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Abstract Purpose
In December 2019, the Covid-19 pandemic began in the world. To reduce mortality, in
addiction to mass vaccination, it is necessary to massify and accelerate clinical diagnosis, as
well as creating new ways of monitoring patients that can help in the construction of specific
treatments for the disease.

Objective
In this work, we propose rapid protocols for clinical diagnosis of Covid-19 through the au-
tomatic analysis of hematological parameters using Evolutionary Computing and Machine
Learning. These hematological parameters are obtained from blood tests common in clinical
practice.

Method
We investigated the best classifier architectures. Then, we applied the particle swarm op-
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timization algorithm (PSO) to select the most relevant attributes: serum glucose, troponin,
partial thromboplastin time, ferritin, D-dimer, lactic dehydrogenase, and indirect bilirubin.
Finally, we used decision trees to build four rapid protocols for Covid-19 clinical diagnosis.

Results
We developed a web system for Covid-19 diagnosis support. Using a 100-tree Random
Forest, we obtained results for accuracy, sensitivity and specificity superior to 99

Conclusion
By using a reduced set of hematological parameters common in clinical practice, it was pos-
sible to achieve results of accuracy, sensitivity and specificity comparable to those obtained
with RT-PCR. It was also possible to automatically generate clinical decision protocols, al-
lowing relatively accurate clinical diagnosis even without the aid of the web decision support
system.

Keywords Covid-19 · Clinical diagnosis support · Covid-19 rapid protocols · Hematologi-
cal parameters · Software-based rapid test · Computer-aided diagnosis

1 Introduction

1.1 Motivation and problem characterization

The world that emerged after the Second World War was marked by a rapid process of glob-
alization. An interconnected world has emerged, totally connected both by advanced means
of transport, such as airplanes and ships, and by means of information and communication
technologies. Trade necessarily integrates nations and intensifies the movement of people
across the globe. However, from the point of view of Epidemiology, a fully connected world
is also a world more susceptible to several threats, including health threats, such as epi-
demics and pandemics [28, 85]. The pathways through which international trade flows are
also the pathways used by infectious disease vectors.

Coronaviruses are viruses of the Coronaviridae family, known since the 1960s, responsi-
ble for respiratory infections in humans and animals. In 2002, there was an outbreak in China
of Severe Acute Respiratory Syndrome (SARS), a viral respiratory disease of zoonotic ori-
gin transmitted by the SARS-CoV coronavirus. SARS-CoV has spread rapidly to more than
a dozen countries in North America, South America, Europe and Asia, infecting more than
8,000 people and causing about 800 deaths. The SARS epidemic was controlled in 2003,
but the disease has become endemic in many countries [35]. In 2012, the Middle East Res-
piratory Syndrome (MERS) appeared, a respiratory disease transmitted by the MERS-CoV
coronavirus. This coronavirus was unknown as an agent of human disease until its identifi-
cation, initially in Saudi Arabia and, later, in other countries in the Middle East, in Europe
and Africa [3, 20, 70]. MERS-CoV has its origins in nature in camels and bats [3, 20, 70].
Confirmed cases of MERS developed into respiratory disease with fever, cough and dysp-
nea. Most patients had pneumonia. Some immunodepressed patients initially had fever and
diarrhea and, in some cases, pneumonia. The most frequent complications in the evolution
of the cases were respiratory failure, adult respiratory distress syndrome, septic shock, renal
failure, disseminated intravascular coagulation, and pericarditis [3, 20, 70]. About 30% of
patients confirmed with MERS-CoV died [2, 8].

In December 2019, in the city of Wuhan, China, the most critical outbreak in the last
hundred years began: Coronavirus Disease 2019 (Covid-19), transmitted by the SARS-CoV-
2 virus, a virus of zoonotic origin until then unknown, present in bats and pangolins [5, 21,
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31, 89, 111]. SARS-CoV-2, when compared to its predecessors, proved to be much more
resistant and infectious. The most common symptoms are fever, dry cough and tiredness
[21, 31, 42, 89, 111]. Pain and discomfort, sore throat, diarrhea, conjunctivitis, headache,
loss of taste or smell, rash on the skin, or discoloration of the fingers or toes may also appear
[15, 21, 78, 89, 107, 111]. Its severe symptoms are difficulty in breathing or shortness of
breath, pain or pressure in the chest, and loss of speech or movement [15, 21, 31, 42, 78,
89, 107, 111]. Despite the lower lethality, the virus spreads very quickly, producing a large
volume of deaths and leaving sequels that are often permanent [15, 31, 78, 107]. Due to their
high rate of contagion, public health system resources are rapidly depleted [31]. The Covid-
19 pandemic is one of the biggest health crises in decades. In March 2021, SARS-CoV had
already infected almost 130 million people, more than 70 million of whom recovered, while
almost 3 million died [75]. In this context, it is not enough to invest in the opening of new
hospital beds for the treatment of patients. It is necessary to have tests that guarantee fast and
reliable diagnoses; specific treatments to decrease the lethality of the disease; efficient and
low-cost vaccines applied to a considerable portion of the population; and social isolation
and quarantine policies to seek to control the disease vector while vaccines and specific
treatments are not available for Covid-19.

Accurate diagnosis plays an important role against Covid-19. The test established as the
gold standard for the diagnosis of Covid-19 is the Reverse Transcription Polymerase Chain
Reaction (RT-PCR), used to search for the presence of the SARS-CoV-2 virus, translated
from RNA into DNA, in samples of saliva and human secretions [36]. However, the RT-
PCR process can take hours or even days, considering both the volume of tests required and
the logistics of transporting the samples, given the pandemic situation [36]. Late diagnosis
can result in late patient care, which can make recovery difficult. In addition, non-isolated
infected people can spread the virus.

The most common rapid tests are based on the identification of serological evidence of
the presence of the virus as antibodies or antigens. Therefore, these tests are nonspecific be-
cause they do not detect the presence of the virus directly. Given that other viral infections
can produce responses of antibodies and similar antigens, such as common flu, the perfor-
mance of the tests depends on other factors, such as the time of onset of the disease and the
viral concentration in the sample of interest [60, 74]. For example, tests based on IgM/IgG
antibodies performed in the first week of the disease have 18.8% sensitivity and 77.8%
specificity [67]. However, in the second week, IgG/IgM tests are performed with 100% sen-
sitivity and 50% specificity [67]. Therefore, when the viral load is high, the IgG/IgM tests
reach high sensitivities and specificities. But in these cases, the disease is at advanced levels
[46, 50]. That is why the World Health Organization does not recommend the use of this
type of test for clinical decision-making [74].

Several studies have sought to highlight the nature of Covid-19 as a disease that mainly
affects the cardiovascular system [16, 37, 38, 65, 98, 113]. Coronaviruses, such as SARS-
CoV and SARS-CoV-2, have the angiotensin-converting zinc metallopeptidase 2 (ACE2),
an enzyme present in the cell membranes of the arteries, heart, lungs and other organs as a
functional receptor. ACE2 is involved in cardiac function, hypertension and diabetes [102].
The MERS-CoV and SARS-CoV coronaviruses can cause acute myocarditis and heart fail-
ure [113]. Some of the impacts of coronaviruses on the cardiovascular system are increased
blood pressure and increased levels of troponin I (hs-cTnI) [113]. Covid-19 patients may
also develop lymphopenia, i.e. low level of lymphocytes [37, 65, 98]; and leukopenia, i.e.
few leukocytes. Covid-19 patients may also experience decreased hemoglobin levels, Ab-
solute Lymphocyte Count (ALC) and Absolute Monocyte Count (AMC) [37]. Patients who
have developed severe forms of the disease have significantly higher levels of Interleukin-6
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and D-dimer than patients who have developed a moderate form of Covid-19 [38]. There-
fore, considering that Covid-19 is a disease that affects blood parameters, hematological
tests can be used to help diagnose the disease.

Given that the result of the RT-PCR test can take hours or even days, given the pandemic
situation that increases the demand for tests with the high speed of contamination, clinical
diagnosis assumes a fundamental role in determining the treatment and the type of care
correct for mild, moderate and, mainly, severe cases. In this sense, the observation of com-
plementary parameters, such as the hematological parameters obtained from common tests
in clinical practice, takes on a very important role. Several works have been using machine
learning techniques to diagnosis diseases by analyzing hematological parameters automati-
cally [5, 45, 69, 100]. Blood tests are commonly used during medical screening. The most
common blood tests, like complete blood count, bilirubin, serum gligose, c-reactive protein,
urea, and others, are easily available at relatively low-cost compared with other diagnosis
methods. Therefore, intelligent systems can be used to automatically analyze hematological
parameters and use them to support Covid-19’s clinical diagnosis and to suggest appropriate
patient care [5].

In this work we propose the following rapid protocols to support the clinical diagnosis
of Covid-19 based on hematological parameters: (1) rapid diagnosis based on automatic
analysis by an intelligent web system based on Particle Swarm Optimization and Random
Forests; (2) rapid diagnosis by statistical inference by decision trees. In the first approach, an
intelligent web system was developed to support decision making. This system was put into
operation in the city of Paudalho, Brazil, to support the clinical diagnosis and assessment
of the severity of the disease in patients admitted to intensive and semi-intensive care units,
in the year 2020. In the second approach, we used decision trees to infer that hematological
parameters would be statistically more relevant for clinical diagnosis without the support of
an intelligent system. The most relevant parameters were ferritin and prothrombin partial
time. The results of general accuracy, sensitivity and specificity were quite high for both
approaches, demonstrating that rapid diagnosis is possible using only well-known and low-
cost clinical exams, with the potential support of an intelligent decision support system. The
high correlation between ferritin, prothrombin time and a positive diagnosis for Covid-19
in symptomatic patients also points to the need for more research on treatments to combat
early clotting and the main symptoms of the disease.

