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Abstract: 21 

With more than 140 million people infected globally and 3 million deaths, the COVID 19 pandemic has 22 

left a lasting impact. A modern response to a pandemic of such proportions needs to focus on exploiting 23 

all available data to inform the response in real-time and allow evidence-based decision-making. The 24 

intermittent lockdowns in the last 13 months have created economic adversity to prevent anticipated 25 

large-scale mortality and relax the lockdowns have been an attempt at recovering and balancing economic 26 

needs and public health realities. This article is a comprehensive case study of the outbreak in the city 27 

limits of Pune, Maharashtra, India, to understand the evolution of the disease and transmission dynamics 28 

starting from the first case on March 9, 2020. A unique collaborative effort between the Pune Municipal 29 

Corporation (PMC), a government entity, and the Pune knowledge Cluster (PKC) allowed us to layout a 30 

context for outbreak response and intervention.   We report here how access to granular data for a 31 

metropolitan city with pockets of very high-density populations will help analyze, in real-time, the 32 

dynamics of the pandemic and forecasts for better management and control of SARS-CoV-2.  Outbreak 33 

data analytics resulted in a real-time data visualization dashboard for accurate information dissemination 34 

for public access on the epidemic's progress. As government agencies craft testing and vaccination 35 

policies and implement intervention strategies to mitigate a second wave, our case study underscores the 36 

criticality of data quality and analytics to decode community transmission of COVID-19. 37 

  38 
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INTRODUCTION 41 

Following a cluster of pneumonia cases recorded in Wuhan, China, in December 2019, caused by a novel 42 

coronavirus SARS-CoV-2 (1, 2), COVID-19 subsequently spread to other cities and countries (3, 4). 43 

India tops the charts of people at risk of SARS-CoV-2 infection exceeding 1.4 billion cases. The first 44 

documented case in India was from an Indian national evacuated from China on January 30, 2020. Pune, a 45 

city with about 5 million population (5), recorded its first case on March 9, 2020, with a national flying 46 

from Dubai. Severe public health measures were implemented in Pune and across India to prevent the 47 

spreading of the outbreak, including a complete lockdown starting from March 25 and dragging on for a 48 

little more than two months into the beginning of June 2020 (6). At the end of April 2021, Pune recorded 49 

a staggering >400,000 cases (7). Surveillance and contact tracing are critical components of effective 50 

public health response to COVID-19 as has been showcased worldwide, including two states of the Indian 51 

Subcontinent, Tamil Nadu and Andhra Pradesh (6). 52 

In response to public health crises such as this pandemic, healthcare preparedness, rapid action from local 53 

authorities for procuring essential supplies, and appropriate resource allocation require projecting the 54 

trajectory of cases for coming weeks and months. Real-time advanced data analytics and computational 55 

modeling using granular data are central to such an exercise (8-11).  The Pune Knowledge Cluster (PKC), 56 

a consortium of Pune-based scientists, engineers, technologists, academicians, students that believed in 57 

the power of data science analytics and modeling to curb the spread of the disease, collaborated with Pune 58 

Municipal Corporation (PMC) to provide data-driven management of the pandemic. Here, we present a 59 

perspective of the PMC-PKC collaborative efforts that include centralized data abstraction, curation, 60 

analysis, data visualization, and modeling of the early COVID-19 data to project the pandemic curve that 61 

directed policy decisions on resource procurements and allocation (12).  62 

 63 

 64 
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ANALYTIC APPROACH 65 

Data Sources 66 

Case data from the PMC included a description of reported cases gathered inline lists, i.e., flat files where 67 

each row is a case and each column a recorded variable (e.g., dates of onset and admission, gender, age, 68 

location). This data was extensively curated using a combination of manual input and state-of-the-art data 69 

science tools to fulfill the definition of 'tidy data' in the data science community (13). Regional level 70 

demographic information (example. age stratification, sex, residential addresses, maps of population 71 

densities) was collected independently from the smart city public data portal to delineate the underlying 72 

characteristics of the affected populations. Our primary data was obtained directly from the Pune 73 

