing. Therefore, the framework is appropriate for monitoring changes in underlying
epidemic dynamics due to, for instances, the increase in virulence of the disease, the vary-
ing levels of compliance with social distancing measures or changing population vaccination
levels. The basic SEIR framework is discrete, as it describes the evolution of the daily num-
ber of infections and is reminiscent of the classical Reed-Frost model of an epidemic (see,
e.g., Andersson and Britton 2012). Both closed and open models are assumed to be informed
by the results from some testing regimen implemented in their populations and fitted using
the so-called dynamical survival analysis (DSA) approach based on the inferential meth-
ods described in Bastian and Rempala (2020); KhudaBukhsh et al. (2020); KhudaBukhsh
et al. (2021), implemented here within the Bayesian framework via the Metropolis-Hastings-
within-Gibbs (MH-within-Gibbs) sampler. This Bayesian approach to parameter estimation
allows in particular for proper uncertainty quantification of the individual-level testing data.
As these repeat testing data analyzed here may be considered interval-censored, we refer to
the overall approach as the interval DSA or IDSA.
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MONITORING SARS-COV-2 TRANSMISSION AND PREVALENCE 3

The model-based estimates are used to both track the effective reproduction number and
provide projections supported by sequentially analyzed testing data – for use in decision-
making about contact tracing and isolation capacity. Additionally, the estimates also help
assess intervention efficacy and provide short-term forecasts of key quantities such as dis-
ease prevalence and quarantine/isolation (Q/I) resources needed. Although, as we show be-
low, both closed and open population models avoid the upward bias associated with naive
estimates of daily prevalence induced by the testing scheme, they have limitations, due to as-
sumed complete or partial isolation of the residential population from the surrounding com-
munities and due to ignoring social network structure and heterogeneity in activity patterns
in the tested populations. In their current forms, the models also do not take into account the
sensitivity and specificity of the PCR-based testing.

The remainder of the paper is organized as follows. In Section 2 we formulate both closed
and open versions of the model and describe their statistical analysis based on the MCMC
algorithm for the parameter estimation and validation. In particular, Sections 2.4 and 2.7
describe data sources and the process of integrating data into our models.

Section 3 presents a simulation study illustrating the model’s performance. We also briefly
comment on the severity of bias in prevalence estimates based on naive counting methods
such as Poisson regression – a popular tool in modern epidemiology and clinical research
(Kianifard and Gallo, 1995) that could be considered an alternative to IDSA. In Section 3.5
we apply the closed model to data from weekly testing of OSU residential students in autumn
2020. Some concluding remarks are given in Section 4. The summary of notation as well as
additional calculations on extensions of the open population model to k groups are provided
in the appendix.

2. Methods.

2.1. Data structure. We assume that repeated testing is performed in two coupled pop-
ulations, for convenience referred below as off- and on- campus students. Key assumptions
motivating our statistical model are that in the on-campus population:

1. All individuals are tested repeatedly (e.g., weekly), each time on a day of their choice
within the fixed testing window.

2. The window between consecutive tests is shorter than the natural recovery time of the
disease.

The testing schedule among the off-campus students is assumed to be less frequent and may
not satisfy the above assumptions (see Section 2.6 below). In either population of students,
we assume to know all individual testing dates and testing outcomes (positive or negative
for SARS-CoV-2). A number of organizations (e.g. sports leagues, universities, etc) have
used such testing schemes in response to the COVID-19 pandemic (Maloney, 2021; Walke,
Honein and Redfield, 2020). OSU tested and collected data from August 8 to November 24,
2020 as part of the university’s plan to manage and mitigate COVID-19 cases during the
fall semester with students on campus (OSU Monitoring Team, 2021). OSU’s policy was to
test each of n= 12,567 students living on campus weekly, keeping in mind that the natural
recovery time for COVID-19 is thought to be between 10 and 14 days for the majority of
cases. In the event of a positive test, the student was isolated for 10 days from the date of the
test, in a designated Q/I location on campus, and contact tracing was initiated. Individuals
identified as close contacts of a positive testing individual were quarantined for 14 days.
We observed that in most cases there was a 2 day delay between administering the test and
quarantining positive testing students. Students who tested positive and were subsequently
quarantined were removed from the testing pool for the next 90 days.
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Fig 1: Testing volume for SARS-CoV-2 at OSU. The bars represent daily number of tests
administered to residential OSU students (18 or older) in autumn 2020 colored by testing
result. Weekend testing volumes were typically lower (often zero on Sundays) and are shown
in darker gray color.

The OSU COVID-19 surveillance dataset considered here consist of the dates of all tests
for all students in the on-campus population, as well as the outcomes of those tests. Accord-
ingly, with such data, we know the number of daily administered tests as well as daily testing
positivity and negativity. The number of daily tests at OSU along with corresponding daily
positive count is presented in Figure 1. As per institutional policy, we depict only data from
11950 students who were at least 18 years old at the time of testing. As we may see from
the plot, at least for a portion of the time interval, the volume of daily testing on the first
fours days of the week appears reasonably similar across different weeks. The corresponding
volume of testing in the later part of the week is seen to be considerably lower.

2.2. Closed model. As already indicated, the framework of our statistical inference
model is based on the classical Reed-Frost type SEIR model of an epidemic spread (see,
for instance, chapter 2 in Andersson and Britton 2012). This model separates individuals in
a population into four categories of susceptible (S), infected or exposed (E), infectious (I),
and removed (R). The exposed are assumed to be infected but not yet infectious and the re-
moved cannot be reinfected. We treat our population as closed, well-mixed, and of known
size. Below, we denote the initial susceptible population by n. Time is treated as a discrete,
regular grid with units of days. We denote the counts of individuals in different categories (or
compartments) at time t by St, Et, It, and Rt and assume that they evolve according to the
following rules.

• Each pair consisting of one individual from St−1 and one from It−1 has probability βt(n)
of infectious contact, and each individual among St−1 who experiences such a contact
becomes infected/exposed starting at t.

• Following infection/exposure, a susceptible individual enters the exposed (E) compart-
ment. Each individual among Et−1 becomes infectious beginning at t (moves to It) with
probability ψ independently.

• Each infectious individual among It−1 is removed beginning at t (enters the recovered (R)
compartment) with probability γt(n) independently.

We assume that individuals in E are not yet detectable by RT-PCR testing as SARS-CoV-2
positive. By contrast, individuals in I are both infectious and detectable. While the time from
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initial infection (exposure) to detectability (ψ−1) varies across individuals, it is typically
shorter than five days (He et al., 2020; Larremore et al., 2021). Accordingly, we assume
ψ = 0.25 in our simulation study and data examples below.

Let δt denote the daily decrease in the count of susceptibles and εt denote the daily de-
crease in the count of infectious individuals. From the above discussion we derive the follow-
ing probability laws for the daily increments of infection δt+1 =− (St+1 − St) and recovery
εt+1 =Rt+1 −Rt, respectively:

(1)
δt+1|St, It, βt(n), n∼ Binomial

[
St,1− (1− βt(n))It

]
,

εt+1|It, γt(n), n∼ Binomial [It, γt(n)] .

The model parameters are therefore the rates of infection transmission βt(n), and of removal
γt(n), as well as the initial conditions S0,E0, and I0 (R0 = 0). We assume in the analysis that
the initial conditions are known, and estimate βt(n), γt(n) from data. Note that recovery here
encompasses not only biological clearance of infection, but also removal from infectiousness
due to isolation following positive test, as well as removal due to quarantine of infected
contacts of positive cases.