1.2 Related works

Several studies emphasize the importance of hematological parameters to support Covid-19
clinical diagnosis. Some of them point to the relevance of using hematological analysis as an
indicative of the severity degree of Covid-19. Fan et al. [37] analyzed hematological param-
eters of 69 patients with Covid-19. The study was conducted with subjects from the National
Center for Infectious Diseases (NCID) in Singapore. 65 of these patients underwent com-
plete blood count (CBC) on the day of admission. 13.4% of patients needed intensive care
unit (ICU) care, especially the elderly. During the first exams, 19 patients had leukopenia
(few white blood cells) and 24 had lymphopenia (low level of lymphocytes in the blood),
with 5 cases classified as severe (Absolute Lymphocyte Count (ALC) < 0.5× 109/L). The
study also pointed out that patients who needed to be admitted to the ICU had lower ALC
and a higher rate of Lactate Dehydrogenase (LDH). These data indicated that monitoring
these parameters can help to identify patients who need assistance in the ICU. The authors
found that the patients who were in the ICU had a significant decrease in their hemoglobin
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levels, ALC and Absolute Monocyte Count (AMC) levels, when compared to the non-ICU
group. ICU patients also tend to neuthophilia. The platelet count did not prove to be a factor
for discrimination between the type of hospitalization.

The work from Tan et al. [98] also assessed the complete blood count of patients. They
used data from both cured patients and patients who died from Covid-19. The main pur-
pose of the study was to obtain key indicators of disease progression, in order to support
future clinical management decisions. In the case of patients who died, blood tests were
continuously monitored throughout the treatment process. Similar to the previous study, the
authors observed lymphopenia in this group. Based on this, the study then outlined a model
(Time-LYM% model, TLM) for classifying disease severity and predicting prognosis. Thus,
the blood lymphocyte percentage (LYM%) was divided into two cases, considering the first
10-12 days of symptoms: LYM% > 20% are classified as moderate cases and with a high
chance of recovery. LYM% < 20% are classified as severe cases. In a second exam, 17-18
days after the first symptoms, patients with LYM% > 20% are recovering, patients with
5 <LYM% < 20% are in danger, and LYM% < 5% are in critical condition. In order
to validate the model, the authors evaluated 90 patients with Covid-19. The consistency
between Guideline and TLM-based disease classification was verified using kappa statistic
(Kappa = 0.48). These results indicate that probably LYM% should be used together with
other parameters for a better evaluation of Covid-19.

Gao et al. [38] assessed hematological characteristics of 43 patients at Fuyang Sec-
ond People’s Hospital. The patients had diagnosis confirmed by the Covid-19 ground truth
test, the fluorescent reverse transcription-polymerase chain reaction (RT-PCR). They were
divided into two groups: the moderate group with 28 patients, and the severe group with
15 patients. The groups have no significant difference in age and sex. The blood tests ob-
served were: Routine blood tests (white blood cell [WBC] count, lymphocyte count [LYM],
mononuclear count [MONO], neutrophils count [NEU]) were performed on the blood sam-
ples. Blood biochemistry parameters (aspartate aminotransferase [AST], alanine amino-
transferase [ALT], glucose [GLU], urea, creatinine [Cr], cystatin [Cys-c], uric acid [UA],
and C-reactive protein [CRP]); Coagulation functions (D-dimer [d-D], thrombin time [TT],
prothrombin time [PT], fibrinogen [FIB], activated partial thromboplastin time [APTT]);
rocalcitonin (PCT); and Interleukin-6 (IL-6). Using statistical tests, the study noted that the
levels of GLU, CRP, IL-6, TT, FIB, and d-D were significantly higher in the severe group
than in the mild group. Performing this analysis with ROC curves, the authors pointed out
that the best indicators for predicting severity were IL-6 and d-D combined, with AUC of
0.840. The combination also achieved specificity of 96.4% and sensitivity of 93.3%, using
tandem and parallel testing, respectively. These results indicate that patients with severe
conditions would have abnormal coagulation.

Liu et al. [65] reported that lymphopenia and inflammatory cytokine storm are abnor-
malities commonly found in other infections caused by coronavirus, such as SARS-Cov and
MERS-Cov. With that in mind, they studied 40 patients diagnosed with Covid-19 confirmed
by throat-swab specimens analyzed with RT-PCR. The patients were treated at Wuhan Union
Hospital in January, 2020. The information provided was: epidemiological, demographic,
clinical manifestations and laboratory tests. Similar to the previous study, patients were di-
vided into two groups: mild patients, with symptoms such as epidemiological history, fever
or respiratory symptoms, and abnormalities in imaging tests; the second group with severe
patients, patients should additionally have symptoms such as shortness of breath, oxygen
saturation < 93%, respiratory > 30 times/min, or PaO2/FiO2 < 300 mmHg. 27 patients
were classified in the first group, while 13 were classified in the second. The study reported
that levels of fibrinogen, D-dimer, total bilirubin, aspartate transaminase, alanine transam-
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inase, lactate dehydrogenase, creatine kinase, C-reactive protein (CRP), ferritin and serum
amyloid A protein were significantly higher in the severe group. Futhermore, most severe
patients presented lymphopenia, that can be related to the significantly decreased absolute
counts of T cells, especially CD8+ T cells, while white blood cells and neutrophils counts
were higher.

These studies have pointed out that hematological parameters can be indicators of the
risk factors and degree of severity of Covid-19. The identification of these parameters can be
essential to optimize clinical care for each group of patients. In this sense, the development
of intelligent systems based on blood tests is useful. Faced with the pandemic scenario, in
which most hospitals are full, decision support systems can facilitate clinical management.
Thus, it can increase the assertiveness in the treatment for each case and, consequently, the
number of lives saved.

Gunčar et al. [45] proposed a system based on machine learning for analyzing blood
tests and predicting hematological diseases. Their database was acquired between the years
2005 and 2015 at the University Medical Center of Ljubljana. In this case, 43 diseases
and 181 parameters or features were selected to generate a first model (SBA-HEM181).
In addition to it, a second model with 61 parameters was also developed (SBA-HEM061).
The selection criteria was based on the frequency of use. Regarding the missing values
(about 75%), the authors filled in with median values for each attribute. As classification
methods, the authors tested classic approaches, such as Support Vector Machines, Naive
Bayes and Random Forest. The simulations were repeated 10 times using 10-fold cross
validation. Finally, the models SBA-HEM181 and SBA-HEM061 reached an accuracy of
57% considering all the diseases chosen. By restricting the prediction to five classes, the
systems achieved an accuracy of 88% and 86%, respectively. These results were achieved
when using Random Forest for classification. This study also pointed to the possibility of
effectively detecting diseases through blood tests using classic intelligent classifiers.

Barbosa et al. [5] proposed an intelligent system to support Covid-19 diagnosis using
blood exams. After testing several machine learning methods, they achieved high classifica-
tion performance using Bayes network as classifier. The intelligent system was built using a
5,644-subjects public database from the Hospital Israelita Albert Einstein, Brazil [53], and
showed average accuracy of 95.2% ± 0.7, with kappa index of 0.90 ± 0.01, sensitivity of
0.968 ± 0.007, precision of 0.94 ± 0.01 and specificity of 0.94 ± 0.01. The authors were
able to minimize costs by selecting only 24 blood tests from the set of 107 available exams.
Although the study achieved good results, the set of selected tests did not considered all
the exams indicated by subsequent recommendations from the Brazilian Ministry of Health
when dealing with Covid-19 patients [13].

Similarly, Soares et al. [95] use a method based on artificial intelligence to identify
Covid-19 through blood tests. As Barbosa et al. [5] did, they used the database from the
Hospital Israelita Albert Einstein. However, since the database has many missing data, they
chose to include only the subjects that had most of the data. This procedure reduced the
dataset from 5,644 samples to 599 samples. By using Support Vector Machines as a classifier
and SMOTEBoost technique to perform oversampling, they achieved average specificity of
85.98%, Negative Predictive Value (NPV) of 94.92%, average sensitivity of 70.25% and
Positive Predictive Value (PPV) of 44.96%.

These intelligent systems based on blood tests may play an important role in the process
of diagnosing Covid-19, since many studies are confirming evidences of how this disease
affects hematological parameters. Positive cases can be referred to further highly sensitive
testing such as RT-PCR, computerized tomography scans and radiography [42, 43].
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Negri et al. [73] have been using elevated D-dimer as a predictor of severity and mor-
tality in Covid-19 patients. They also observed that heparin use during in-hospital stay has
been associated with decreased mortality. Covid-19 patient autopsies have revealed thrombi
in the microvasculature, suggesting that hypercoagulability is a prominent feature of or-
gan failure. Negri et al. [73] performed a clinical study involving 27 Covid-19 patients
admitted to Sirio-Libanes Hospital in São Paulo, Brazil. They treated these patients with
heparin in therapeutic doses tailored to clinical severity. Their results suggest hypercoagu-
lative state and microthrombosis as the main mechanisms of organ failure in Covid-19 and
the potential response to early anticoagulation therapy. Following the steps of [73], several
studies confirmed the importance of D-dimer as severity predictor and specific treatment
based on anticoagulants as capable to reduce Covid-19 mortality and improve prognosis
[16, 71, 90, 93, 99, 105, 108].