Municipal Corporation and official press releases as part of an effort to build an epidemiological 74 

surveillance dashboard for Pune city (7). The details of the number of records and the duration for which 75 

they are available is present in Supplementary Table 1.  76 

Geocoding Methodology 77 

Due to the unstructured nature of addresses in India, assigning an address to a geographical location is a 78 

challenging task (14). To understand the spatial evolution of the pandemic within PMC limits, we 79 

developed a machine learning model that processed addresses of each record and assigned each address to 80 

a prabhag, an administrative unit in PMC. To train the model, we used a database of 48000 addresses 81 

which experts had manually assigned in PMC to their respective prabhags. We used 80 percent of the data 82 

for training and 20 percent for validation. 83 

We first created a database of localities around Pune, which were then assigned to their respective 84 

prabhags to eliminate the addresses' most "noisy" parts. We first simplified and normalized the addresses 85 

using the following rules. The address was tokenized into individual words. All "small" words -- tokens 86 

of length lesser than 3, were discarded. Minimal replacement of abbreviations was done. For example: 87 
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Soc -> Society, Apt -> Apartment etc. All non-alphabets are eliminated. Fuzzy matching (15) was used to 88 

replace identified tokens (1 and/or 2-grams) with a standardized form. For example, yerwada, yerawada, 89 

yerwada were all mapped to yerawada. Compound words were replaced by concatenated versions (e.g., 90 

Laxmi Nagar replaced by Laxminagar). These addresses were converted to a vector using a term 91 

frequency vectorizer. To emphasize certain unique localities within a prabhag, their frequency was 92 

multiplied by three. In the term frequency vectorization, we omit those tokens which rarely appear in the 93 

dataset. The threshold was chosen based on when the number of tokens on either side of the threshold is 94 

dramatically different. The threshold identified was 0.00003, which gives us a vocabulary of ~5000 95 

tokens. If the threshold was changed to 0.00004 and higher, the size of the vocabulary changes 96 

proportionally. However, if the threshold was decreased to 0.00002, the vocabulary more than doubles to 97 

~12000 tokens, indicating the presence of a large number of rare, "noisy" tokens. 98 

Classification and Validation 99 

The resulting address vectors were used to train a variety of classifiers. On examining their performance, 100 

we observed that the multinomial Naive Bayes classifier provided better performance in certain prabhags 101 

than tree-based classifiers (Decision Tree, Random Forest, XGBoost). Thus, an ensemble architecture was 102 

chosen for the classifier. We used an ensemble of Multinomial Naive Bayes, XGBoost, and Random 103 

Forest classifiers with a Decision Tree classifier acting as a meta-classifier. With this architecture, we 104 

achieved an accuracy of 87%. Hyperparameters for Random Forest and XGBoost were chosen to reduce 105 

overfitting. The accuracy on the training set was ~91.5%, indicating slight overfitting. We also performed 106 

10-fold cross-validation, which showed minimal variability in the accuracy, suggesting that the model 107 

was robust.  108 

Outbreak Analytics: An Overview 109 

Data type priorities were critically defined by what actionable information can be predicted for use in 110 

ground-level decision-making during the pandemic. As seen worldwide, the resultant outputs of the 111 
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outbreak data analytics for Pune were limited due to operational constraints suggesting an urgent need for 112 

resources and capacities to ensure data availability and quality. The aspects of outbreak analytics (Figure 113 

1) allowed a systematic understanding of the situation in Pune. 'Outbreak analytics' in this article refers to 114 

several tools and methods used to collect, curate, visualize, analyze, model Pune pandemic data. An 115 

integrated workflow represented describing the tools and their cross-talk are summarized below. 116 

Tracking the epidemic curve 117 

The first type of graphics needed for rapid assessment of ongoing dynamics is the epidemic curve (epi 118 

curve), which shows case incidence time series as a histogram of new-onset dates for a given time interval 119 