An important feature of the model is that both βt(n) and γt(n) parameters depend on t and
can potentially change at multiple time points. The model thus can accommodate behavioral
changes over time, for example in response to perceived risk of infection, policy changes,
weekend or holiday effects, and more.

2.3. Survival and hazard functions. As indicated in the introduction, the estimation ap-
proach builds on the DSA method given in KhudaBukhsh et al. (2020). Specifically, we adapt
the method to individual-level repeat testing data. There are several advantages of applying
DSA to our setting such as the automatic correction for the interval censoring and the testing
bias, both introduced by the data structure assumptions given in Section 2.1. See discussion
in Section 3.1 for further details.

Consider the survival function St that describes the decay of susceptibles over time, along
with its associated hazard function ht. More precisely, St is the probability that an initially
susceptible individual is still susceptible at time t. Define βt(n) = βt/n when n is assumed
to be large (i.e., we have a large initial population of susceptibles) and further assume that
γt(n) = γt is n-free. The probability that an initially susceptible individual stays susceptible
until t is given by

(2) St =
t−1∏
k=0

(
1− βk

n

)Ik
,

and thus the hazard function for a random susceptible being infected in [t, t+ 1] is

(3) ht+1 =
St −St+1

St
= 1− St+1

St
= 1−

(
1− βt

n

)It
≈ βtIt

n
.

Since by a similar calculation the hazard of recovery in the interval [t, t+1] is seen as simply
γt, we may consider the simple approximation to (1):

(4)
δt+1|St, It, βt, n∼ Binomial [St, βtIt/n] ,

εt+1|It, γt, n∼ Binomial [It, γt] .
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We also note that given the values St, βt, γt, and n, we have the following expression for
the effective reproduction number at time t:

(5) Rt =
βt
γt

St
n
.

As the E compartment is not observed (since individuals in E do not test positive – see
Section 3.3), it is useful to consider the decay of the combined count of susceptible and
exposed individuals. To this end, consider an initially susceptible individual. The probability
that this individual has not yet entered I by time t can be computed by convolving over the
transitions from S to E and E to I , giving

t−1∑
k=1

(
1−

(
1− βk

n

)Ik)
Sk−1P (X > t− k) + St,

where X ∼Geom[ψ]. The probability that an initially exposed individual has not yet entered
I by time t is given be P (X > t) = (1− ψ)t. Now consider the probability that a randomly
chosen individual from among those initially either susceptible or exposed has not yet entered
I by time t. Using the above along with (3) we may approximate this probability by

(6) S̃t =
S0

S0 +E0

(
t−1∑
k=1

Sk−1
βkIk
n

(1−ψ)t−k + St

)
+

E0

S0 +E0
(1−ψ)t .

2.4. Testing results and infection/exposure times. Since each on-campus student under-
goes weekly SARS-CoV-2 testing (we assume here that the noncompliance effect is negligi-
ble, this was the case at OSU) for each individual we have available

• tneg , the most recent time this individual was known to be susceptible or exposed, and
• tpos, the first time this individual was known to be infectious.

Note that it is possible that a particular individual was infectious the first time they were
observed, in which case we set tneg = 0. It is also possible that a particular individual has
never been observed to be infectious, in which case we set tpos =∞.

Given S̃t, tneg , and tpos, we can find the probability that an individual became infectious
on a particular day as follows:

• If tneg = i and tpos = j, then for each i < k ≤ j, the probability that this individual became
infectious on day k is

S̃k−1 − S̃k
S̃i − S̃j

.

• If tneg = 0 and tpos = j, then for each i < k ≤ j, the probability that this individual became
infectious on day k is

S̃k−1 − S̃k
(1− ρ)− S̃j

,

where ρ= I0/n.
• If tneg = i and tpos =∞ and we have observed data until present time T , then for each
i < T the probability that this individual became infectious before time T is

PT :=
S̃i − S̃T
S̃i
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and thus the probability this individual became infectious on day k with i < k ≤ T is

PT
S̃k−1 − S̃k
S̃i − S̃T

.

2.5. Closed model estimation. We devised an iterative procedure implemented via the
MH-within-Gibbs sampler algorithm to estimate the model parameters. Following initial-
ization, we use the current prevalence estimate to compute the survival function (2). The
survival function and individual interval censored testing data are then used to compute daily
incidence, which is then used to update the prevalence estimate. We assume that each ex-
posed individual i remains exposed for Xi days where Xi ∼Geom [ψ] before moving to the
I compartment. Below we denote the number of arrivals into I on day t by ωt and the real-
izations of the random variable Xi by xi for i= 1, . . . , n where n is the number of initially
susceptible. The detailed Gibbs sampler algorithm is as follows.

1. Initialize (St)Tt=1, (S̃)Tt=1, (βt)
T
t=1, (γt)

T
t=1, I0,E0, S0 = n− (I0 +E0), (xi)

n
i=1.

2. Initialize (ωt)
T
t=1 by drawing each individual infectious time (entering of the I compart-

ment) from

Uniform [max(0, tneg),min(T, tpos)] .

3. Given the number of infections, calculate (δt)
T
t=1 by drawing each individual infection

time (entering of the E compartment). Given previous set of draws (xi)ni=1, propose each
new x′i as an iid draw from Geom [ψ] and accept with probability

min

[
1,
Sw′ihw′i
Swi

hwi

]
where wi = zi − xi, w′i = zi − x′i and zi denotes the recovery time of the i-th individual.
See Section B.1 in the appendix for the derivation of this probability.

4. Given (ωt)
T
t=1, (δt)Tt=1, (εt)Tt=1, (βt)Tt=1, and (γt)

T
t=1, propose (ε′t)

T
t=1 by drawing each

ε′t ∼ Binomial
[
I ′t−1, γt

]
independently, where It = I0 +

∑t
k=1ωk −

∑t
k=1 εk and I ′t =

I0 +
∑t

k=1ωk −
∑t

k=1 ε
′
k. Accept the vector (ε′t)

T
t=1 with probability

min

1,
T∏
k=1

(
βkI′k−1

n

)δk(
1− βkI′k−1

n

)Sk−1−δk

(
βkIk−1

n

)δk(
1− βkIk−1

n

)Sk−1−δk


(see Section B.2 for the justification).

5. Given (ωt)
T
t=1, (δt)Tt=1, (γt)Tt=1, and (εt)

T
t=1 calculate (It)

T
t=1, (St)Tt=1, and (Et)

T
t=1 by

using

It = It−1 − εt + ωt,

St = St−1 − δt,

Et =Et−1 − ωt + δt, for t= 1 . . . T

6. Update (βt)
T
t=1 by drawing βtIt/n∼ Beta[δt + a,St−1 − δt + b].

7. Update (γt)
T
t=1 by drawing γt ∼ Beta[εt + c, It−1 − εt + d].

8. Given (βt)
T
t=1 and (It)

T
t=1, update St using (2).

9. Given (βt)
T
t=1, (It)Tt=1, S0, and E0, update S̃t using (6).
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10. For each individual, compute the probability of infectious time occurring on a specific
day as described in Section 2.4 and update (ωt)

T
t=1 by drawing the infectious time from

this distribution for each individual.
11. Go to step 3 and repeat until convergence.