According to Klok et al. [57], Covid-19 may predispose patients to both venous and
arterial thromboembolism due to excessive inflammation, hypoxia, immobilisation and dif-
fuse intravascular coagulation. The incidence of thrombotic complications in ICU patients
with COVID-19 infections is considerably high. The authors’ findings are strongly sugges-
tive of increasing the prophylaxis towards high-prophylactic doses, even in the absence of
randomized evidence. For Long et al. [68] and Panigada et al. [76], D-Dimer and Prothrom-
bin Time are most significant indicators of severe Covid-19 cases and poor prognosis due to
hypercoagulation hypercoagulability together with severe inflammatory states. Other clini-
cal studies confirm evidences to this findings and point out to partial thromboplastin time as
other important biomarker [24, 51, 61, 77, 96, 110].

According to Vargas-Vargas and Cortés-Rojo [104], ferritin is a key mediator of immune
dysregulation, especially under extreme hyperferritinemia, via direct immune-suppressive
and pro-inflammatory effects, contributing to the cytokine storm. Fatal outcomes by Covid-
19 are accompanied by cytokine storm syndrome. Disease severity is dependent of the cy-
tokine storm syndrome. A possible strategy to decrease ferritin levels might be the treat-
ment with iron chelators like deferoxamine, since it is a non-toxic iron chelator clinically
approved, effective for long-term iron chelation therapy in beta-thalassemia and other mal-
adies involving iron overload. For Vargas-Vargas and Cortés-Rojo [104], manipulations de-
creasing dietary iron should be also considered as they have been shown to modify serum
ferritin levels. Vargas-Vargas and Cortés-Rojo [104] suggest this procedure could reduce
Covid-19 severity, specially in individuals with high ferritin levels morbidities like diabetes.

According to Gómez-Pastora et al. [44], Rosário et al. [88], in inflammatory diseases,
there is a large production of ferritin. Macrophages are responsible for most immune cells
in the lung parenchyma. Macrophages also produce cytokines and may be responsible for
the secretion of serum ferritin [88]. Several inflammatory stimuli, including IL-6 cytokines,
can induce ferritin synthesis [88]. High concentrations of IL-6 in patients with Covid-19 are
correlated with disease severity [66, 114]. Liu et al. [64] discuss the use of IL-6 blocking
drugs to treat Covid-19. Liu et al. [64] discuss the pathogenesis of severe acute respiratory
syndrome (SARS)-induced cytokine release syndrome (CRS). They also compare the CRS
in Covid-19 with that in SARS and Middle East respiratory syndrome (MERS), and sum-
marize the existing therapies for CRS. They propose to utilize interleukin-6 (IL-6) blockade
to manage COVID-19-induced CRS and discuss several factors that should be taken into
consideration for its clinical application.

For Gómez-Pastora et al. [44], as ferritin can be actively secreted at the site of infection,
it is possible that ferritin can take on other functions in addition to its classic role as an
iron storage protein. Ferritin has been shown to be a signaling molecule and direct media-
tor of the immune system [88]. Complex feedback mechanisms may exist between ferritin
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and cytokines in the control of pro-inflammatory and anti-inflammatory mediators, as cy-
tokines can induce ferritin expression. Ferritin can also induce the expression of pro- and
anti-inflammatory cytokines [88]. However, the pathogenic role of ferritin during inflamma-
tion remains unclear [56]. For Gómez-Pastora et al. [44], it is necessary to investigate the
structure of plasma ferritin in patients with Covid-19. Ferritin is composed of 2 different
subunits, H and L. Different studies have suggested that the expression of the H subunit
is driven by inflammatory stimuli and ferritin H can function as an immunomodulatory
molecule, exhibiting pro-inflammatory and immunosuppressive functions [56, 88]. Figure
1 illustrates the ferritin role during inflammation provoked by Covid-19 infection. Active
ferritin production by macrophages and cytokines may lead to hyperferritinemia. It can in-
duce the production of several pro-inflammatory (IL-1β) and anti-inflammatory cytokines
(IL-10).

Fig. 1: Ferritin role during inflammation provoked by Covid-19 infection. Active ferritin
production by macrophages and cytokines may lead to hyperferritinemia. It can induce the
production of several pro-inflammatory (IL-1β) and anti-inflammatory cytokines (IL-10).
Illustration based on Gómez-Pastora et al. [44], Kernan and Carcillo [56], Rosário et al.
[88].

For Vargas-Vargas and Cortés-Rojo [104], there is a strong evidence supporting the hy-
pothesis that ferritin levels might be a crucial factor influencing the severity of Covid-19. Lin
et al. [63] found an association between hyperferritinemia and disease severity in patients
with Covid-19. Lin et al. [63] conducted a retrospective study on 147 confirmed Covid-19
patients in Changsha, China. The overall proportion of severe disease was 16.32% (24/147).
The severe patients had higher levels of serum ferritin than the nonsevere patients. Multi-
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variate logistic regression analysis indicated that the serum ferritin level on admission was
an independent risk factor for disease severity in Covid-19 patients. C-reactive protein and
lymphocyte counts were found to be two additional independent risk factors for disease
severity through the multivariate logistic regression model. Higher serum ferritin was able
to predict an increased risk of disease severity in patients with Covid-19. Serum ferritin
levels positively correlate with levels of c-reactive protein, and inversely correlate with lym-
phocytic counts. Consequentely, the authors concluded these are critical factors considered
to be associated with the disease severity in Covid-19 patients. Other studies agree on the
importance of serum ferritin as a Covid-19 biomarker [7, 19, 30, 54, 101]

2 Materials and methods

2.1 Proposed method

In this work we propose two approaches of rapid protocols to support the clinical diagnosis
of Covid-19 based on hematological parameters: (1) rapid diagnosis based on automatic
analysis by an intelligent web system based on Particle Swarm Optimization and Random
Forests; (2) rapid diagnosis by statistical inference by decision trees. In the first approach,
we developed an intelligent web system for decision Covid-19 diagnostic support: Heg.IA
web. This system was based on a standalone solution based on Windows and Linux PCs,
Heg.IA [5]. The system started operating in the city of Paudalho, Brazil, as a prototype and
has been used to support clinical diagnosis and assessment of disease severity in patients
admitted to intensive and semi-intensive care units in public health units in the city since
2020.

In this approach, we used a knowledge base composed of 6215 patient records seen in
health units in the city. The records were represented by age and up to 43 hematological pa-
rameters. We do not use biological sex because it is not relevant to the Covid-19 diagnostic
problem. Using the Particle Swarm Optimization method, with 20 individuals evolving in
50 generations, we reduced the dimension of the attribute vectors from 43 to 8 statistically
more relevant attributes. Both the original knowledge base (43 features) and the simplified
knowledge base (8 features) was used to build machine learning models based on the follow-
ing architectures: Multilayer Perceptron neural networks (MLP), Support Vector Machines
(SVM), Naive Bayes Classifier, Bayesian Network, Decision Trees, and Random Forests.
The diagram in the Figure 2 shows a summary of this solution. General method proposed:
Patients with characteristic symptoms of Covid-19 are referred to a health unit and are eval-
uated by a medical team. This team orders blood tests. After obtaining the results, the health
professional accesses Heg.IA web. On the website, he must login. Then he can enter the re-
sults of the patient’s blood tests. Upon completion, the system will generate a report with a
positive or negative diagnosis for Covid-19, in addition to the hospitalization forecast. This
report can be printed and used by the medical team to define the final clinical conduct.

In the second approach, we use decision trees to find the most significant relationships
between hematological parameters and decision making, i.e. whether Covid-19 is positive
or not. This process was used to infer that hematological parameters are statistically more
relevant for clinical diagnosis without the support of an intelligent system.

All experiments were performed with 30 repetitions of 10-fold cross-validation, result-
ing in 300 computational experiments. As metrics of quality, we use accuracy, kappa, sensi-
tivity, specificity, area under the ROC curve, F1-score, and precision.
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Fig. 2: General method proposed: Patients with characteristic symptoms of Covid-19 are
referred to a health unit and are evaluated by a medical team. This team orders blood tests.
After obtaining the results, the health professionals access the HegIA web. On the website,
they must login. Then these health professionals can enter the results of the patient’s blood
tests. Upon completion, the system will generate a report with a positive or negative diagno-
sis for Covid-19, in addition to the hospitalization forecast. This report can be printed and
used by the medical team to define the final clinical conduct.

2.2 Database

The city of Paudalho is located 38 km from the coastal capital Recife, State of Pernam-
buco, Brazil, has a semi-arid climate [106] and is inserted in the Atlantic Forest biome. It
has a territorial area of 269,651 km2 and its population was around 51,357 in 2010 (last
census conducted in Brazil). It is estimated that in 2020 it had 56,933 inhabitants [52]. Its
demographic density of 185.06 inhabitants / km2 places it among the 40 most populated
municipalities in the state.

Some social determinants of health provide a more functional view of the municipality in
question. Directly related to health care, the municipality has 21 SUS health establishments,
encompassing primary, secondary and tertiary care [52]. SUS is an acronym for “Unique
Public Health System”, the Brazilian public health system. It presents only 31.5% of house-
holds with adequate sanitation (position 132 in the State of Pernambuco) [52] and infant
mortality rate of 13.55 / 1,000 live births [52].

This retrospective study used the medical records of patients provided by the Health
Secretariat of the city of Paudalho as a database. All procedures for this research were ap-
proved by the Research Ethics Committee at the Federal University of Pernambuco under
number CAAE 34932020.3.0000.5208.

We used 6,215 records of patients seen in outpatient clinics, emergency rooms and the
emergency department of SUS in the city in question, from August 30, 2019 to August 17,
2020. Of these records, 57.61% were women (3,581) and 0.27% were newborns (17) and
did not have their gender identified. The mean age was 41.79 (SD = 22.94). Among men,
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4.54% tested positive for Covid-19 and proportionally the most affected age group was over
90 years, where 20% of patients were victims of the disease. Among the women, 3.88% had
the diagnosis of Covid-19 confirmed, with 11.86% of the patients aged 50 to 60 years and
11.88% of the age group 80 to 90 years tested positive.