(16). Figure 2a shows the trend of cumulative cases ward-wise in Pune and their outcomes. Cumulative 120 

cases, the fraction of active cases, i.e., the ratio of active cases and total cases, is another suitable 121 

parameter to understand the state of the epidemic. In the beginning, when all cases are active, it will start 122 

from unity, and at the end of the epidemic, when all the cases are resolved, then this will become zero. 123 

Thus, this curve can vary between one and zero, and if it shows a decline, it implies that the epidemic is 124 

fading out. Note that when there are multiple waves, then this curve will be oscillatory. 125 

Geo-mapping of epidemics 126 

Maps have been at the core of infectious disease epidemiology from a very early stage. They can be 127 

typically used to visualize the distribution of disease, represent the 'ecological niche' of infectious diseases 128 

at large scales, assess an outbreak's spatial dynamics, and strategize interventions (17). The changing 129 

scenario month-wise for Pune is delineated through a scale that allows understanding geographical spread 130 

(Figure 3). The changing geography indicates the spread of the disease from a highly infected ward with 131 

primary infection to adjacent wards.   132 

Trend in test positivity and transmissibility assessment.  133 
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The identification of infected cases in the population is dependent on the testing for the disease. The 134 

number of tests done in phase I of the epidemic was low and indicated that it was mainly used as a 135 

diagnostic for symptomatic people.  Figure 2b illustrates the test positivity rates, which declined over 136 

time, indicating an increase in the number of tests. The 'transmissibility' of a disease can be quantified and 137 

used to refer to the rate at which new cases arise in the population, resulting either in epidemic growth or 138 

decline. Rather than an intrinsic property of a specific disease, transmissibility thus quantifies the 139 

propagation of a pathogen in a given epidemic setting and is impacted by multiple factors, including 140 

population demographics, mixing, and levels of pre-existing immunity. The first measure of 141 

transmissibility is the growth rate (r), which is estimated from a simple model where case incidence is 142 

either exponentially growing (r. 0) or declining (r, 0). Typically, r is estimated directly from epicurves 143 

using a log-linear model, where r is defined as the slope of linear regression on log-transformed 144 

incidence.  145 

Figure 2c shows test and case doubling time throughout the pandemic so far. While r quantifies the speed 146 

at which a disease spreads, it does not contain information on the intervention level necessary to control 147 

the disease. This is better characterized by the reproduction number (generically noted 'R'), which 148 

measures the average number of secondary cases caused by each primary case. Researchers typically 149 

distinguish the basic reproduction number (R0), which applies in a large, fully susceptible population, 150 

without any control measures, from the effective reproduction number (Reff), which is the number of 151 

secondary cases after accounting for behavioral changes, interventions, and declines in susceptibility. 152 

Different methodological approaches have been developed to estimate the reproduction number. To 153 

estimate Reff, we used the Bayesian approach developed by Bettencourt and Ribeiro, and modified by K. 154 

Systrom (18, 19).   155 

 R can be approximated using estimates of the growth rate r combined with knowledge of the generation 156 

time distribution. A more reliable method is to derive R(t) from compartmental models. Figure 2d 157 

represents the change in R0 values ward-wise over time. The prevalence of the disease can be calculated 158 
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through understanding IFR as opposed to CFR. This can be calculated by serological testing to detect the 159 

%age population infected. A serosurvey with five prabhags done in the July-August 2020 time frame is 160 

discussed here in connection with the cases detected and case fatality ratios. 161 

Tracking Case Fatality Rates 162 

Mortality in infectious diseases has a lag defined by the time interval between case detection and 163 

outcome. The outcome can be represented as death or recovery. Figure 2e shows the overall cumulative 164 

deaths. The case fatality ratios go up during phase 1 and early part of phase 2 of the epidemic, while the 165 

case fatality rates (CFR) are coming down with time. CFR calculations calculated from publicly available 166 

data face lag between the date of admission of patients and the date of death. Accounting for this lag is a 167 

major source of uncertainty in CFR calculations. Due to the availability of date of isolation in the data 168 

made available by PMC, we have calculated CFR, which reduces this uncertainty significantly, and 169 

allows for a cohort-based (i.e., all people who were isolated in the same period) calculation of CFR. 170 

