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 7 
Abstract 8 
The Delta SARS-CoV-2 variant has spread quickly since first being identified.  To better 9 
understand its epidemiological characteristics and impact, we utilize multiple datasets and 10 
comprehensive model-inference methods to reconstruct COVID-19 pandemic dynamics in India, 11 
where Delta first emerged. Using model-inference estimates from March 2020 to May 2021, we 12 
estimate the Delta variant can escape adaptive immunity induced by prior wildtype infection 13 
roughly half of the time and is around 60% more infectious than wildtype SARS-CoV-2. In 14 
addition, our analysis suggests that the recent case decline in India was likely due to 15 
implemented non-pharmaceutical interventions and weather conditions less conducive for 16 
SARS-CoV-2 transmission during March – May, rather than high population immunity.  Model 17 
projections show infections could resurge as India enters its monsoon season, beginning June, if 18 
intervention measures are lifted prematurely.   19 
 20 
 21 
Main text 22 
The Delta variant (PANGO lineage: B.1.617.2) is a SARS-CoV-2 variant of concern (VOC) as 23 
classified by the World Health Organization (WHO) and several governments.1-4 First identified 24 
in December 2020 in India, Delta has spread quickly to over 60 countries (GISAID,5 as of June 25 
16, 2021), likely due to its ability to evade immunity from prior wildtype infection and higher 26 
transmissibility. Laboratory studies have found varying levels of neutralizing ability for prior 27 
convalescent sera and vaccinee sera against Delta, ranging from similar potency6,7 to a 5.0-6.9 28 
fold reduction.8  Field observations have shown a lower vaccine efficacy (VE) for the 1st vaccine 29 
dose against Delta (VE = ~34% vs. ~51% against Alpha, for the BNT162b2 and ChAdOx1 30 
vaccines) but similar VE after the 2nd vaccine dose.9  In addition, epidemiological studies in the 31 
UK found a higher secondary attack rate2 and growth rate10 for Delta than the Alpha variant, 32 
explaining its rapid rise and displacement of Alpha in the UK.  However, not all places have 33 
experienced the same rapid variant displacement (e.g., thus far the Beta variant remains the 34 
dominant variant in South Africa during its ongoing 3rd pandemic wave11) and in India, the 35 
second pandemic wave caused by Delta has started to decline after several weeks of intense 36 
transmission.  To better understand the epidemiological characteristics and impact of Delta, 37 
here we utilize multiple datasets and comprehensive modeling to reconstruct COVID-19 38 
pandemic dynamics in India during March 2020 – May 2021 and quantify the immune escape 39 
potential and transmissibility for Delta. We also use model projections to examine the potential 40 
impact of Delta in India over the next 6 months. 41 
 42 
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The first COVID-19 pandemic wave in India, March 2020 – January 2021 43 
From January 2020 to January 2021 India recorded over 10 M COVID-19 cases (0.77% of its 44 
population); however, a nationwide serology survey suggested that ~24% of its population had 45 
been infected by December 2020.12 Accounting for under-detection of infection (Fig S1), 46 
implemented non-pharmaceutical interventions (NPIs), seasonality, and vaccination, we used a 47 
model-inference system to reconstruct pandemic dynamics in India since March 2020 (Fig 1A).  48 
Model-estimated infection rates closely match with measurements from three nationwide 49 
serologic surveys conducted during the early, mid, and late phases of the first pandemic wave 50 
(Fig 1B). Our analysis indicates that the 2-month long national lockdown (March 24 – May 31, 51 
2020) and the less favorable weather conditions during summer (i.e., March – May) at the time 52 
likely contributed to the low infection rates initially. By mid-May 2020, the model-inference 53 
system estimates that only 0.32% (95% CrI: 0.07 – 1.2%) of the population had been infected 54 
[vs. 0.73% (95% CI: 0.34%, 1.13%) among adults estimated by serosurvey13].  As the country 55 
lifted its lockdown in June 2020 and entered the monsoon season (June – September) when 56 
conditions are likely more favorable for transmission (Fig 1C), the first pandemic wave began. 57 
Nevertheless, continued regional restrictions during June – November 2020 and less favorable 58 
weather conditions during the autumn (October – November; see mobility and seasonal trends 59 
in Fig 1C) likely mitigated pandemic intensity. The estimated mean of the reproduction number 60 
Rt (i.e., average number of secondary infections per primary infection) was above 1 but less 61 
than 1.3 from early June to mid-September; in addition, Rt dropped transiently below 1 during 62 
October – November (Fig 1D).  By the end of January 2021 when case rates reached a minimum 63 