The graph in Figure 3 shows the demographic stratification by sex and age of all records
used in this study. We highlight the positive cases of Covid-19 from male (COVID-19 M)
and female (COVID-19 F) patients using the colors blue and red, whilst the total of males
and females patients are associated to orange and green, respectively. Table 1 shows the
demographic details of the database, in which 2617 records are related to males, whilst
3581 are females; from these records, 119 (4.54%) are males positive for Covid-19 and 139
(3.88%) are females with Covid-19 as well, in a total of 258 Covid-19 patients distributed
among moderate and severe Covid-19 cases.

Fig. 3: Demographic stratification by sex and age of all records used in this study. We high-
light the positive cases of Covid-19 from male (COVID-19 M) and female (COVID-19 F)
patients using the colors blue and red, whilst the total of males and females patients are
associated to orange and green, respectively.

Since not all 6215 records correspond to medical records with tests that cover all the
hematological parameters provided for in this work, the database has several missing val-
ues. To fill in these missing values, we used mean predictors. For each class (positive or
negative for Covid-19), the sample mean for each attribute was calculated. This mean was
used as a predictor for the missing values in the attribute with missing value in the vec-
tor of attributes of the corresponding class. The total of medical records with blood tests
considered incomplete does not exceed 30% of the data set.

To perform this research, we initially selected 41 hematological parameters. These pa-
rameters correspond to blood exams recommended by the Ministry of Health of Brazil as an
initial clinical approach and part of the Covid-19 diagnostic process [13]. Therefore, con-
sidering that health centers must already perform these tests, there is no financial loss or
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Table 1: Demographic details of the database: distribution of the number of patients by
gender and by diagnosis of Covid-19, with a percentage of the population with Covid-19 by
gender and by age group

time spent on additional tests. On the contrary, the diagnostic process can be optimized with
the system proposed here. The list of 41 hematological parameters is shown in the Figure
4. The Complete Blood Count (CBC) with differential comprises 20 of these parameters,
while arterial blood gas analysis includes 9 parameters. The remaining 12 exams are those
of total, indirect and direct Bilirubin; Serum Glucose; Lipase dosage; Urea; D-Dimer; Lac-
tic Dehydrogenase; C-Reactive Protein (CRP); Creatinine; and Partial thromboplastin time
(PTT) and Prothrombin time Activity from coagulogram. To this 41-item list we added pa-
tient’s age and a redundant Lymphocytes parameter. This additional Lymphocytes item cor-
responds to a different electronic patient record specification that used to categorize atypical
lymphocytes, but was abandoned since the beginning of 2020.

2.3 Feature Selection

The database constructed during the pre-processing was submitted to feature selection using
Particle Swarm Optimization (PSO) [55, 84, 109]. As objective function, we employed a
simple decision tree to guide the optimization process. We set the algorithm to 20 individuals
and 500 iterations. The goal of the attribute selection is to find the most significant exams for
classification tasks and also to reduce the number of required exams for diagnostic support.

We chose the PSO algorithm because it is a well-established search and optimization
algorithm with few parameters to be defined [55, 84, 109]. The PSO algorithm was created
taking inspiration from the behavior of flocks of birds [55, 84, 109]. These flocks of birds
were modeled as dynamic systems where there is a global leader, who guides the flock in a
direction that optimizes a given measure of performance, and local leaders. While the global
leader governs the overall dynamics of the flock of birds, local leaders are defined as those
who perform best among their neighbors. Each bird is modeled using pairs of spatial posi-
tion and velocity vectors. Throughout the evolution of the system, it is possible for a local
leader to become a global leader, as it is also possible for leaders to become simple members
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Fig. 4: List of tests specified by the Ministry of Health of Brazil and used both in the initial
assessment of symptomatic patients suspected of Covid-19 and for the control and assess-
ment of disease progress

of the flock of birds. Each bird represents a candidate for solving the problem of maximiz-
ing or minimizing a given objective function. In the case of maximization problems, the
candidates for the solution that correspond to the global maximum and local minimums are
the respective global and local leaders. Figure 5 illustrates the metaphor that inspires the
PSO algorithm. PSO algorithm uses a population of randomly generated particles. In this
approach, each particle corresponds to randomly generated solution and have an associated
velocity and position. For each particle, each position vector is binary: 1’s and 0’s corre-
spond to the presence or the absence of one of the 43 features in the process of training and
testing the decision tree classifier associated to the objective function. The output of the ob-
jective function is the overall accuracy of a 10-fold cross validation training process. In this
objective function, a decision tree is used as classifier. We employed meta-heuristic libraries
developed in Java for Weka data mining platform [41]. We adopted the following feature
selection methods: individual weight of 0.34, inertia weight of 0.33, mutation probability of
0.01, report frequency of 20, social weight of 0.33 [12, 55, 84, 103].

The feature selection implementation resulted two databases: the original database with
43 attributes, SARS-CoV-2, and the dimension-reduced database, SARS-CoV-2 (PSO). Age
was not selected: it appeared as not statistically relevant according to PSO selection. The
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Fig. 5: The Particle Swarm Optimization (PSO) algorithm is based on the behavior of flocks
of birds. Each bird is modeled by a position vector and a velocity vector. Thus, the movement
of a bird in search of resources is governed by a global leader and local leaders whose
performance is defined by an objective function. In the problem of selection of the most
significant exams, we use a decision tree as an objective function, with the overall accuracy
of the training and testing process by 10-fold cross-validation being returned as output.
Each bird is a candidate for solving the problem of maximizing accuracy. Position vectors
are binary, where each coordinate corresponds to the presence or absence of one of the 43
attributes.

selected exams/features were the following: serum glucose, indirect bilirubin, partial throm-
boplastin time, lactic dehydrogenase, lipase dosage, D-dimer, ferritin, and troponin.

2.4 Classification

2.4.1 Multilayer Perceptron

Multilayer Perceptron (MLP) consists of a generalization of the Perceptron proposed by
Franklin Rosenblatt in 1958. Perceptron is the model is the simplest form of a neural net-
work, being able to deal with linearly separable problems. Multilayer Perceptron networks,
on the other hand, have several interconnected neurons (or nodes), arranged in layers: the in-
put layer, the hidden layers and the output layer. The input layer only has the network input
vector, which is passed on to the next layer. Then, each node in the next layer modifies these
input values through non-linear activation functions, generating output signals. In addition,
the network nodes are connected by weights, which scales these output signals. Finally, the
superposition of several non-linear functions allows the mapping of the input vector to the
output vector. As MLPs can have one or multiple hidden layers, this process can be repeated
several times, depending on the selected architecture [6, 39, 59, 82].

Through the proper selection of activation functions and synaptic weights, an MLP is
able to approximate the inputs at the desired outputs. This search and adjustment of param-
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eters is called the training process. MLPs learn in a supervised manner. During this process,
errors between the actual and desired outputs are calculated. These errors are used to adjust
the network [39].

In order to adjust these weights, the backpropagation algorithm is the most computa-
tionally straightforward and common algorithm. It occurs in two phases: the forward and
backward propagation. In the first step, the initial network weights are set to small random
values. Then, this first input vector is propagated through the network to obtain an output.
This actual output is compared with the desired one, and the error is calculated. In the second
phase, the backward propagation, the error signal is propagated back through the network
and the connection weights are updated, aiming to minimise the overall error. These steps
can be repeated until the overall error is satisfactory [49].

MLPs and other artificial neural networks architectures are commonly used in support
diagnosis applications [72], e.g. liver disease dianogis [1], heart diasese diagnosis [48],
breast cancer diagnosis over breast thermography [34, 79–81, 87, 91, 92] and mammogra-
phy images [25, 26, 29, 32, 32, 33, 62, 94], for recognition of intracranial epileptic seizures
[86], and multiple sclerosis diagnosis support [23].

2.4.2 Support Vector Machines

Support Vector machines (SVM) were created by Vladimir Vapnik and Alexey Chervo-
nenkis [10, 27] in 1963. Their main purpose is to build a linear decision surface, called a
hyperplane. The idea is that this hyperplane should be able to separate classes in the best
possible way. The optimal hyperplane is found when the margin of separation between it
and a given nearest point is maximum [49].

SVM classifier are known for its good generalization performance. They are employed
in several healthcare applications, such as breast cancer diagnosis using thermography and
mammography [25, 26, 29, 32, 32–34, 62, 80, 91, 94], diabetes mellitus diagnosis [4],
heart valve diseases [22] and pulmonay infections detection [112], and also diagnosis of
pulmonary cancer [97]. However, its performance varies depending on the problems com-
plexity. The type of the machine varies with the type of kernel used to build the optimal
hyperplane. Table 2 shows the kernel functions used in this study: the polynomial and RBF
kernels. For the first case, it was tested exponents of value 1 (linear kernel), 2, and 3.

Type of SVM Kernel function
Polynomial K(x,y) = (x • y + 1)E

Radial Basis Function (RBF) K(x,y) = exp(−γ (x− y) • (x− y))

Table 2: Kernel functions of SVM

2.4.3 Decision Trees

Decision trees are sequential models, which combine several simple tests. They can be un-
derstood as a series of questions with "yes" and "no" answers. These tests can be the compar-
ison of a value with a threshold or a categorical attribute compared to a set of possibilities,
for instance. Thus, when analyzing the data with these tests, the decision trees will guide
to a certain class in classification problems, or to a continuous value, in cases of regression
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problems. In this way, a decision tree is built with certain questions, called nodes. Essen-
tially, there area four types of nodes: root, parent, child, and leaf. Starting at the root node,
an instance is classified. Then, the outcome for this instance is determined ad the process
continues through the tree. In addition, one node may connect to another, establishing a
parent-child relationship, in which a parent node generate a child node. Finally, the termi-
nal nodes of the tree are the leaf nodes, and they represent the final decision, that is, the
predicted class or value. There are several types of decision trees, depending on the tree
structure. The most popular ones are Random Tree and Random Forest. Both of them were
tested in this study by using multiple parameters [58, 83].