Calculating CFR based on the date of isolation also allowed us to compute a "real-time" CFR which 171 

accounts for currently active cases. 172 

Dashboard and real-time visualization of data 173 

In order to disseminate information about the pandemic state, an online dashboard was created and 174 

operated by the team depicting the trajectories of the epidemic (7).  Dashboard depicts various quantities 175 

and figures developed by the team members such as daily and active number of cases as well as tests, 176 

real-time effective reproduction rate (R(t)), case doubling time, test doubling time, active fractions, 177 

cumulative test positivity, CFR and the forecasting. Such quantities were made available for the entire 178 

city; whenever possible, more granular data based on wards and sub-wards (Prabhags) was also shown. 179 

An example plot of the dashboard is shown in Figure 4.  180 

Forecasting 181 
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Forecasting plays a vital role in policymaking by offering reasonable estimates of the upcoming burden 182 

on health infrastructure. We used the state-of-the-art INDSCI-SIM model, an extended SEIR model (20, 183 

21) that employs a nine-compartmental description of an epidemic, tailored specifically to COVID-19. 184 

Because INDSCI-SIM supports various non-pharmaceutical interventions, one can utilize the model to 185 

incorporate the effects of multiple measures such as lockdown, adherence to masks, social distancing, and 186 

quarantining.  For forecasting, we chose the number of patients in critical condition for two primary 187 

reasons: 1) this data is less prone to errors of underreporting as hospitals typically test all the critical care 188 

patients for COVID-19 and 2) this number directly affects the resource requirements to be made by the 189 

municipal corporation. Our first forecast was made in June 2020, which was subsequently updated after 190 

the second lockdown in July. The resulting forecast was made available on an online dashboard until the 191 

end of the year. The reported cases were added every day as shown in Figure 5 that shows a worst-case 192 

and a best-case scenario. 193 

How much should we test? 194 

The way to control the infection is to increase the number of tests. However, can we quantify how much 195 

should be good enough? We proposed that if the time doubling value of the test is lower than that of the 196 

time doubling the value of infection, it is possible to test a larger population beyond just symptomatic 197 

people and their contacts. In the worst-case scenario, the two-time doubling values should be at least the 198 

same. This was done when PMC ramped up their tests from about 700-800 per day at the end of May to 199 

approximately 2500 in mid-June. Was that enough? 200 

     Like the time doubling of cases, we can define the time doubling of tests as  201 

 202 

To -- the cumulative number of tests on June 16 = 76206. 203 

td-- time doubling value 204 

T(t)-- Cumulative number of tests on a day starting from June 16.  205 

9 

nd 
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We projected values of tests required to bring down the test doubling time (td). Note that the case 206 

doubling time during that period was varying between 22-28 days. The projected tests required for 207 

keeping the td value at a certain number over the next 19 days are given in the table. These numbers were 208 

much higher than the number of tests done per day. This projection gave an idea to PMC about the 209 

requirement of an increase in the number of tests per day (Supplementary Table 2).  210 

 211 

Estimation of undetected cases and distribution of the test using CFR 212 

We asked here, if we have a limited number of tests how do we distribute across the wards? For this, we 213 

take the help of the ward wise CFR 214 

 215 

U(ward) = estimate of undetected cases in a ward 216 

D(ward) =the deceased in that ward 217 

CFR(ward) = The CFR calculated for that ward 218 

IFR - can be equated to the CFR of a country or state where the epidemic is under control  219 