following the first wave, the model-inference system estimates that 25.1% (95% CrI: 15.3 – 64 
37.3%) of the population had been infected (Fig 1B).  65 
 66 
The second pandemic wave in India and estimated epidemiological characteristics of Delta 67 
Unexpectedly, infections resurged dramatically in late March 2021 largely due to the rise of the 68 
Delta variant.  Despite a weeks-long second national lockdown implemented beginning April 20, 69 
2021, India reported another 17 million cases during March – May 2021, about twice the 70 
number reported during the previous 14 months. Accounting for under-detection (Fig S1), we 71 
estimate that 26.3% (95% CrI; 15.6 – 46.2%) of the population were infected during this 3-72 
month period, including reinfections. This intense transmission was likely facilitated by the 73 
higher transmissibility as well as immune evasive nature of the Delta variant.  Estimated 74 
transmissibility increased substantially during the second pandemic wave (Fig 1E). In addition, 75 
estimated population susceptibility increased at the start of the second pandemic wave (Fig 1F), 76 
suggesting loss of population immunity against Delta. Due to this immune escape, an estimated 77 
61.8% (95% CrI: 36.8 – 83.9%) of the population remained susceptible at the end of May 2021, 78 
despite two large pandemic waves and rollout of mass-vaccination (of note, 13% of the 79 
population had received at least 1 dose of vaccine by the end of May 2021).  These findings 80 
along with the seasonal trends described above suggest that the decline of the second wave 81 
was largely due to the NPIs implemented and less favorable weather conditions during March – 82 
May, rather than high population immunity.   83 
 84 
Combining the model-inference estimates during the first and second pandemic waves in India, 85 
we estimated that Delta was able to escape immunity from prior wildtype infection 45.8% (95% 86 
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CI: 0 – 67.6%) of the time and was 60.1% (95% CI: 46.0 – 80.8%) more infectious than wildtype 87 
SARS-CoV-2.  88 
 89 
Implications for COVID-19 dynamics in India  90 
Given the estimated seasonal trends, population susceptibility, and epidemiological 91 
characteristics of Delta, we used the calibrated model to project pandemic dynamics in India 92 
over the next 6 months (i.e. June – November 2021) under different intervention and 93 
vaccination scenarios. We considered 3 NPI scenarios: i) gradual reopening starting June 2021 94 
and resuming all activities by mid-July 2021; ii) delaying the reopening by 4 weeks; and iii) 95 
delaying the reopening by 8 weeks. In addition, for each NPI scenario, we considered 3 96 
vaccination scenarios: i) current vaccination rate based on data from May 2021; ii) increasing 97 
the vaccination rate to twice the current rate; and iii) increasing the vaccination rate to four 98 
times of the current rate. For all vaccination scenarios, we assumed up to 80% of the 99 
population would be vaccinated (of note, ~24% of India’s population is below 12 years of age, 100 
an age cut-off for COVID-19 vaccination in some countries at present).  101 
 102 
Model projections indicate that, as India enters its monsoon season (June – September) with 103 
weather conditions more favorable for transmission, infections could resurge, causing a third 104 
wave of magnitude similar to the second wave, if NPIs are lifted starting in June (Fig 2; 1st 105 
column); accelerating the rollout of mass-vaccination (up to 4 times the current rate) could 106 
temper the peak burden but likely would not be sufficient to prevent this resurgence 107 
(comparing the different colored lines in Fig 2; 1st column).  In contrast, delaying the easing of 108 
NPIs could allow India to mitigate the higher transmission risk during the monsoon season and 109 
substantially reduce the peak burden. Combining a delay of 4 weeks with a much faster 110 
vaccination rollout (e.g., 4 times the current rate) and very high vaccination coverage could help 111 
to keep infection rates at levels similar to those observed during late May 2021 (Fig 2, 2nd 112 
column, blue lines). However, without a faster vaccination rollout, a delay of reopening by 8 113 
weeks may be needed to keep infection rates at the current level (Fig 2, 3rd column).  114 
 115 
Discussion 116 
Combining epidemiological, behavioral, and weather observational data with a comprehensive 117 
model-inference system, we estimate that the Delta SARS-CoV-2 variant can escape immunity 118 
from prior wildtype infection roughly half of the time and is around 60% more infectious than 119 
wildtype SARS-CoV-2. In addition, our analysis suggests that the recent case decline in India was 120 
likely due to the lockdown and weather conditions less conducive for SARS-CoV-2 transmission 121 
during March – May.  As India enters its monsoon season starting in June, infections could 122 