The above estimation scheme yields posterior samples for (St)Tt=1, (S̃t)Tt=1, (βt)
T
t=1,

(γt)
T
t=1, (δt)Tt=1, (ε)Tt=1, (It)Tt=1, and (St)

T
t=1. Note that the updating (βt)

T
t=1 and (γt)

T
t=1

here uses a Beta-Binomial conjugate prior model. For the transmission parameters βt we
have the prior Beta [a,b], and for recovery parameter γt we have the prior of Beta [c,d]. In
our simulation study and data example, we choose a= b= 1 and c= 10, d= 50, resulting in
an uninformative prior for βt and a strongly informative prior for γt. The choice of a strongly
informative prior for γt reflects the fact that the testing scheme governs most removals and
therefore gives us much information about γt. In fact, in the idealized version of the scenario
in 2.1, we know all the removal times exactly and could use them directly. However, since the
model is unlikely to hold perfectly in practice, an indirect, parametric approach with a strong
prior is preferred, as it simultaneously allows us to utilize the empirical information about
removals and to account for uncertainty due to small violations of the assumptions described
in Section 2.1. The choices of c= 10 and d= 50 reflect the fact that under a weekly testing
scheme, the expected time to removal is 6 days.

We note that the Metropolis steps in steps 3 and 4 both have acceptance ratios close to
1, suggesting the proposal distributions are close to the full conditionals. This means the
MCMC mixes reasonably quickly. We also note that step 10 is in fact an approximation as
the collection (ωt)

T
t=1 is not independent in the full conditional. However, in KhudaBukhsh

et al. (2020) it was shown that this collection is independent in the limit as n→∞ and we use
this fact to justify the approximation. One could also consider using a Metropolis-Hastings
step here, but we found that in practice it is difficult to generate good proposals ensuring fast
mixing and that the limiting approximation is generally satisfactory.

2.6. Open model. The closed model in Section 2.2 considers a single population in iso-
lation, with residential undergraduates as a motivating example. However, in practice this
may not be an isolated population, and interactions with other groups (e.g., faculty, staff,
off-campus students, and local residents) may affect disease dynamics in the original popula-
tion under study. These additional populations may not be undergoing repeated testing at the
same frequency (or not at all), and as a result, less information is available about them. To
address this issue, we consider an extension of the initial model to include an "off-campus”
population as discussed in Section 2.1. We assume that although we are no longer in control
of the testing process in this second population, its infection prevalence and population size
estimates are nevertheless independently available through some different sampling efforts
(for instance, by a state agency or employee healthcare provider). For simplicity , in our sim-
ulation study below we also assume that, in the time window of interest, the total off-campus
population is known and the external infection rates is constant.

Our proposed “open” model in this setup is as follows. Each of the 2 groups of interest (on-
and off- campus populations) is divided into SEIR compartments as before. We denote the
total numbers of individuals in each group by n1 and n2 respectively, the numbers of suscep-
tible individuals at time t in each group by S1

t and S2
t respectively, the numbers of infected

individuals in each group at time t by I1t and I2t respectively, and so on. The compartments
then evolve according to the following rules:

• Each pair of one individual among S1
t−1 and one among I1t−1 has probability β(1)t (n) of

infectious contact, and each individual among S1
t−1 who experiences such a contact is

infected/exposed beginning at t.
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MONITORING SARS-COV-2 TRANSMISSION AND PREVALENCE 9

• Each pair of one individual among S2
t−1 and one among I2t−1 has probability β(2)(n) of

infectious contact, and each individual among S2
t−1 who experiences such a contact is

infected/exposed beginning at t.
• Each pair of one individual among S1

t−1 and one among I2t−1 has probability β∗/n1 of
infectious contact, and each individual among S1

t−1 who experiences such a contact is
infected/exposed beginning at t.

• Each pair of one individual among S2
t−1 and one among I1t−1 has probability β∗/n2 of

infectious contact, and each individual among S1
t−1 who experiences such a contact is

infected/exposed beginning at t.
• Following infection/exposure, an individual enters the exposed compartment. Each indi-

vidual among E1
t−1 and each individual among E2

t−1 moves to the corresponding I com-
partment at time t with probability ψ and then becomes infectious.

• Each infectious individual among I1t−1 is removed beginning at twith probability γ(1)t (n1).
• Each infectious individual among I2t−1 is removed beginning at twith probability γ(1)t (n2).

Let δ(1)t and δ(2)t be the daily decrease in susceptible counts for groups 1 and 2 respectively,
and let ε(1)t and ε(2)t be the daily decrease in infectious counts for groups 1 and 2 respectively.
The approximate probability laws for these quantities are as follows, 1

δ
(1)
t+1|S

1
t , I

1
t , I

2
t , β

(1)
t (n1), β

∗, n1

∼ Binomial
[
S1
t ,1− (1− β(1)t (n))I

1
t

]⊕
Binomial

[
S1
t ,1− (1− β∗/n1)I

2
t

]
,

δ
(2)
t+1|S

2
t , I

1
t , I

2
t , β

(2)(n2), β
∗, n2

∼ Binomial
[
S2
t ,1− (1− β(2)(n2))I

2
t

]⊕
Binomial

[
S2
t ,1− (1− β∗/n2)I

1
t

]
,

ε
(1)
t+1|I

1
t , γ

(1)
t (n1), n∼ Binomial

[
I1t , γ

(1)
t (n1)

]
,

ε
(2)
t+1|I

2
t , γ

(1)
t (n2), n∼ Binomial

[
I2t , γ

(1)
t (n2)

]
.

Define, as before, β(1)t (n1) = β
(1)
t /n1, β

(2)(n2) = β(2)/n2 and γ(1)t (n1) = γ
(1)
t , γ

(1)
t (n2) =

γ
(1)
t . Note that assuming that n1 and n2 are sufficiently large, we may approximate the laws

of δ(1)t and δ(2)t using Le Cam’s theorem (Le Cam et al., 1960).

(7)
δ
(1)
t+1|S1

t , I
1
t , I

2
t , β

(1)
t (n1), β

∗, n1 ∼ Poisson
[
S1
t

(
β

(1)
t I1t
n1

+ β∗I2t
n1

)]
,

δ
(2)
t+1|S2

t , I
1
t , I

2
t , β

(2)(n2), β
∗, n2 ∼ Poisson

[
S2
t

(
β

(2)
t I2t
n2

+ β∗I1t
n2

)]
.

If we now let

φ
(1)
t = β

(1)
t I1t + β∗I2t and φ

(2)
t = β

(2)
t I2t + β∗I1t

then we can rewrite (7) as

(8)
δ
(1)
t+1|S1

t , I
1
t , I

2
t , β

(1)
t (n1), β

∗, n1 ∼ Poisson
[
S1

t φ
(1)
t

n1

]
δ
(2)
t+1|S2

t , I
1
t , I

2
t , β

(2)(n2), β
∗, n2 ∼ Poisson

[
S2

t φ
(2)
t

n2

]
.

1Here
⊕

indicates that we take a sum of the independent random variables.