Total Number of undetected cases 220 

  221 

 222 

T --- Total per day tests for Pune 223 

T(ward)--Tests per day that should be assigned to a ward  224 

Supplementary Table 3 shows the estimate of the ward-wise undetected cases and the number of tests 225 

required to keep the test positivity ratio - 0.2. 226 

Other Important Parameters  227 

Test Positivity   228 

10 

re 
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The test positivity (TP) is defined as the ratio between the total number of positive outcomes(P) and the 229 

total number of tests (T) that may represent the testing efficacy. In an ideal case, as the number of tests is 230 

increased, this parameter should decrease or remain constant at a very low value, suggesting uniform 231 

testing and can indicate that the testing is neither targeted nor the disease is exploding undetected. High 232 

values of TP could imply the testing is targeted; that is, most tests are done only for the symptomatic 233 

patients and their contacts, enhancing the TP values artificially. A potential drawback of high TP numbers 234 

is the distinct possibility of a lower number of tests performed and, more crucially, missing out on 235 

potentially infective yet asymptomatic sections of the population, leading to a silent explosion of the 236 

disease without detection. On the other hand, a small TP value could imply higher random testing or, in 237 

the best cases, more expansive and successful testing of the population through intense contact tracing. 238 

Given the large population and limited testing capabilities, a correct balance has to be struck between 239 

these two approaches: intensive and focused only target testing and ineffective and unplanned random 240 

testing. Thus, apart from CFR, we need to keep track of the TP.  We plotted the ward-wise CFR 241 

(Supplementary Figure 1). Depending on the high and low values of CFR and TP, the values can be in 242 

the four-quadrant. We discuss below what each of the quadrants means and how the testing strategy can 243 

be modified. 244 

a) Low CFR and Low TP- Low TP implies that there is not much sampling error and that the 245 

number of detected cases is close to the actual cases. When combined with low CFR values, it 246 

can be deduced that wards that come under this category have implemented good testing 247 

strategies covering most of the population. As long as the wards manage to stay in this quadrant, 248 

they can be expected to bring down the number of cases using the same strategy.  249 

b) High CFR and High TP- This quadrant implies that testing is too targeted, and thus the sampling 250 

efficiency is poor. The actual number of cases is many-fold higher than the detected ones.  251 

c) Low CFR and High TP- This combination suggests that though the testing is targeted, the number 252 

of actual cases is likely to be close to the number of detected cases. The wards in this quadrant 253 

might have mixed features in terms of rate and number of cases. However, the targeted testing 254 
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strategy seems to be working for these wards, and as long as they can keep the CFR low, they can 255 

follow the current testing strategy. Increasing values of CFR for these wards are an early 256 

signature of community spread. The ward should immediately ramp up the number of tests and 257 

change the strategy to include random testing over a larger population.    258 

d) High CFR and Low TPR: Though low values of TP alone can indicate a wider testing strategy 259 

spread over a larger population when considering the high values of CFR, the conclusion about 260 

the testing strategy becomes flawed.  The actual cases are much larger for the ward belonging to 261 

this most undesirable quadrant than the detected ones. The wards with these values of TP and 262 

CFR need to ramp up their testing strategy by many folds and must include random testing over a 263 

larger population. 264 

 265 

SUMMARY 266 

In this report, we summarize the Pune Knowledge Cluster consortium activities that included real-time 267 

data visualization for identifications of hotspots, provision of a snapshot of outbreak trends, and 268 

forecasting of the epidemic over the next several months (7, 22). Our case study on the outbreak analytics 269 

and modeling the spread of SARS-CoV-2 infection in Pune city, India, provides a feasible and scalable 270 

proof-of-concept to facilitate recommendations for public health policies to local officials and help 271 

forecast outbreaks. 272 

 273 
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Figure List 286 

Figure 1: Schematic representation of tools and cross talk in the integrated pipeline for outbreak data 287 

analytics in Pune, India 288 

Figure 2: a. Presents the trend of cumulative cases ward-wise in Pune (representative wards) b. Shows 289 

the ward positivity for representative wards c. Demonstrates the test and case doubling time throughout 290 

the pandemic d. Represents the City wise R(t) e. Represents the overall cumulative deaths.  291 