resurge if intervention measures are lifted prematurely.   123 
 124 
Previously, we have estimated the changes in transmissibility and immune escape potential for 125 
three other major SARS-CoV-2 VOCs: namely, a 46.6% (95% CI: 32.3 – 54.6%) increase in 126 
transmissibility but nominal immune escape for Alpha (i.e., B.1.1.7), a 32.4% (95% CI: 14.6 – 127 
48.0%) increase in transmissibility and 61.3% (95% CI: 42.6 – 85.8%) immune escape for Beta 128 
(i.e., B.1.351), and a 43.3% (95% CI: 30.3 – 65.3%) increase in transmissibility and 52.5% (95% 129 
CI: 0 – 75.8%) immune escape for Gamma (i.e., P.1).  Compared with Alpha, the estimated 130 
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transmissibility for Delta is around 10-20% higher, in addition to a more pronounced ability to 131 
evade immunity from wildtype infection. Data from the UK have shown that the secondary 132 
attack rate for contacts of cases with Delta was around 1.5 times higher than Alpha (12.4% vs. 133 
8.2%), during March 29 – May 11, 2021.2 In a partially immunized population, the secondary 134 
attack rate reflects the combined outcome of the transmissibility of the etiologic agent and 135 
population susceptibility to that agent. Our estimates of the relative transmissibility and 136 
immune escape potential for Delta and Alpha are thus in line with these reported secondary 137 
attack rates (i.e., combining the 10-20% increase in transmissibility with <~50% increase in 138 
susceptibility due to immune evasion for prior natural infection and, to a lesser extent, 139 
vaccination).  This higher competitiveness of Delta over Alpha thus explains the rapid variant 140 
displacement observed in the UK, which may occur in other regions with similar variant 141 
prevalence. Compared to Beta and Gamma, the estimated transmissibility for Delta is higher 142 
but the estimated immune escape potential is lower. In combination, Delta may be similarly or 143 
more competitive than Beta and Gamma.  As a result, the future dynamics of Delta in regions 144 
with high current Beta/Gamma prevalence are less clear, and continued monitoring of all these 145 
variants is warranted.  146 
 147 
Our analyses here also point to the important dynamic interactions with disease seasonality. 148 
While the model used to estimate COVID-19 seasonal trends was developed for influenza;14 149 
studies have shown a similar impact of humidity and temperature on SARS-CoV-2 transmission 150 
as observed for influenza.15,16 In addition, our previous estimates for Beta and South Africa 151 
using the same model appear to have been borne out by observations from South Africa – that 152 
the decline during the second wave was in part due to less conducive weather conditions 153 
during summer and that infections could resurge (which is indeed occurring) during winter. For 154 
India, the model estimates two seasons (i.e., the monsoon season during June – September and 155 
winter during December – January) would experience higher virus transmission; this seasonality 156 
in combination with the implemented NPIs explain much of the COVID-19 pandemic dynamics 157 
observed thus far in India. Using this seasonality, our model estimates and projections suggest 158 
that, similar to South Africa, a third wave is possible when India enters the more transmission-159 
favorable monsoon season starting in June. To mitigate the risk of this resurgence, continued 160 
NPIs would be needed in addition to a fast rollout of mass-vaccination.  161 
 162 
Due to a lack of detailed epidemiological data (e.g., age-specific and subnational) and thus 163 
model simplification, our estimates have large uncertainties as indicated by the large 164 
confidence intervals. Nevertheless, these estimates are in line with independent data from 165 
three nationwide serology surveys conducted at three time points during the first pandemic 166 
wave in India (Fig 1B), as well as contact tracing data from the UK,2 as discussed above; these 167 
consistencies support the accuracy of our estimates. Unlike estimates from the contact tracing 168 
data, however, here we are able to separately quantify the changes in transmissibility and 169 
immune escape potential of the Delta variant. These estimates could support better 170 
understanding of future SARS-CoV-2 variant dynamics given local prior infection rates, variant 171 
prevalence, and vaccination coverage. Overall, our findings suggest Delta remains a major 172 
public health threat in India, despite the recent intense pandemic wave caused by this variant 173 
and the declining trend. Given its high transmissibility and immune escape potential, it is also 174 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 25, 2021. ; https://doi.org/10.1101/2021.06.21.21259268doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.21.21259268


 5 

critical that other regions prepare for the potential impact of Delta in the coming weeks or 175 