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 25, 2021. ; https://doi.org/10.1101/2021.06.22.21259342doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.22.21259342


10

2.7. Two group survival functions. Let S1t and S2t be the survival functions that describe
the decay of susceptibles for groups 1 and 2 respectively. Conditional on δ(1)t and δ(2)t , these
can be described by the recursive equations

S1t = S1t−1
(
1− δ

(1)
t

S1
t−1

)
,

S2t = S2t−1
(
1− δ

(2)
t

S2
t−1

)
,

and so the marginal distributions are given by

(9)
S1t =

∑S1
t−1

j=1 S1t−1
(
1− j

S1
t−1

)
P (δ

(1)
t = j),

S2t =
∑S2

t−1

j=1 S2t−1
(
1− j

S2
t−1

)
P (δ

(2)
t = j).

As before, to incorporate the E compartment (so only individuals in the I compartment
can test positive), we define S̃it to be the probability that an individual randomly chosen from
among those initially either susceptible or exposed has not yet become infected by time t. As
before, let X ∼ Geom[ψ] so that for each i= 1,2 this probability is given by

(10) S̃it =
Si0

Si0 +Ei0

( t−1∑
k=1

Sit−1(Sit−1 −Sit)P (X > t− k) + Sit
)
+

Ei0
Si0 +Ei0

P (X > t).

We also define the partial effective reproduction number denoted Rpart as follows

(11) Rpart =
(φ

(1)
t /γ

(1)
t )(S1

t /I
1
t )

n1
.

Note that this reproduction number is partial in the sense that it only pertains to the reproduc-
tion rate in the first group (on-campus population).

2.8. Open model estimation. In this setting, the data about the primary group is collected
as in Section 2.1. Rather than assuming any specific testing regimen for the off-campus group,
we assume instead that the available estimates of prevalence and population size n2 allow us
to estimate (I2t )

T
t=1. In addition, we also treat the values of ψ and (γ

(2)
t )Tt=1 ≡ γ(2) = 0.1 as

known. Indeed, as ψ = 0.25 and γ(2) correspond to the incubation and recovery period of
the disease (in both on- and off-campus population), they are assumed to depend on inherent
(and known) characteristics of the virus rather than any statistical properties of the sampled
population or the sampling scheme itself. This removes the need to estimate γ(2)t and φ(2)t .
For φ(1)t we use the Gamma-Poisson conjugate prior with prior hyperparameters a1, b1, and
for γ(1)t we use a Beta-Binomial conjugate prior with hyperparameters c1, d1. The choice of
hyperparameters may depend on the disease and testing scheme; we discuss this below after
first describing the algorithm as follows.

1. Initialize (S1t )Tt=1, (φ
(1)
t )Tt=1, (γ

(1)
t )Tt=1,ψ, I

1
0 ,E

1
0 , S

1
0 , (xi)

n
i=1.

2. Define I2t based on its estimated values.
3. Initialize (ωt)

T
t=1 by drawing each individual infectious time (entering the I1 compart-

ment) in group 1 from

Uniform [max(0, tneg),min(T, tpos)] .
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4. Given the number of infections, update (δ(1)t )Tt=1 counts by first drawing each i-th individ-
ual infection time (entering of the E compartment) and then subtracting xi. Given each
previous draw xi propose new set of x′is as an iid draw from Geom [ψ] and accept it with
probability

min

[
1,
Sw′ihw′i
Swi

hwi

]
where wi = zi − xi, w′i = zi − x′i and zi is the recovery time for the i-th individual. See
Section B.1 in the appendix for the derivation of this probability.

5. Given the other parameters, draw ε1t ∼ Binomial
[
It−1, γ

1
t

]
and calculate

I1t = I1t−1 − ε
(1)
t + ω1

t ,

E1
t =E1

t−1 − ω1
t + δ

(1)
t ,

S1
t = S1

t−1 − δ
(1)
t .

for t= 1, . . . , T .
6. Given the other parameters, draw for t= 1, . . . , T

φ
(1)
t ∼Gamma

[
δ
(1)
t + a1,

S1
t

n1
(1 + b1)

]
,

γ
(1)
t ∼ Beta

[
ε
(1)
t + c1, I

1
i−1 − ε

(1)
t + d1

]
.

7. Given the other parameters, update S1t recursively according to (9).
8. Given S1t , update S̃1t according to (10).
9. For each individual, compute the probability of infection time occurring on each day as

described in Section 2.4 and update (ωt)
T
t=1 by drawing the infection time from this dis-

tribution for each individual.
10. Go to step 4 and repeat until convergence.

When using the above algorithm in our synthetic data analysis, we have made several ad-
justments to enhance its performance. Because much of the short term fluctuation in (I2t )

T
t=1

is likely due to randomness in the testing sample, we replaced (I2t )
T
t=1 with a spline-smoothed

version of itself. For φ1 we used a diffuse prior setting a1 = b1 = 0.01. Finally, we let
c1 = 10, d1 = 50 and thus used a strong informative prior centered at 1/6 for γ(1)t . As in the
closed model, this choice seems justified by the information contained in the testing scheme
and is reflective of the 6 day average time to removal.

The extension of the current open model to include additional on-campus populations
(groups) is relatively straightforward and although we do not pursue it in this paper, the
outline of necessary derivations is provided in the appendix.

2.8.1. Estimating β∗. One of the advantages of the open model described in Section 2.6
is that with some additional effort we can also estimate the cross-infection rate β∗. Although
in the framework given in Section 2.8 β∗ is not identifiable if the sequence β(1)t is assumed
to change every day, that assumption may be often relaxed.

For instance, assuming a ’shelter in place’ order was issued for a time interval of at least
two days [t1, t2] ⊂ [0, T ], it is reasonable to expect that β(1)t is constant β(1)t ≡ β

(1)
[t1,t2]

on
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this interval. In this case we may obtain posterior samples of β∗ via an additional step per-
formed after step 10 in the previous section Gibbs sampler, where we use the current values
of φ(1), I1, and I2 over the interval [t1, t2] to perform the least squares projection on the
overdetermined system

φ
(1)
t = β

(1)
[t1,t2]

I1t + β∗I2t for t ∈ [t1, t2] .

yielding posterior samples of β∗. As an alternative, we could also use the above relation to
directly obtain the estimating equations for β∗ and β(1)[t1,t2]

based on the posterior estimates of

φ(1), I1, and I2 averaged over [t1, t2].

3. Results.

3.1. Bias in naive, non-mechanistic modeling. Before we present the proposed IDSA
model performance on data examples, let us first briefly discuss the alternative non-
mechanistic approaches often considered in similar contexts in the statistical literature. In-
deed, by now a plethora of approaches to analyzing COVID-19 occurrences via count-
regression models both in the open and closed population settings have been proposed (see,
e.g., Chan et al. (2021); Kianifard and Gallo (1995) and references therein). In our current
setting of repeated testing, it is perhaps especially tempting to entertain a simpler and more
intuitive alternative to IDSA, by modeling the epidemic using daily counts of tests adminis-
tered and daily positivity. However, the sample of individuals tested each day is not random
and depends on the specific testing regime. This could potentially cause bias and adversely
affect any planned intervention. To give a simple example, we simulated 1000 epidemic tra-
jectories using the same settings as in Section 3.3 below, comparing the naive estimate of
prevalence computed using the formula (daily positivity rate ∗ (n−Rt)) with the true value
of It, and averaged over the 1000 simulations. The results are presented in the left panel of
Figure 2, illustrating a positive bias in the implied prevalence that increases with the true It
and also over the course of the week (the duration of testing window). Indeed, note that for
any day in the week-long testing window beyond day one (d > 1), the daily positivity rate
(i.e., the daily proportion of positive tests) has to overestimate the prevalence, since individ-
uals in the tested sample will test positive so long as their infection time is smaller than d.
Since an individual’s test day is chosen uniformly at random from the days of the week, it
is approximately independent of that individual’s infection day so that the bias gets accumu-
lated over the testing window. In Figure 3 we demonstrate this mechanism for day two of
testing (d= 2).