Random Tree uses a tree built by a stochastic process. This method considers only a few
randomly selected features in each node of the tree Geurts et al. [40].

In contrast, Random Forest is a model made up of many decision trees. In this case, a set
of trees is built and their votes are combined to classify an instance, by means of the majority
vote. Each decision tree uses a subset of attributes randomly selected from the original set
of attributes [14].

2.4.4 Bayesian Network and Naive Bayes classifier

Bayesian classifiers are based on Bayes’ Decision Theory. Among the most popular Bayes’
classifiers are Naive Bayes and Bayes Nets, also known as Bayesian Networks. Bayesian
networks describe the probability distribution over a set of variables. They represent, in a
simple way, the causal relationships of the variables of a system using Graph Theory, where
the variables are the nodes and the arcs identify the relationships between the variables. In
the learning process, it is necessary to calculate the probability distributions and to identify
the network structure. Learning the network structure can be considered an optimization
problem, where the quality measure of a network structure needs to be maximized [11, 17].

On the other hand, the Naive Bayes classifier is a simple model that considers that the
domain variables are conditionally independent, that is, one characteristic is not related to
the other. Its learning is done in an inductive way, presenting a set of training data and
calculating the conditional probability of each attribute, given a class. Naive Bayes needs to
estimate few parameters [11, 18].

2.5 Parameters settings of the classifiers

All experiments were performed using the Weka Java library in 30 runs and 10-fold cross
validation. The experiments were made by using the following methods:

– Naive Bayes classifier;
– Bayes Net;
– Multilayer Perceptron: one hidden layer, for 20, 50 and 100 hidden neurons;
– Support Vector Machines: we tested the following kernels, for the parameter C varying

for 0.01, 0.1, 1, and 10: linear kernel, polynomial kernel with degree varying for 2, 3, 4,
and 5; and Radial Basis Function (RBF) kernel, with γ of 0.01, 0.25 and 0.5;

– Decision trees: J48 and Random Tree;
– Random Forests, for 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 trees.
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2.6 Metrics

We chose seven metrics to evaluate the performance of diagnostic tests: accuracy, precision,
sensitivity, specificity, recall, precision and the area under ROC. Accuracy is the probability
that the test will provide correct results, that is, be positive in sick patients and negative in
healthy patients. In other words, it is the probability of the true positives and true negatives
among all the results. The recall and sensitivity metrics can be calculated mathematically in
the same way. They are the rate of true positives, and indicate the classifier ability to detect
correctly people with Covid-19. However, they are commonly used in different contexts. In
machine learning context, the term Recall is common. However, in the medical world, the
use of the sensitivity metric is more frequent. Precision, on the other hand, is the fraction of
the positive predictions that are actually positive. Specificity is the capacity of classifying
healthy patients as negatives. It is the rate of true negatives. The Kappa index is a very good
measure that can handle very well both multi-class and imbalanced class problems, as the
one proposed here.

Finally, the area under the ROC curve is a measure of a classifier’s discriminating ability.
That is, given two classes - a sick individual and a non-sick individual -, chosen at random,
the area below the ROC curve that indicates a probability of the latter being correctly clas-
sified. If the classifier can not discriminate between these two separately, an area under a
curve is equal to 0.5. When this value is the next 1, it indicates that the classifier is able to
discriminate these two cases [47] .

These metrics allow to discriminate between the target condition and health, in addition
to quantifying the diagnostic exactitude [9]. The accuracy, precision, sensitivity, specificity,
recall and precision can be calculated according to the equations in Table 3.

Table 3: Metrics used to evaluate classifiers performance: overall accuracy, sensitivity (re-
call), precision, specificity, and kappa index

In Table 3, TP is the true positives, TN is the true negatives, FP is the false positives,
and FN the false negatives, ρo is observed agreement, or accuracy, and ρe is the expected
agreement, defined as following:

ρe =
(TP + FP )(TP + FN) + (FN + TN)(FP + TN)

(TP + FP + FN + TN)2
. (1)
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3 Results

The results of this research are organized in three parts: in the first part, we present the in-
vestigation of the best classification architecture for the original dataset and for the version
with the reduced number of attributes through feature selection based on the PSO algorithm.
The most suitable classifier was used in the implementation of the Covid-19 diagnostic sup-
port web system, Heg.IA web. In the second part, we present the use of decision trees as an
alternative to build humanly intelligible models to support clinical diagnosis. These models,
although less sophisticated, are important for the clinician to have a better understanding of
the hematological parameters that are not only more prevalent in the diagnosis, but which
can also be important for monitoring the clinical status of patients with Covid-19. Finally,
in the third part, we present the prototype of the Heg.IA web system, in operation in the city
of Paudalho, Brazil, since June 2020.

3.1 Evaluation of classifiers to support the diagnosis of Covid-19

We investigated the best classifier architectures for classifying patterns of hematological
parameters. We investigate multilayer perceptron artificial neural networks, support vector
machines, Bayesian networks, Naive Bayes classifiers, simple decision trees and Random
Forests. We studied the behavior of these classification architectures for the 6215 patient
records, 258 of which were positive for Covid-19, mostly moderate and severe cases of
Covid-19. Figures 6, 7, 8, 9, 10, and 11 illustrate the accuracy values for the database with
all 43 attributes. Figure 6 presents box plots for accuracy for Naive Bayes, Bayes Net and
MLP classifiers. MLPs were tested for just one hidden layer, with 20, 50 and 100 hidden
neurons. Figures 7, 8, 9, and 10 illustrate the accuracy behavior for SVMs with polynomial
kernels (linear, 2, 3, 4, and 5 degrees) and RBF (for γ of 0.01, 0.25 and 0.5), considering C
of 0.01, 0.10, 1.00, and 10.00, respectively. Figure 11 presents accuracy box plots for single
decision trees J48 and Random Tree, and Random Forests (RF) with 10, 20, 30, 40, 50,
60, 70, 80, 90, and 100 trees. Table 4 shows the mean and standard deviation for accuracy,
kappa index, sensitivity, specificity, area under the ROC curve, and F-score results, taking
into account the original dataset, with all 43 attributes.

Figures 12, 13, 14, 15, 16, and 17 illustrate the accuracy values for the 8-feature database
obtained after feature selecion with the PSO algorithm. Figure 12 presents box plots for
accuracy for Naive Bayes, Bayes Net and MLP classifiers. MLPs were tested for just one
hidden layer, with 20, 50 and 100 hidden neurons. Figures 13, 14, 15, and 16 illustrate the
accuracy behavior for SVMs with polynomial kernels (linear, 2, 3, 4, and 5 degrees) and
RBF (for γ of 0.01, 0.25 and 0.5), considering C of 0.01, 0.10, 1.00, and 10.00, respectively.
Figure 17 presents accuracy box plots for single decision trees J48 and Random Tree, and
Random Forests (RF) with 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 trees. Table 5 shows the
mean and standard deviation for accuracy, kappa index, sensitivity, specificity, area under the
ROC curve, and F-score results, taking into account the 8-feature PSO dimension-reduced
dataset.

3.2 Humanly intelligible models to support the clinical diagnosis of Covid-19

Figure 18 shows the J48 decision tree trained on the 8-feature dataset: serum glucose, partial
thromboplastin time, troponin, lipase dosage, lactic dehydrogenase, ferritin, indirect biliru-
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Fig. 6: Accuracy for Naive Bayes, Bayes Net and MLP classifiers. MLPs were tested for just
one hidden layer, with 20, 50 and 100 hidden neurons, considering the original 43-feature
dataset.

Fig. 7: Accuracy for SVMs with polynomial kernels (linear, 2, 3, 4, and 5 degrees) and RBF
(for γ of 0.01, 0.25 and 0.5), for C of 0.01, considering the original 43-features dataset

Fig. 8: Accuracy for SVMs with polynomial kernels (linear, 2, 3, 4, and 5 degrees) and RBF
(for γ of 0.01, 0.25 and 0.5), for C of 0.1, considering the original 43-features dataset
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Fig. 9: Accuracy for SVMs with polynomial kernels (linear, 2, 3, 4, and 5 degrees) and RBF
(for γ of 0.01, 0.25 and 0.5), for C of 1.00, considering the original 43-features dataset

Fig. 10: Accuracy for SVMs with polynomial kernels (linear, 2, 3, 4, and 5 degrees) and RBF
(for γ of 0.01, 0.25 and 0.5), for C of 10.00, considering the original 43-features dataset

Fig. 11: Accuracy for single decision trees J48 and Random Tree, and Random Forests (RF)
with 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 trees, considering the original 43-features
dataset
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Table 4: Sample mean and standard deviation for accuracy, kappa index, sensitivity, speci-
ficity, area under ROC curve (AUC), and F1-score, for all classifiers, considering the original
43-feature dataset
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Table 5: Sample mean and standard deviation for accuracy, kappa index, sensitivity, speci-
ficity, area under ROC curve (AUC), and F1-score, for all classifiers, considering the 8-
feature PSO dimension-reduced dataset
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Fig. 12: Accuracy for Naive Bayes, Bayes Net and MLP classifiers. MLPs were tested for
just one hidden layer, with 20, 50 and 100 hidden neurons, considering the 8-feature PSO
dimension-reduced dataset.