months.   176 
 177 
METHODS 178 
Data sources and processing 179 
We used reported COVID-19 case and mortality data to capture transmission dynamics, 180 
weather data to estimate disease seasonality, mobility data to represent concurrent NPIs, and 181 
vaccination data to account for changes in population susceptibility due to vaccination in the 182 
model-inference system. COVID-19 case and mortality data from the week of March 8, 2020 183 
(the first week COVID-19 deaths were reported in India) to the week of May 30, 2021 came 184 
from the COVID-19 Data Repository of the Center for Systems Science and Engineering (CSSE) at 185 
Johns Hopkins University.17,18 Surface station temperature and relative humidity were derived 186 
from the Integrated Surface Dataset (ISD) maintained by the National Oceanic and Atmospheric 187 
Administration (NOAA) and were accessed using the “stationaRy” R package.19,20 We computed 188 
specific humidity using temperature and relative humidity per the Clausius-Clapeyron 189 
equation.21  We then aggregated these data for all weather stations in India (n = 498 stations) 190 
with measurements since 2000 and calculated the average for each week of the year during 191 
2000-2020. Mobility data were derived from Google Community Mobility Reports;22 we 192 
aggregated all business-related categories (i.e., retail and recreational, transit stations, and 193 
workplaces) in all locations in India to weekly intervals. Vaccination data (1st and 2nd dose) were 194 
obtained from Our World in Data.23,24 195 
 196 
Model-inference system  197 
The model-inference system was developed and described in detail in our previous study.25 In 198 
brief, we computed the disease seasonal trend (i.e., the relative reproduction number for each 199 
week of the year; see Fig 1C), based on temperature and specific humidity and parameter 200 
estimates from Yuan et al.14 These estimates were then incorporated into a susceptible-201 
exposed-infectious-removed-susceptible-vaccination (SEIRSV) model to account for disease 202 
seasonality. The model also used observed mobility data to account for ongoing NPIs and 203 
included an infection-detection-rate parameter to account for under-detection. The SEIRSV 204 
model was run in conjunction with the ensemble Kalman adjustment filter (EAKF)26 – a Bayesian 205 
inference method – and weekly case and mortality data to examine multiple potential 206 
combinations of changes in transmissibility and immune escape potential. The most plausible 207 
combination was then identified based on model goodness-of-fit and accuracy of one-step-208 
ahead predictions.  Importantly, as the model-inference system decouples the effects on 209 
transmission dynamics due to changing population susceptibility, NPIs, seasonality, and variant-210 
specific transmissivity, it is able to estimate the variant-specific transmissibility (i.e., after 211 
removing the effects of the former three factors; vs. Rt combining all factors; Fig 1 E vs. D) as 212 
well as immune escape potential.  This model-inference system has been validated using 213 
model-generated synthetic datasets where the true parameter values are known, as well as by 214 
comparing model estimates for the UK, South Africa, and Brazil – the three countries where the 215 
Alpha, Beta, and Gamma variants were first identified – to available independent observations 216 
from each country.  For details on model validation, the SEIRSV model, and the EAKF filtering 217 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 25, 2021. ; https://doi.org/10.1101/2021.06.21.21259268doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.21.21259268


 6 

process, please see the main text and supplement of Yang and Shaman.25 To account for model 218 
stochasticity, we repeated the model-inference process 100 times, each with 500 model 219 
realizations and summarized the results from all 50,000 model estimates. 220 
 221 
Model validation using independent data 222 
To compare model estimates with independent observations not assimilated into the model-223 
inference system, we identified three measurements of cumulative infection rates from three 224 
nationwide serology surveys in India: i) the first national serosurvey conducted during May 11 – 225 
June 4, 2020 (n = 28,000 adults 18 years or older);13 ii) the second national serosurvey 226 
conducted during August 18 – September 20, 2020 (n = 29,082 individuals 10 years or older);27 227 
and iii) the third national serosurvey conducted during December 18, 2020 – January 6, 2021 (n 228 
= 28,598 individuals 10 years or older).28 To account for the delay in antibody generation, we 229 
shifted the timing of each serosurvey 14 days when comparing survey results to model-230 
inference system estimates of cumulative infection rates in Fig 1B. 231 
 232 
Model projection 233 
Model projections of infections (including asymptomatic and mild cases not reported as cases), 234 