In order to examine the implications of the positivity bias on a modeling strategy relying
on daily incidence counts, the SEIR model and testing data were simulated (see Section 3.3
for details) giving us the hypothetical daily number of tests administered along with the daily
positivity rate. Under the assumption that removals of infectious individuals are determin-
istic (occurring only at a fixed time after a positive test, and with no untested recoveries),
we calculated the daily number of individuals in the S, E, or I compartments and fitted the
Poisson generalized additive model to the simulated dataset. The model used the number of
positive tests as the outcome variable, the log number of tests administered as the offset, and
a penalized spline term for time via an adaptive spline basis (bs = “ad”) with otherwise de-
fault settings of the version 1.8-33 of R mgcv package function gam(). Prevalence estimates
were then produced at each timepoint (day) by predicting the number of positive tests, if the
entire non-removed population had been tested (by setting the offset to the log number of
non-removed students). The results are shown in the right panel of Figure 2. As can clearly
be seen from the plot, the Poisson model substantially overestimates the peak of the epidemic
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Fig 2: Bias in testing-based estimates of prevalence. Left: The blue bars depict average differ-
ences between daily estimates of prevalence computed from daily positivity rate and the true
values of It (yellow line) averaged over the 1000 simulations. The bias is seen to increase in
the course of the week and with true It. The mechanism of the bias is explained in Figure 3.
Right: Poisson GAM fit (solid lines) of the prevalence along with the naive prevalence esti-
mate (brown dotted line) obtained by n ∗ (daily positivity) compared to the actual simulated
counts (purple dots). The Poisson model is seen to severely overestimate It following the
pattern of bias from the left panel.

First Day Infectious

1 2 3

Day Tested

1 Infectious Infectious Non-infectious

2 Infectious
Test Positive

Infectious
Test Positive

Non-infectious
Test Negative

3 Removed Infectious Non-infectious

Fig 3: Example of bias mechanism for test day d = 2. Assuming that test day is indepen-
dent of infection day, we define prevalence (Pre) as the proportion of true infectious in non-
removed population. If we define the positivity (Pos) as the proportion of infected in the
sample tested on day d= 2 then it is readily seen that Pre < Pos, creating a bias. This bias
may be quite substantial, depending on the epidemic dynamics, as seen in Figure 2.

and exhibits large oscillations along the epidemic trajectory that are consistent with the accu-
mulated bias in the naive prevalence estimates. We thus see the naive Poisson model is in fact
attempting to fit (with some smoothing) these incorrect, overestimated prevalence values.

3.2. Simulation study: Overview. In order to assess the performance of the estimation
algorithms proposed in Sections 2.5 and 2.8, we performed a simulation study for both the
closed and the open models. The parameter values for the simulations were chosen in a way
that produced epidemic curves that were qualitatively similar to what was observed over
the first 60 days at the Ohio State University Columbus campus: an early peak followed
by a decline and a plateau. R code used for these simulations can be found as https:
//github.com/mwwascher/IDSA.
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Fig 4: IDSA closed model fit. Left: The model estimates of prevalence represented by the
posterior quantile plots (smooth curves) compared with the true observed prevalence of the
simulated trajectory. The quality of IDSA fit may be directly compared to the fit of the Pois-
son model shown in the left panel of Figure 2. Right: Model-based posterior estimates of
Rt given by (5) compared to the true observed values calculated for the simulated trajectory.
Vertical lines indicate the change points for the infection parameter βt.

3.3. Simulation study: Closed model. For the closed model, we considered an SEIR epi-
demic in a population of size n = 10000 over a period of time T = 60 days. In order to
account for changing social behavior and compliance with public health measures, we let
βt vary over the course of the epidemic, setting βt = .35 for t = 1, . . . ,7, βt = .45 for
t = 8, . . . ,14, βt = 0.08 for t = 15, . . . ,28, and βt = 0.12 for t = 29, . . . ,60. We assume
that when a susceptible individual becomes infected they enter the E compartment, where on
each day they become infectious and move to the I compartment with probability ψ = .25
independently. As already indicated earlier, we assume this probability is an inherent biolog-
ical characteristic of the disease and is thus known. We set the initial numbers of susceptible,
exposed, infectious, and removed individuals to S0 = 9900,E0 = 50, I0 = 50,R0 = 0.

We assume that each individual in the population is tested weekly. We simulate this each
week by numbering individuals 1, . . . ,10000, permuting this sequence into a random order of
individual tests distributed approximately uniformly over 7 days, Monday through Sunday.
Individuals who test positive are removed 2 days after being tested, due to the delay in test
outcomes reporting. Additionally, each positive test results in removingX ∼Geom[p] (where
p chosen so that EX = 0.15) additional positive individuals from the I compartment through
contact tracing. Thus, the only way to be removed from the I compartment is due to a positive
test or contact tracing, since by assumptions in Section 2.1 these removals happen faster than
the natural recovery from the disease.

For each individual, we record the time of that individual’s first positive test or time of
contact tracing, if one exists. We additionally record either the time of the most recent neg-
ative test before the positive one, or if the individual never tested positive or was contact
traced, simply the time of the the most recent negative test. This individual-level information
constitutes data that is used to fit the model. For comparison, we also record the true numbers
of S, E, I , and R individuals each day. These numbers are not used to fit the model but rather
to assess the quality of model fit. We fit the model using the algorithm in Section 2.5 with a
noniformative prior Beta[1,1] for βt and an informative prior Beta[10,50] for γt centered at
1/6. The choice of this particular value is based on the mean time (in days) to removal under
the weekly testing regime. We ran the MCMC for 10000 iterations, discarding the first 5000
as burn-in and retaining the second 5000 as posterior samples.

The results of the IDSA fit for the closed model are presented in the two panels of Figure 4.
In the left panel, the median, the 2.5% and the 97.5% quantiles of the posterior estimates of
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Fig 5: IDSA open model fit. Left: The model estimates of prevalence in the first group (on-
campus population) represented by the posterior quantile plots (smooth curves) compared
with the true observed prevalence of the simulated trajectory (purple dots). Right: Model-
based posterior estimates ofRpart given by (11) compared to the true observed values for the
simulated trajectory. Vertical lines indicate the change points for the infection parameter βt.
The model estimated values of Rpart trail off at the end of the time window because some
infections that would be imputed to this time period will have occurred after individuals’
most recent tests.

the daily prevalence are plotted over the time window T = 60 days, along with the actual
prevalence It. The comparison of It with median model prediction indicates a reasonably
good model fit, except perhaps for the first few days. Importantly, the IDSA model correctly
identifies both the timing and the size of the epidemic peak and avoids the naive model posi-
tivity bias. We note that the IDSA plot may be directly compared with the Poisson regression
plot in the right panel of Figure 2 since both models were fitted using the same simulated
epidemic trajectory (the purple dots indicate the same true prevalence in both figures). The
right plot of Figure 4 compares the empirical effective reproduction numberRt (given in (5))
for the simulated trajectory with the IDSA model estimate summarized by the three quantile
plots (median and 2.5% and 97.5% quantiles) of the posterior estimates. Again, it appears
that there is a good agreement with the observed values of Rt, even at the locations (marked
by vertical lines) where the true βt values change, except for the initial time period. Indeed,
for the initial few days the small amount of data and the delay in obtaining initial testing is
seen to contribute to model bias in estimating Rt. Despite this initial bias though, we see
from the left panel in Figure 4 that the IDSA closed model fits the synthetic data well, as it
places the peak of the epidemic at the true location, and its posterior 95% credible interval
covers the true prevalence values.