Fig. 13: Accuracy for SVMs with polynomial kernels (linear, 2, 3, 4, and 5 degrees) and
RBF (for γ of 0.01, 0.25 and 0.5), for C of 0.01, considering the 8-feature PSO dimension-
reduced dataset

bin, and D-dimer. Training was done using 10- fold cross validation. The result shows that,
for all 6215 records, the accuracy was 99.9839%, the sensitivity, specificity, AUC, and F-
score were maximum. Only a single instance was misclassified: a negative record for Covid-
19 out of the total of 5457 negatives was classified as positive. All Covid-19 positive records
were classified correctly.

To assess the influence of the other 7 hematological parameters on the diagnosis of
Covid-19, we retrained the J48 decision tree after removing the partial thromboplastin time.
Training was done using 10-fold cross validation. Figure 19 illustrates the resulting decision-
making protocol, where only the following parameters are statistically relevant: ferritin, tro-
ponin, lipase dosage, and serum glucose. The accuracy obtained was 99.8552%, sensitivity
of 0.999, specificity of 0.985, AUC of 0.985, and F-score of 0.999. We had 5 false positives
and 4 false negatives.

By removing the partial thromboplastin time and lipase dosage, we can assess the im-
portance of the other 6 hematological parameters. We train a J48 decision tree again using
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Fig. 14: Accuracy for SVMs with polynomial kernels (linear, 2, 3, 4, and 5 degrees) and RBF
(for γ of 0.01, 0.25 and 0.5), for C of 0.1, considering the 8-feature PSO dimension-reduced
dataset

Fig. 15: Accuracy for SVMs with polynomial kernels (linear, 2, 3, 4, and 5 degrees) and
RBF (for γ of 0.01, 0.25 and 0.5), for C of 1.00, considering the 8-feature PSO dimension-
reduced dataset

10-fold cross validation. The results are shown in Figure 20. The hematological parameters
considered most relevant this time were: ferritin, troponin, D-dimer, and serum glucose. The
accuracy obtained was 99.8713%, with a sensitivity of 0.999, specificity of 0.981, F-score
of 0.999, and AUC of 0.990. We get 3 false positives and 5 false negatives.

We retrained a J48 decision tree removing the partial thromboplastin time, ferritin, and
lipase dosage from the database. The training was done using 10-fold cross validation. The
decision protocol is shown in Figure 21. All 5 remaining hematological parameters were
considered relevant in the diagnostic decision: serum glucose, D-dimer, troponin, lactic de-
hydrogenase, and indirect bilirubin. The accuracy obtained was 99.7908%, with a sensitivity
of 0.998, specificity of 0.955, AUC of 0.982, and an F-score of 0.998. We got 1 false positive
and 12 false negatives.
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Fig. 16: Accuracy for SVMs with polynomial kernels (linear, 2, 3, 4, and 5 degrees) and
RBF (for γ of 0.01, 0.25 and 0.5), for C of 10.00, considering the 8-feature PSO dimension-
reduced dataset

Fig. 17: Accuracy for single decision trees J48 and Random Tree, and Random Forests
(RF) with 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 trees, considering the 8-feature PSO
dimension-reduced dataset

3.3 Heg.IA Web Application

After selecting the best classifier, the Heg.IA web system was developed. It can be accessed
through the link: https://hegia.ufpe.br/welcome. Its front-end was developed using the li-
brary React.js. This library is based on pure JavaScript. It is open source and used to create
user interfaces, more specifically, single page application (SPA) web platforms. As for data
access and manipulation of application state, we used the Redux-Saga structure, a powerful
tool that allows us to manage masterfully asynchronous queries, receiving API data, and
trigger actions to the application of state safely and easily to maintain. Furthermore, our
back-end was developed in Python (version 3.7.7). Only the Random Forest classifier was
implemented in this final solution. Figure 22 illustrates how Random Forest was be applied
as a classifier for the Covid-19 rapid diagnosis proposal we suggest in this work.

On the initial screen, as shown on Figure 23, it is possible to visualize a brief description
of the intelligent system, as well as the supporters of this initiative: The Federal University
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Fig. 18: Clinical decision protocol based on J48 decision tree trained on the 8-feature dataset:
serum glucose, partial thromboplastin time, troponin, lipase dosage, lactic dehydrogenase,
ferritin, indirect bilirubin, and D-dimer. Training was done using 10- fold cross validation.
Reduced partial thromboplastin time (< 22) is associated to symptomatic Covid-19 case.
The accuracy was 99.9839%, the sensitivity, specificity, AUC, and F-score were maximum.
We had 1 false positive.

Fig. 19: Clinical decision protocol based on J48 decision tree trained on the 7-feature dataset.
Only the following were statistically relevant: lipase dosage, ferritin, troponin, and serum
glucose. Training was done using 10-fold cross validation. Lipase dosage was dominant
in this decision protocol. The accuracy was 99.8552%, sensitivity of 0.999, specificity of
0.985, AUC of 0.985, and F-score of 0.999. We had 5 false positives and 4 false negatives.

of Pernambuco (UFPE) and the Department of Biomedical Engineering at UFPE. To get
to know the members of the project’s development team and their respective functions, it is
possible to access the ’About’ option on the top menu of the screen. The options ’Login’ and
’Consult’ are also available. For the ’Login’ option, health professionals, especially medical
laboratory professionals and nurses, will be able to access their private account or register a
new account, in cases of first access. In the Consult option, it is possible to view the report
with the diagnosis for a specific patient, as long as the user has the patient’s personal locator.

After logging into the system, the user can register a patient or view the complete history
of registered patients. In the case of a new registration, personal information such as full
name, ID, date of birth, telephone, sex and full home address will be requested (Figure 24).
In the following, the user will be directed to the screen shown in the Figure 25. In this
screen, the results of the Complete blood count (CBC) with differential must be entered.
The units and reference values are available next to each of the hematological parameters.
After filling in the CBC, the user will be directed to the screens for the other blood tests and
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Fig. 20: Clinical decision protocol based on J48 decision tree trained on the 6-feature
dataset. Only the following were statistically relevant: ferritin, troponin, D-dimer, and serum
glucose. Training was done using 10-fold cross validation. The accuracy obtained was
99.8713%, with a sensitivity of 0.999, specificity of 0.981, F-score of 0.999, and AUC of
0.990. We get 3 false positives and 5 false negatives.

Fig. 21: Clinical decision protocol based on J48 decision tree trained on the 5-feature dataset.
All remaining features were statistically relevant: serum glucose, D-dimer, troponin, lactic
dehydrogenase, and indirect bilirubin. Training was done using 10-fold cross validation. The
accuracy obtained was 99.7908%, with a sensitivity of 0.998, specificity of 0.955, AUC of
0.982, and an F-score of 0.998. We got 1 false positive and 12 false negatives.

arterial blood gas tests, as shown in the Figures 26 and 27. Thus, the list of tests required
to make the predictions will be complete. The user can then check the parameters entered
in the screen ’Let’s check it out?’, as shown in the Figure 28. If he realizes that he made a
typo, he can go back to the previous steps and correct it.

Finally, the report will be available immediately, similarly to that shown in the Figure
29. The diagnostic report will indicate the positive or negative diagnosis for Covid-19. Hos-
pitalization predictions are also reported, indicating the best type of hospitalization for the
patient: regular ward, semi-ICU or ICU. Information on accuracy, kappa index, sensitivity
and specificity of the determination of each of these scenarios are also available, in order to
assist the physician’s decision making. In addition to viewing the report, it is also possible
to print it.
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Fig. 22: Random Forest classifier architecture adapted to Covid-19 rapid diagnosis as im-
plemented in Heg.IA web proposal

Fig. 23: Heg.IA homepage: an intelligent web-based system for diagnosing Covid-19
through blood tests. On this initial screen, it is possible for the user (nurses and medical
laboratory professionals) to login in his personal account. There are also the ’Consult’ and
’About’ options, available for all users, including patients and physicians. They allow the
user to visualize the diagnostic report, and to get to know the involved team in this project,
respectively.
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Fig. 24: On this screen, the logged in user will be able to register new patients or access the
complete history of patients already registered.

4 Discussion

4.1 Evaluation of classifiers to support the diagnosis of Covid-19

When we analyze the results of the box plots in Figure 6 for the MLP neural network and
the Bayesian methods, we can see that the accuracy results are quite accurate, with results
concentrated approximately between 99.55% and 100%. Results with MLP are statistically
equivalent. These results, in turn, are also statistically similar to the result of the Naive
Bayes classifier. Bayes Net results are different and statistically superior to these, with a
concentration close to 100% accuracy, first quartile starting at 99.53% and one point out at
99.52%. Looking at Table 4, we can see that Bayes Net’s performance is optimal (nearly
1.0000 or 100.00%) for all metrics, with standard deviation less than 0.0001. The results for
Naive Bayes and the three MLP configurations are also considered close to optimal, with
the sample means of all metrics greater than 99%, but with sample standard deviations much
higher than those of Bayes Net, at least 100 times greater for accuracy, kappa and specificity.