reported cases, and reported deaths were generated by integrating the SEIRSV model forward 235 
stochastically for 6 months beginning the week of June 6, 2021. Model-inference estimates 236 
made at the week of May 30, 2021 (e.g., population susceptibility and the transmissibility of 237 
Delta) were used to initialize the model ensemble. For the three NPI scenarios tested, we used 238 
the changes in population mobility as a proxy and projected mobility as follows. For the first 239 
scenario assuming reopening starting in June 2021, we used mobility data in May 2021 (i.e. the 240 
most recent 4 weeks) in a linear regression model to estimate the weekly increase in mobility 241 
and then extrapolated this trend to project mobility in future weeks, capping it at the maximum 242 
level observed during March 2020 – May 2021. For the NPI scenario assuming a 4 (or 8) week 243 
delay of reopening, we kept mobility during the first 4 (or 8) weeks at the same level as the 244 
week of May 30, 2021 and projected values for the following weeks as in the first NPIs scenario. 245 
For the three vaccination scenarios tested, we averaged the reported vaccination rate (i.e., 246 
number of doses given per week) in May 2021 (i.e. the most recent 4 weeks) to compute the 247 
baseline vaccination rate; of note, the vaccination rate for the 2nd dose was very low in May; we 248 
thus instead set it to one-third of the vaccination rate reported for the 1st vaccine dose. For a 249 
vaccination rate of 2 (or 4) times current rates, we multiplied the baseline rates by 2 (or 4).  For 250 
all vaccination scenarios, we assumed up to 80% of population would be vaccinated. At 251 
present the Covaxin and Oxford/AstraZeneca vaccines are used in India, we thus assumed a VE 252 
of 33% fourteen days after the 1st dose and 60% seven days after the 2nd dose based on VE data 253 
for the AstraZeneca vaccine against Delta.9   As for the model-inference runs, we repeated the 254 
projections for each scenario 100 times (each with 500 model realizations) and summarized the 255 
projections from all 50,000 runs.  256 
 257 
 258 
Data Availability: All data used in this study are publicly available as described in the “Data 259 
sources and processing” section.  260 
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Fig 1. Model-inference estimates and validation. (A) Model fit. (B) Model validation. (C) 
Observed relative mobility and estimated disease seasonal trend, compared to case and death 
rates over time. Key model-inference estimates are shown for the real-time reproduction 
number Rt (D), transmissibility (E), and population susceptibility (F). Blue lines and surrounding 
areas show the estimated mean, 50% (dark) and 95% (light) CrIs.  Boxes and whiskers show the 
estimated mean, 50% and 95% CrIs for weekly cases and deaths in (A) and infection rates in (D) 
– (F).  Grey shaded areas indicate the timing of national lockdowns (darker) or local restrictions 
(lighter); horizontal arrows indicate the timing of variant identification and vaccination rollout.  
In (C), for mobility (blue line; y-axis), values below 1 (dashed horizontal line) indicate reductions 
due to public health interventions. For the disease seasonal trend (orange line; y-axis), values 
above 1 indicate weather conditions more conducive for transmission than the yearly average 
and vice versa.  Note that the transmissibility estimates have removed the effects of changing 
population susceptibility, NPIs, and disease seasonality; thus, the trends are more stable than 
the reproduction number (Rt; left column) and reflect changes in variant-specific properties.   
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Fig 2. Model projections of weekly number of infections (A), reported cases (B) and reported 
deaths (C) for India during June – November 2021, under different scenarios of NPIs and 
vaccination rates. All numbers are scaled per one million people. Lines show the projected 
median and shaded areas show projected interquartile ranges.  
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Fig S1. Estimated infection-detection rate (A) and infection-fatality risk (B) during each week of 
the study period. For comparison, estimated weekly infection rates are superimposed in each 
plot (right y-axis).  Blue lines and surrounding areas show model estimated mean, 50% and 95% 
CrIs.  Boxes and whiskers show model-estimated weekly infection rates (mean, 50% and 95% 
CrIs).  Grey shaded boxes indicate the timing of lockdowns (darker) or local restrictions (lighter); 
horizontal arrows indicate the timing of variant identification and vaccination rollout.  Note that 
infection-fatality risk estimates were based on reported COVID-19 deaths and may not reflect 
the true values due to the likely under-reporting of COVID-19 deaths. 
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