3.4. Simulation study: Open model. For the open model consisting of two populations
(on- and off-campus), we again consider an SEIR epidemic over a T = 60 day period. We
begin by defining the first group (on-campus population) and its internal parameters in the
same way as in Section 3.3, except that we set β(1)t = 0.3 for t = 1, . . . ,7, β(1)t = 0.35 for
t= 8, . . . ,14, β(1)t = 0.08 for t= 15, . . . ,28, and β(1)t = 0.10 for t= 29, . . . ,60. We also add
a second group (off-campus population) of size n2 = 30000. We set for this group, β(2)t =

0.12, γ(1)t = 0.1 for all t= 1, . . . ,60. Additionally, we take β∗t = 0.0225 for all t= 1, . . . ,60
to be the rate of cross-infection of the first group by the second. As before, we assume that
all individuals move from the compartment S to E upon infection (exposure) and may move
from E to I with known probability 0.25 each day independently. Finally, we set the initial
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numbers of susceptible, exposed, infectious, and removed individuals to S0 = 29,400,E0 =
300, I0 = 300,R0 = 0.

The testing schedule for the first group remains the same as in the closed model in the
previous section. For group two, we assume that each individual is tested once every 30 days,
and we generate the randomized testing schedule analogously to group one: each testing
period we schedule tests in random order and uniformly over 30 days. No action is taken
when an individual in group two tests positive and no contact tracing is performed in this
group. Thus, the individuals (off-campus population) are assumed to leave the I compartment
via natural recovery only. The prevalence estimate for group two is obtained as the scaled
proportion of daily positive tests.

For group one, the model is given data as in Section 3.3. For group two, the model is
given the number of positive tests out of the 1000 total daily tests for each day in the 60
day period. We then use the algorithm in Section 2.8 to fit the model. We used a diffuse
Gamma[0.01,0.01] prior for φ(1)t and an informative Beta[10,50] prior for γ(1)t . We ran the
MCMC for 10000 iterations, discarding the first 5000 as burn-in and retaining the second
5000 as posterior samples. Recall that despite the model structure expansion, the first group
is still of primary interest; indeed, the second group is only introduced as a “nuisance com-
ponent” to account for the effects of the surrounding area and its populace on the first group.

The results of the IDSA fit to the open model are presented in the two panels of Figure 5.
In the left panel, the median, the 2.5% and the 97.5% quantiles of the posterior estimates
of the daily prevalence in the first group (on-campus population) are plotted over the time
window T = 60 days, along with the corresponding actual prevalence in the first group I1t .
As we can see, despite the more complex simulated data structure than that analyzed in the
previous section, the IDSA median model again makes a reasonable prediction and provides
a good fit. As before, the IDSA model correctly identifies both the timing and the size of the
epidemic peak and manages to avoid the testing positivity bias. The right plot of Figure 5
compares the partial effective reproduction number Rpart (given in (11)) for the simulated
trajectory with the IDSA model estimate summarized by the three quantile plots (median,
the 2.5% and the 97.5% quantiles) of the posterior estimates. Again, it appears that there is
a good agreement with the true values of Rt across the relevant time window including at
the locations (marked by vertical lines) where the true βt values changes. As in the previous
section example, the IDSA fit places the peak of the epidemic close to the true peak, and the
posterior 95% credible interval covers 96.4% of the true incidence values and 96.4% of the
Rpart values, although the Rpart estimates trail off slightly at the end of the time period due
to backfill (delayed results reporting, see caption in Figure 5). As with the close model, we
observe also some bias in the initial the estimate of Rpart due to insufficient data.

We also estimated β∗ using the method described in Section 2.8.1, assuming that β(1)t is
constant on the subinterval from days 22 to 28 and that 0≤ β∗ ≤ β(1)t /2 for all t. We obtained
a posterior median of 0.022 and a 95% posterior interval of (0,0.034) whereas the true value
of β∗ was 0.0225.

3.5. Analysis of OSU COVID-19 surveillance data. In this section we present the data
analysis that has motivated the IDSA model. We use the slightly altered2 surveillance dataset
on student testing results collected by The Ohio State University between August 17 and
November 24, 2020 as part of the university’s plan to manage and mitigate COVID-19 during
the autumn semester 2020 with students on campus. The OSU’s internal policy was to weekly
test each of n= 12,567 students living on campus. In the event of a positive test, the student

2Students who were minors were removed from our analysis as per institutional policy.
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Fig 6: IDSA model fit to OSU COVID-19 data. Left: Model estimated prevalence (smooth
lines within the blue 95% credibility envelope) vs the naive estimate of prevalence (pur-
ple dots within the pink 95% confidence envelope). The IDSA estimates are seen to adjust
downward the naive estimates, in accordance with the discussion in Section 3.1. Right: The
model-based posterior estimate of the effective reproduction number Rt given by (5). The
median and 2.5% and 97.5% quantiles of the posterior estimates are plotted as smooth solid
curves within the blue 95% region of credibility.

was isolated for 10 days and contact tracing was initiated. We observed that in most cases
there was a 2 day delay between administering the test and quarantining positive testing
students. Students who tested positive were subsequently quarantined and removed from the
testing pool for 90 days. To analyze these data we consider a closed model only, since during
a large part of the autumn semester 2020 only limited data were available about students
living off-campus, an important component of the background group in the open model in
this setting.

The OSU dataset consists of the date of the first known positive test result (if one exists)
for each student living on campus and the date of the most recent negative test result before
the positive test (or the most recent negative test result if no positive test result exists). In
addition, the dataset contains information on the number of tests administered each day, and
the daily number of positive and negative test results.

The IDSA closed model is fit to the data as in Section 3.3, by applying the MH-within-
Gibbs sampler algorithm described in Section 2.5. We used a noninformative Beta[1,1] prior
for βt and an informative Beta[10,50] prior for γt centered at 1/6. We ran the MCMC for
10000 iterations, discarding the first 5000 as burn-in and using the remaining to approximate
the posterior distribution.

Since the true COVID-19 incidence in the OSU on-campus cohort is not known, in order
to have a point of comparison to the IDSA model and ascertain its bias correction magni-
tude (see Section 3.1), we used a smoothed version of the daily positivity rate p̂t. We then
computed an associated marginal standard error by SEt =

√
(p̂t)(1− p̂t)/kt where kt is the

number of tests administered on day t. We used these empirical positivity rates p̂t along with
their corresponding SEt to naively estimate at each t = 1, . . . , T = 60 the marginal 95%
confidence band for the daily prevalence. The results are shown in Figure 6 where in the left
panel the median and 2.5% and 97.5% quantiles of the posterior estimates of the OSU daily
prevalence are plotted (the blue region) along with the naive marginal estimate of prevalence
(based on the values of p̂t) and its 95% confidence band envelope (the pink region).