Analyzing the results for the SVMs (Figures 7, 8, 9, and 10), considering C as 0.01 (Fig-
ure 7), we notice that the accuracy values are all greater than 95%. The results for the RBF
kernel are statistically similar and stable, concentrated around 95.5%. For the linear kernel,
the accuracy results vary around 96.2% with less than 1% variation. The best results were
obtained for polynomial kernels with degrees 2, 3, 4 and 5, with accuracies concentrated
in the third quartile, between 99.8% and 100%. According to Figure 8, for C of 0.1, all
configurations have accuracies concentrated in the third quartile, between 99.8% and 100%,
except for the configuration with RBF kernel and γ of 0.01, where the accuracy appears
concentrated around 95.8%. For C of 1.00, as shown in Figure 9, all accuracy values are
greater than 99.65%. The best settings are observed for linear, 2-degree polynomial, and
RBF kernels with γ of 0.01 and 0.25: the first quartile is between 99.84% and 100%, while
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Fig. 25: Complete Blood Count screen: After the patient’s registration, the results of the
patient’s Complete Blood Count with differential can be inserted. The units and reference
values can be viewed next to each hematological parameter.
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Fig. 26: Additional Serological Tests Screen: Additional tests, such as total, direct and indi-
rect bilirubin, can be inserted in this screen. In addition, serum glicose, dosage lipase, urea,
PTT, D-dimer, lactic dehydrogenase, prothrombin time, CRP, and creatinine results can also
be included here. The units and reference values can be viewed next to each hematological
parameter.
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Fig. 27: Blood Gasometry Screen: Arterial gasometry can be inserted in this screen, final-
izing the list of necessary exams. The units and reference values for each parameter are
available.

the other results are concentrated in 100% accuracy. For C of 10.00, the best accuracy re-
sults are those obtained with the RBF kernel (see Figure 10): the first quartile is between
99.84% and 100%, while the other results are concentrated in 100% of accuracy. Analyzing
the kappa results in Table 4, we can see that the SMVs can only deal well with the high base
unbalance for C equal to 1.00 or 10.00.

Figure 11 shows the box plots of the accuracy results for the decision tree-based meth-
ods. We investigate the J48 and Random Tree simple decision trees. We also evaluated the
use of Random Forests with 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 trees. The results with
Random Tree show that the absolute majority of the accuracy results for this classification
architecture are concentrated between 99.54% and 100% (second, third and fourth quar-
tiles). The first quartile is located between 99.50% and 99.54%, with a point out at 98.54%.
This shows that Random Tree decision trees are very suitable for this problem, as the worst
accuracy result is 98.54% while the absolute majority of the results are between 99.54% and
100%. Table 4 shows that these accuracy results for Random Tree really correspond to good
classification results and that there was no bias due to base imbalance: the kappa index was
0.98 ± 0.03, the sensitivity was 0.999 ±0.001, the specificity was 0.98 ± 0.03, the AUC
was 0.99 ± 0.02, and the F-score was 0.999 ± 0.0001. Considering the accuracy, the results
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Fig. 28: In the screen, it is possible for the user to check the patient’s personal information
and the values of the hematological parameters inserted. If there is a typo, the user can return
to the previous screens to correct it. If they are correct, it is possible to select the "Finish"
option in order to access the report.
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Fig. 29: Results screen: In this screen it is possible to view the patient’s diagnostic report. In
the report, the diagnosis for Covid-19 is available, as well as the hospitalization predictions,
indicating whether the patient should be admitted to the regular ward, semi-intensive care
unit, or to the ICU. Information on accuracy, kappa index, sensitivity and specificity of the
determination of each of these scenarios are also available, in order to assist the physician’s
decision making. In addition to viewing the report, it is also possible to print it.
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for the J48 tree and the Random Forests with 10, 20 and 30 trees are statistically similar:
75% of the results (second, third and fourth quartiles) are concentrated in exactly 100%,
while the first quartile it is located between 99.56% and 100% (20% of the results for the
Random Forest with 10 trees, 25% of the results for the other methods mentioned). Specif-
ically for Random Forest with 10 trees, maximum 5% of the results are located at 99.50%.
These results are considered very good, but the best results were those obtained with Ran-
dom Forests with 40, 50, 60, 70, 80, 90, and 100 trees: 95% of accuracy results correspond
to 100% accuracy, while at most 5% of the results correspond to 99.56% accuracy. Given
that the best results were obtained with Random Forests and these classifiers are sufficiently
robust to noisy data (possible typing errors of hematological parameters and missing data
that need to be statistically estimated), we decided to adopt a Random Forest with 100 trees
to implement the system. support for Heg.IA web diagnostics. Another advantage of Ran-
dom Forests and decision trees in general is their low computational cost of processing,
although the memory consumption can be considerable. Also, sorting with decision trees
does not require input attributes to be rescheduled through normalization or standardization,
a necessary preprocessing stage when we have to work with neural networks, support vector
machines or Bayesian methods.

These results show that the 43 attributes (age and 42 hematological attributes) adopted in
this work can be used to diagnose patients with symptoms of Covid-19 with a precision close
to that obtained with RT-PCR, as shown in Table 4, for the results with Random Forests.
Therefore, the Heg.IA web system can be an important aid for the development of a rapid
protocol for the clinical diagnosis of Covid-19, providing more certainty for clinical practice.
These results also show that these 42 hematological parameters, given the high accuracy,
sensitivity, specificity and AUC values obtained, comparable to those obtained with RT-
PCR, can be very important for monitoring Covid-19-positive patients.

The feature selection method based on the PSO algorithm returned the following eight
attributes that were statistically most relevant for classification: serum glucose, lactic de-
hydrogenase, lipase dosage, partial thromboplastin time, troponin, ferritin, D-dimer, and
indirect bilirubin. Figures 12, 13, 14, 15, 16, and 17 present the accuracy behavior accord-
ing to the set of classifiers we adopted herein this work. Table 5 presents detailed results as
sample average and standard deviation regarding accuracy, sensitivity, specificity, AUC, and
F-score.

Analyzing the box plots in Figure 12, we can see that Bayesian methods and MLP net-
works returned very good results. For the Naive Bayes classifier, 75% of the experiments
returned the maximum accuracy, 100% (second, third and fourth quartiles), while at least
20% of the experiments were located in accuracies between 99.56% and 100% , with a max-
imum of 5% of the 300 experiments returning 98.25%. The MLP settings had statistically
similar accuracy results, with at least 95% of the experiments returning accuracies between
99.56% and 100%, and at most 5% of the experiments with an accuracy of 99.55% (20 and
50 hidden neurons) or 99% (100 neurons). The best results were obtained with the Bayes
Net classifier, with all accuracy results concentrated at 100%. These results are confirmed
by Table 5, which shows the sample means of the quality metrics reaching a maximum, with
sample standard deviations less than 0.0001.

Figures 13, 14, 15, and 16 illustrate the box plots of the accuracy results for the use of
SVMs, varying the kernels (linear, polynomial from degrees 2 to 5, and RBF), for C from
0.01, 0, 1, 1.0 and 10.0. For C equal to 0.01, the best results were obtained with linear ker-
nel, with most experiments returning accuracies between 96% and 96.5%, with up to 5% of
experiments reaching 100% (see Figure 13). For the grade 2 polynomial kernel, the experi-
ment results were concentrated between 95.6% and 96%, with up to 5% of the experiments
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reaching 100% (see Figure 13). The results with polynomial kernel of grades 3, 4 and 5, and
RBF are statistically similar, with 75% of the experiments resulting in accuracies of 95.8%,
at least 20% of the experiments with an accuracy between 95.8% and 96%, and up to 5% of
the experiments reaching a maximum of 100% accuracy (see Figure 13). For experiments
with C equal to 0.1, the results for the linear kernels, polynomial of degrees 2 and 3, and
RBF with γ of 0.25 and 0.5, were significantly improved: 75% of the experiments achieved
the maximum accuracy of 100% (second, third and fourth quartiles), at least 20% of the
experiments were between 99.8% and 100%, while up to 5% of the experiments returned an
accuracy equal to 99.6% (see Figure 14). For C equal to 1.0, all results were considerably
improved for all settings: 75% of the experiments reached 100% accuracy (second, third
and fourth quartiles); 25% of the linear kernel and RBF experiments with γ of 0.01 were
between 99.84% and 100% accuracy (first quartile); at least 20% of the experiments with
grade 2 polynomial kernel and with RBF with γ of 0.25 and 0.5 were between 99.84% and
100% accuracy (first quartile); the results for polynomial kernel of degrees 3, 4 and 5 are
statistically equivalent: at least 50% of the experiments reached accuracies between 99.85%
and 100% (first and second quartiles), another 50% of the experiments reached the maxi-
mum accuracy, and up to 5% of the experiments returned an accuracy of 99.68%; the results
for linear kernel, degree 2 polynomial, and RBF are statistically similar (see Figure 15). For
C equal to 10.00, there was no noticeable improvement compared to C equal to 1.00 (see
Figure 16). Table 5 shows that, in this database with the 8 statistically most relevant hema-
tological parameters, all tested SVM configurations were robust to high database imbalance
only for C equal to 1.0 and 10.0, according to values of specificity and AUC, with grade 4
and 5 polynomial kernels being the least robust configurations.

Figure 17 shows the box plots of the accuracy results for the decision tree-based meth-
ods. We investigate the J48 and Random Tree simple decision trees. We also evaluated the
use of Random Forests with 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 trees. The results for
the Random Tree are considered quite good: at least 50% of the experiments returned accura-
cies between 99.84% and 100% (first and second quartile), 50% of the experiments reached
100% accuracy (third and fourth quartile), and at most 5% of the experiments resulted in
99.52% accuracy. However, the best results were achieved with the other configurations,
which were statistically equivalent: 75% of the experiments reached the maximum accuracy
(second, third and fourth quartile), while 25% of the experiments ranged between 99.84%
and 100% (first quartile). Table 5 details that Random Forests and the J48 decision tree are
well suited to support the diagnosis of Covid-19 using the eight selected hematological pa-
rameters: accuracy of 99.98% ± 0.05, sensitivity of 0.998 ± 0.006, specificity of 0.9998
± 0.0005, maximum specificity and AUC with sample standard deviation less than 0.0001,
and F-score of 0.9999 ± 0.0003.