Figure 3:  Prabhag-level incidence of COVID-19 (per 1000 persons) in Pune city for the months of May, 292 

September, December 2020, and March 2021. The incidence shows a systematic shift from the densely 293 

populated interior regions of the city towards the more sparsely populated exterior regions over time. 294 

Figure 4: Dashboard - Example plot for Prabhag-wise cases per 1000 population  295 

Figure 5:  Modelling/Forecasting - Shows a worst case, a best-case scenario along with the likely path the 296 

data may take (region shaded with blue). 297 

Supplementary Figure 1:  Prabhag-level Case Fatality Rates (in percent) in Pune city between February 298 

1 - April 15, 2021. The relatively high CFR in some prabhags with low incidence suggests a higher 299 

number of undetected cases (see text for details). 300 

Supplementary Table 1: Summary of characteristics available from the data sources 301 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 25, 2021. ; https://doi.org/10.1101/2021.06.22.21259295doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.22.21259295


 

14
 

Supplementary Table 2:  Forecasting the number of SARS-CoV-2 tests for Pune city, based on the302 

targeted time doubling 'td' of tests. 303 

Supplementary Table 3: Estimation of undetected cases in the different ward offices U(ward) in Pune304 

city based on the ward-wise CFR values and assuming the IFR to be 1%.  The distribution of tests across305 

the wards using the information of the Total vs. ward wise undetected cases 306 
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Supplementary Table 1. Summary of characteristics available from the data sources 307 
 308 

Type of data Number of 
Records 

Total 
Records 

(from press 
release) 

Duration Remarks 

Testing 309742 521249 2020-03-01 to 
2020-09-15 

Missing records are primarily 
from private testing agencies 

Patients 114669 115770 2020-03-01 to 
2020-09-11 

  

Mortality 2683 2706 2020-03-01 to 
2020-09-11 

Collated from official press 
releases, includes those who 
were declared COVID-positive 
post-mortem 

Contact 
Tracing 

52292 N/A 2020-03-01 to 
2020-06-12 

  

 309 
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Supplementary Table 2. Forecasting the number of SARS-CoV-2 tests for Pune city, based on the 312 

targeted time doubling 'td' of tests.  313 

 Date td = 20 td =15 td = 10 
6/17/2020 2782 3775 5862 
6/18/2020 2880 3953 6283 
6/19/2020 2982 4140 6734 
6/20/2020 3087 4336 7217 
6/21/2020 3195 4541 7735 
6/22/2020 3309 4756 8290 
6/23/2020 3425 4981 8885 
6/24/2020 3546 5216 9523 
6/25/2020 3671 5463 10207 
6/26/2020 3800 5721 10939 
6/27/2020 3934 5992 11724 
6/28/2020 4073 6275 12566 
6/29/2020 4216 6572 13468 
6/30/2020 4365 6883 14434 

7/1/2020 4519 7208 15470 
7/2/2020 4679 7549 16581 
7/3/2020 4844 7906 17771 
7/4/2020 5015 8280 19046 
7/5/2020 5192 8672 20413 

 314 

  315 

 316 

 317 

 318 
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Supplementary Table 3. Estimation of undetected cases in the different ward offices U(ward) in Pune 321 
city based on the ward wise CFR values and assuming the IFR to be 1%.  The distribution of tests across 322 

the wards using the information of the Total vs. ward wise undetected cases 323 
 324 

  Tests 
Ward Office Undetected Max Min 

AB 42 210 31 
BP 1573 7867 1166 
BI 711 3553 527 
DS 339 1695 251 
DP 222 1110 165 
HM 344 1722 255 
KV 624 3120 462 
KY 169 845 125 
KB 178 890 132 

NRV 255 1275 189 
OP 635 3177 471 
SG 44 218 32 
SR 230 1150 170 
WR 713 3563 528 
WK 67 335 50 
YKD 1227 6136 909 

Grand Total 7373 36865 5464 
  TPR = 0.2 Td =15 

 325 

 326 
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