While the p̂t’s are somewhat useful as points of comparison, the discussion in Section 3.1
suggests that they have a positive bias that is largest at the epidemic peaks. Indeed, from
the plot in the left panel of Figure 6 we see the IDSA fit matches the shape of the epidemic
suggested by the p̂t, but estimates the peak of the epidemic are at a much lower value. This
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is consistent with the synthetic data results from previous sections where IDSA is seen to
correct the positivity bias described in Section 3.1. The exact amount of this bias present
in the OSU data is an area for future work, as the OSU testing scheduling scheme is more
complicated than the one discussed in Section 3.1(see Figure 1).

4. Conclusions. In the absence of an easily available vaccine, the ability to detect and
isolate infections as they occur is essentially the only way to prevent large outbreaks in res-
idential populations such as that of undergraduate students living on a college campus. As-
suming that infections among residents may be largely non-symptomatic, the repeated testing
scheme needs to be employed to quickly remove active infections and to identify the under-
lying parameters of disease spread, such as the effective reproduction number, in order to
plan for the isolation and quarantine needs. We have presented here a statistical IDSA model
that provides such estimates for prevalence and removal rates as well as for the effective re-
production number. The model fits given in Section 3 are encouraging both in synthetic data
examples as well as when analyzing OSU repeated testing data. We note that ability of the
IDSA model to flexibly fit the changing epidemic pattern largely stems from the fact that we
allow for the key transmission (βt) and recovery (γt) parameters to vary with time. Despite
that, the model is fully identifiable as long as the volume of daily and weekly data available
for model fitting is sufficiently high. That is clearly the case for the OSU dataset where each
week of repeated testing adds on the order of 12000 new data points for parameter estima-
tion. Although not discussed here, in our experience with the IDSA model applied to OSU
dataset we have seen good agreement between model forward predictions and the actual data,
alleviating the overfitting concerns associated with similar complex mechanistic models.

The analysis of the OSU dataset presented in this paper is to our knowledge the first de-
tailed statistical study of repeated SARS-CoV-2 testing data from a large US college under-
graduate setting. For the OSU analysis, we have used the IDSA closed model described in
Section 2.2, which in particular neglects importation of infection from outside the campus.
Because of this, caution should be exercised in interpreting our Rt estimates for OSU in
the temporal regions of low prevalence. For example, steady low-level importation of cases
could make Rt appear to be around one, despite little transmission within the residential un-
dergraduate community. In our applied work for the University, to account for this we have
expanded the model to include a constant baseline level of positive tests per day. This base-
line level could correspond to false positives, external imported infections, or a combination
of the two. Separating these baseline positives into false positives versus imported infections
may require additional data, and is an area for future work. Quantifying the importance of
transmission between residential and off-campus members of the university community re-
mains an open question, and one that we hope to use the open model in Section 2.6 to address
in the near future with access to a more complete dataset.

We note that as more residential surveillance data is becoming available, further extensions
of the open model are also possible and the brief outline of the approach to this end is given
in the appendix. However, even though such more general models have the ability to adjust
for different types of interactions and social mixing between groups, they still may not prop-
erly account for the social networks of contacts within different groups. Thus additional work
is needed for examining SARS-CoV-2 dynamics in the relevant on- and off-campus popula-
tions, in order to further improve the accuracy of the IDSA model-based predictions. This is
left for future investigation as part of the expansion of the framework presented here. Despite
these limitations, we hope that the presented framework will be useful in general and also in
the specific context of introducing and evaluating different intervention types including also
various vaccination schemes for residents along the lines of some recent policy suggestions
Wang et al. (2021). The vaccination issues specifically appear to be quite relevant and could
require some adjustments of our modeling methodology. This will be investigated in detail in
our future work on IDSA.
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SUPPLEMENTARY MATERIAL

GithHub Repository for Data and Analysis Scripts.
The datasets in Sections 3.3-3.4, along with an additional synthetic dataset inspired by the
OSU student testing data and the python implementation of the parameter estimation algo-
rithms, are provided at https://github.com/mwwascher/IDSA.

APPENDIX A: EXTENSION TO k-GROUPS MODEL

We may also extend the model in Section 3.4 to an arbitrary number k of groups. As our
main consideration remains a college campus model, we assume that the first k−1 groups are
different on-campus populations under repeated testing while the kth group being the back-
ground (off-campus) group as in Section 3.4. This model might apply in a situation where
several on-campus groups, for example students, faculty, and staff, are all under repeated
(possibly different) testing regimes and with different socially behaviors.

Our proposed model for this situation is as follows. Each of the k groups is divided
into SEIR compartments as before. Denoting the total number of individuals in each group
n1 . . . nk respectively, the number of susceptible individuals in each group at time t by
S1
t . . . S

k
t respectively, the number of infected individuals in each group at time t by I1t . . . I

k
t

respectively, and so on. We assume k � ni for i = 1 . . . k. The compartment counts then
evolve according to the following rules.

• Each pair of one individual among Sit−1 and one among Iit−1 has probability β(i)t (n) of
contact, and each individual in Sit−1 who experiences such a contact is infected/exposed
beginning at t

• Each pair of one individual among Sit−1 and one among Ijt−1 such that i 6= j has proba-

bility β∗(i,j)t /ni of contact, and each individual in Sit−1 who experiences such a contact is
infected/exposed beginning at t.

• Following exposure, an individual enters the corresponding exposed compartment. Each
individual in Eit−1 moves to the corresponding I compartment at time t with probability
ψ and becomes infectious.

• Each infectious individual in Iit−1 is removed beginning at t with probability γ(i)t (n).

Let δ(i)t be the daily decrease in susceptibles for group i, and let ε(i)t be the daily decrease
in infectious for groups i for each i = 1 . . . k. The probability laws for these quantities are
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given by3

δ
(i)
t+1|{Slt, I lt , β

(l)
t , β

∗(i,l)
t , nl,}kl=1 ∼ Bin

[
Sit ,1− (1− β(i)t (n))I

i
t

]⊕∑⊕
j 6=iBin

[
Sit ,1− (1− β∗(i,j)t /ni)

Ijt
]
,

ε
(i)
t+1|Iit , γit(ni), n∼ Bin

[
Iit , γ

(i)
t (ni)

]
.

Define β(i)t (ni) = β(i)/ni, and γ(i)t (ni) = γ
(i)
t for each i = 1 . . . k. When the ni’s are large

we can approximate the laws of the δ(i)t using Le Cam’s theorem by

(12) δ
(i)
t+1|{Slt, I lt , β

(l)
t , β

∗(i,l)
t , nl,}kl=1 ∼ Poisson

[
Sit

(
β

(i)
t Iit
ni

+
∑

j 6=i
β
∗(i,j)
t Ijt
ni

)]
.

If we now let φ(i)t = β
(i)
t Iit +

∑
j 6=i β

∗(i,j)
t Ijt then we can rewrite (12) as

δ
(i)
t+1|{Slt, I lt , β

(l)
t , β

∗(i,l)
t , nl,}kl=1 ∼ Poisson

[
Si

tφ
(i)
t

ni

]
.

With the help of these formulae one can now build in a relatively straightforward manner
an extension of the MH-within-Gibbs sampler algorithm discussed in Section 2.8.