These results show that the eight hematological parameters chosen by the PSO algo-
rithm are very important for the clinical diagnosis of Covid-19 in symptomatic patients,
reaching results comparable to those obtained with RT-PCR, the gold standard method for
the diagnosis of Covid-19. These results also show that these hematological parameters are
strongly related to Covid-19 itself, and should not only be part of Covid-19 clinical diag-
nosis protocols, but also protocols for patient follow-up and assessment of patient progress
and severity of disease, as the review of the state of the art demonstrates.
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4.2 Humanly intelligible models to support the clinical diagnosis of Covid-19

Figure 18 shows that, for the symptomatic case records of the public health system in the mu-
nicipality of Paudalho, Brazil, the most important factor for a positive diagnosis for Covid-
19 is the low partial thromboplastin time (less than or equal to 22) . This is indicative of
the possibility of early blood clotting, a clinical occurrence strongly associated with throm-
bopenias, thrombosis and blood clot formation. Since all patient records used in this research
correspond to symptomatic patients who sought medical care, it is reasonable to consider
that all positive cases of covid-19 are moderate or severe. This raises the hypothesis that, for
symptomatic Covid-19 patients in moderate or severe condition, treatments with anticoag-
ulants such as low molecular weight heparin may be successful. In fact, the literature and
clinical practice report that these treatments are already being used with relative success,
but they are restricted to very severe cases, often in intubated patients. For this protocol, the
accuracy was 99.98%, whilst the sensitivity, specificity, AUC, and F-score were maximum
(approximately 1.00).

Figure 19 shows the decision protocol for clinical diagnosis generated automatically
by decision tree J48 after excluding partial thromboplastin time. The protocol shows the
importance of lipase dosing, ferritin, troponin, and serum glucose for the clinical diagnosis,
monitoring, and evaluation of Covid-19. Most patients with Covid-19 (238 out of 258) had
high levels of lipase dosage (greater than 126) and ferritin (greater than 252). These appear to
be critically ill patients, as ferritin indicates that the patient is highly symptomatic, whereas
high-dose lipase may indicate cases of pancreatitis. A few patients were positive for Covid-
19 for low ferritin (less than 252) and lipase dosage between 126 and 129 (7 patients). Other
10 patients had low lipase dosage (less than 126), but high ferritin (greater than 224), low
troponin (less than 0.062) and high serum glucose (greater than 106). This may indicate
the influence of high glucose levels in the worsening of Covid-19 symptoms, but it may be
associated with milder or moderate cases. However, to be more certain, it would be necessary
to have access to the clinical histories of these patients, which was not possible in this study.
For this protocol, accuracy was 99.8552%, and we got sensitivity of 0.999, specificity of
0.985, AUC of 0.985, and F-score of 0.999.

Figure 20 shows the decision protocol obtained by removing the partial thromboplastin
time and lipase dosage. In this case, we can observe that most patients with Covid-19 had
high ferritin (greater than 216), low troponin (less than 0.062), and high serum glucose
(greater than 110). A few patients had different situations: 5 patients with Covid-19 had
high ferritin (greater than 216) and high troponin (greater than 0.088); 8 patients had high
ferritin (greater than 216), low serum glucose (less than 110), and troponin between 0.033
and 0.062. However, for 4 patients, D-dimer was high (greater than 1.343) and ferritin was
low (lower than 191), which may indicate complicators due to previous heart disease, but
these conditions would need to be verified in the patients’ clinical histories. For this protocol,
we got accuracy of 99.8713%, sensitivity of 0.999, specificity of 0.981, F-score of 0.999,
and AUC of 0.990.

Figure 21 shows the decision protocol obtained automatically by the J48 decision tree
after removing the partial thromboplastin time, lipase dosage, and ferritin. For this proto-
col, most patients with Covid-19 (237) had high serum glucose (greater than 147) and low
but positive troponin (less than 0.062). As this hematologic parameter is often negative for
healthy people, this condition may indicate a potential for Covid-19 to negatively alter car-
diac function, possibly inducing myocardial damage and, depending on the patient’s history,
myocardial infarction. The other patients did not present a specific rule for the relationship
between hematological parameters. Its conditions were expressed in many rules. Some pa-
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tients appear to be heart disease (4 patients) because they have high troponin. These patients
had high lactic dehydrogenase (greater than 332) and serum glucose between 147 and 151.
One group of patients (8 patients) had high D-dimer (greater than 1,299) and low serum
glucose (less than 105). Another group, with more specific conditions (7 patients), had low
troponin (less than 0.062), low D-dimer (less than 0.98), and serum glucose between 106.8
and 147. Finally, only 2 patients had this condition: serum glucose between 109 and 147,
low indirect bilirubin (less than 0.26), and high D-dimer (greater than 1.299). For this pro-
tocol, we have accuracy of 99.79%, sensitivity of 0.998, specificity of 0.955, AUC of 0.982,
and F-score of 0.998.

5 Conclusion

The disease caused by the new type of coronavirus, the Covid-19, has posed a global public
health challenge. Since this virus has a strong human-to-human transmission ability, it has
already led to millions of infected people and thousands of deaths since the beginning of the
outbreak in December 2019.

In this study, we developed a web system, Heg.IA, which seeks to optimize the diag-
nosis of Covid-19 by combining blood tests and artificial intelligence. From the system, a
healthcare professional may have a diagnostic report after providing patient’s age and 42
hematological parameters from common blood tests. The system is able to indicate if the
patient is infected with SARS-CoV-2 virus. The proposed system is based on decision trees
and achieved great performance of accuracy, kappa statistic, sensitivity, precision, specificity
and area under ROC for all tested scenarios. Considering SARS-CoV-2 detection, the sys-
tem may play an important role as a highly efficient rapid test to aid at the clinical diagnosis
as a way to provide rapid clinical diagnosis protocols.

The experimental results demonstrate that the eight hematological parameters selected
by PSO, i.e. serum glucose, lactic dehydrogenase, lipase dosage, partial thromboplastin
time, troponin, ferritin, D-dimer, and indirect bilirubin, are very significant for the clini-
cal diagnosis of Covid-19 in symptomatic patients. Classification results are comparable
to those obtained with RT-PCR. Consequently, serum glucose, lactic dehydrogenase, lipase
dosage, partial thromboplastin time, troponin, ferritin, D-dimer, and indirect bilirubin are
closely related to Covid-19 dynamics. The experimental results are suggestive for the use
of these eight hematological parameters as part of Covid-19 clinical diagnosis protocols, as
well as patient monitoring assessment of patient progress and severity of disease, confirm-
ing state-of-the-art results. These parameters may even be important for the construction of
new specific treatments for Covid-19, which take into account the clinical and biochemical
interpretation of these parameters.

The change in serum glucose by Covid-19 may explain the fact that diabetes is consid-
ered a comorbidity that can increase the chances of worsening the patient’s death by Covid-
19. Indirect biblirubin is formed by the breakdown of red blood cells and is then transported
to the liver. Bilirubin can be related to several complications in the blood, changes in heart
function and liver problems. This, in turn, may be strongly related to how the chances of ag-
gravation and death in patients with heart disease and liver disease may increase. Troponin
alterations, also considered statistically relevant in this research, also show how patients
with heart disease can have their chances of worsening the disease. D-dimer is one of the
breakdown products of fibrin, a protein that is involved in clot formation. Therefore, when
there are changes in the coagulation process, it is possible that there is a greater amount of
circulating D-dimer. Lactic dehydrogenase is an enzyme present in all cells, but in greater
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concentration in the lungs, heart, skeletal muscle and liver. High levels of lactic dehydro-
genase in patients with Covid-19 increase the chances of aggravation of the infection and,
therefore, the probability of death. Lipase is an enzyme that is part of the digestive process.
It works by breaking down fat molecules to be more easily absorbed by the intestine. The
lipase test is a clinical analysis that helps identify changes in the levels of this enzyme in the
individual’s body. High levels of lipase are associated with acute pancreatitis. Several studies
show that Covid-19 also affects the pancreas in moderate and severe cases. State-of-the-art
investigations show that the occurrence of pancreatitis at different levels is reasonably com-
mon in patients positive for Covid-19 and may be a highly important clinical occurrence in
intubated patients.

Reduced partial thromboplastin time indicates the possibility of early blood clotting. It is
strongly related to the occurrence of thrombosis, thrombopenias and other problems related
to early coagulation, common to moderate and severe cases of Covid-19 and in post-Covid-
19 complicators. Ferritin is a protein produced mainly by the liver, whose basic functions
are: transporting iron and mediating the inflammation process. High ferritin can be a symp-
tom of inflammation or infections, as it is an acute phase protein, which may be increased
in the following situations: Covid-19, hemolytic anemia, megaloblastic anemia, alcoholic
liver disease, Hodgkin’s lymphoma, myocardial infarction, leukemia, and hemochromato-
sis. Symptoms of excess ferritin are joint pain, tiredness, shortness of breath or abdominal
pain, i.e. symptoms common to Covid-19. This information, combined with the results ob-
tained with decision trees, suggest the clinical use of partial time thromboplastin and ferritin
both for the rapid clinical diagnosis of symptomatic cases of Covid-19 without the aid of di-
agnostic support systems and for the assessment of severity of the disease and the follow-up
of the patient’s clinical situation.

These results may also indicate the possibility of constructing specific treatments for
moderate and severe cases of Covid-19, which can be based on therapies with anticoagu-
lants, IL-6 blocking drugs. Another possibility may be to adapt therapies aimed at reducing
ferritin for Covid-19 cases, respecting the degree of disease severity and patient limitations.
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