A.1. Survival functions for k-groups. Let Sit be the survival functions that describe
the decay of susceptibles for group i for each i= 1 . . . k. Conditional on δ(i)t , each Sit can be
described by the recursive equation

Sit = Sit−1
(
1− δ

(i)
t

Si
t−1

)
,

and so the marginal distribution is given by

Sit =
∑Si

t−1

j=1 Sit−1
(
1− j

Si
t−1

)
P (δ

(i)
t = j).

which is a straightforward extension of the formula (9). Incorporating the E compartment is
now done as in (10).

APPENDIX B: FULL CONDITIONAL DISTRIBUTIONS FOR THE GIBBS SAMPLER

B.1. Full conditional distribution for δ. We obtain values of (δt)Tt=1 based on a ran-
dom sample of individual infection times. For individual i, let Wi be the time of infection
(exposure) and let Xi ∼ Geom [ψ] be the time spent in the exposed (infected but not yet
infectious) state. Then for individual i, conditionally on Zi =Wi + Xi and other random
quantities present in the model, we have

(13)

p(wi|{It}Tt=1,{βt}Tt=1,ψ,n,wi + xi

∝ p(wi + xi|{It}Tt=1,{βt}Tt=1,ψ,n,wi)p(wi|{It}Tt=1,{βt}Tt=1,ψ,n)

= p(xi|ψ)p(wi|{It}Tt=1,{βt}Tt=1, n)

∼Geom [ψ] · Swi
hwi

.

To draw wi from its full conditional, we use the Metropolis-Hastings step. Given a prior
draw wi, we make the next draw as follows.

3Here the notation
⊕

and
∑⊕ indicates that we are considering distributions obtained by summing indepen-

dent random variables.
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1. Propose x′i ∼Geom [ψ]
2. Compute w′i =wi + xi − x′i.
3. Accept w′i with probability

min

[
1,

pgeom(x′i|ψ) · Sw′ihw′i
pgeom(xi|ψ) · Swi

hwi

· pgeom(xi|ψ)
pgeom(x′i|ψ)

]
=min

[
1,
Sw′ihw′i
Swi

hwi

]
where pgeom(x|ψ) is a shorthand for P (X = x) when X ∼ Geom[ψ]. Since the vector
{δt}Tt=1 gives the daily counts of newly exposed individuals, it can be now obtained by simply
daily aggregation of the infection (exposure) times wi.

B.2. Full conditional distribution for ε. Let εi be the number of individuals removed
from the infectious (I) compartment between time i− 1 and i. Then {εi}Ti=1 denotes all the
removal counts. Then, conditionally on the remaining random quantities

(14)
p({εi}Ti=1|{δt}Tt=1,{ωt}Tt=1,{βt}Tt=1,{γt}Tt=1)

=

T∏
j=1

[
γ
εj
j (1− γj)Ij−1−εj

] T∏
k=1

[(
1− (1− βk

n
)Ik−1

)δk(
(1− βk

n
)Ik−1

)Sk−1−δk]
1Ik>0 ∀k=1,...,T

Note that St = S0−
∑t

i=1 δi and It = I0 +
∑t

i=1ωi−
∑t

i=1 εi can be computed from the
other quantities and are used in equation (14) to make it more readable.

To make draws of {εi}Ti=1 from its full conditional we use as above the Metropolis-
Hastings step. Given a prior draw of {εi}Ti=1, we make the next draw as follows.

1. Propose {ε′i}Ti=1 by proposing each ε′i ∼ Binomial
[
I ′i−1, γi

]
2. Compute I ′t = I0 +

∑t
i=1ωi −

∑t
i=1 ε

′
i

3. Accept {ε′i}Ti=1 with probability

min

[
1,

∏T
j=1

[
γ
ε′j
j (1− γj)I

′
j−1−ε′j

]∏T
k=1

[(
1− (1− βk

n )I
′
k−1

)δk(
(1− βk

n )I
′
k−1

)Sk−1−δk]
1I′k>0 ∀k=1,...,T

∏T
j=1

[
γ
εj
j (1− γj)Ij−1−εj

]∏T
k=1

[(
1− (1− βk

n )Ik−1

)δk(
(1− βk

n )Ik−1

)Sk−1−δk]
1Ik>0 ∀k=1,...,T

·

∏T
j=1

[
γ
εj
j (1− γj)Ij−1−εj

]
∏T
j=1

[
γ
ε′j
j (1− γj)I

′
j−1−ε′j

]]

=min

1,
∏T
k=1

[(
1− (1− βk

n )I
′
k−1

)δk(
(1− βk

n )I
′
k−1

)Sk−1−δk]
∏T
k=1

[(
1− (1− βk

n )Ik−1

)δk(
(1− βk

n )Ik−1

)Sk−1−δk]


≈min

1,
T∏
k=1

(
βkI′k−1

n

)δk(
1− βkI′k−1

n

)Sk−1−δk

(
βkIk−1

n

)δk(
1− βkIk−1

n

)Sk−1−δk


It is possible but in practice highly unlikely that this ratio could be 0/0 and thus undefined.

If this happens, we accept {ε′i}Ti=1. A sequence {εi}Ti=1 can have likelihood of 0 if it would
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cause It = 0 while δt > 0, since this would imply infections occurred while no individuals
were infectious. A proposed {ε′i}Ti=1 could cause this if on some day t where δt > 0 we
observe that ε′t = I ′t−1 and ωt = 0 so that all infectious individuals at time t− 1 are removed
and no exposed individuals at time t− 1 more to the infectious compartment. In practice this
is highly unlikely. A retained sequence {εi}Ti=1 can cause this because we update {ωt}Tt=1

using an approximation and so do not check the compatibility of this sequence with {εi}Ti=1
in the updating step. Thus, it is possible that updating {ωt}Tt=1 and retaining {εi}Ti=1 could
cause It = 0 while δt > 0. Again, in practice we found this 0/0 case is highly unlikely and
almost never occurs.
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APPENDIX C: SUMMARY OF NOTATION

Symbol Description

Sit Count of susceptible individuals in group i at time t

Eit Count of exposed individuals in group i at time t

Iit Count of infectious individuals in group i at time t

Rit Count of removed individuals in group i at time t

β
(i)
t Intragroup infection rate for group i at time t

β∗ Intergroup infection rate (in the open model)

φ
(i)
t Total infection rate for group i at time t

ψ Rate at which exposed individuals become infected

wi Time of exposure /infection for the i-th individual

xi Duration of time in E state for the i-th individual

γ
(i)
t Removal rate for group i at time t

δ
(i)
t The decay of susceptibles in group i from time t− 1 to time t

ω
(i)
t The decay count of exposed individuals in group i from time t− 1 to time t

ε
(i)
t The decay of infecteds in group i from time t− 1 to time t

Sit Probability an initially susceptible individual in group i is still susceptible at time t

S̃it Probability an initially noninfectious individual in group i is has not become infectious by time t

Rt The effective reproduction number at time t in the closed model

Rpart The partial effective reproduction number for the primary group at time t in the open model

a, b Hyperparameters for the Beta[a, b] prior on βt in the closed model

c, d Hyperparameters for the Beta[c, d] prior on γt in the closed model

ai, bi Hyperparameters for the Gamma[ai, bi] prior on φ(i)t in the open model

ci, bi Hyperparameters for the Beta[ci, di] prior on γ(i)t in the open model.
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