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Abstract10

This paper presents a new hybrid compartmental model for studying the COVID-19 epidemic evo-

lution in Italy since the beginning of the vaccination campaign started on 2020/12/27 and shows

forecasts of the epidemic evolution in Italy. The proposed compartmental model subdivides the

population into six compartments and extends the SEIRD model proposed in [E.L.Piccolomini

and F.Zama, PLOS ONE, 15(8):1–17, 08 2020] by adding the Vaccinated population and framing

the global model as a hybrid-switched dynamical system. Aiming to represent the quantities that

characterize the epidemic behaviour from an accurate fit to the observed data, we partition the

observation time interval into sub-intervals. The model parameters change according to a switching

rule depending on the data behaviour and the infection rate continuity condition. In particular,

we study the representation of the infection rate both as linear and exponential piecewise con-

tinuous functions. We choose the length of sub-intervals balancing the data fit with the model

complexity through the Bayesian Information Criterion. The calibration of the model shows an

excellent representation of the epidemic behaviour and thirty days forecasts have proven to repro-

duce the infection spread reliably. Finally, we discuss different possible forecast scenarios obtained

by simulating an increased vaccination rate.

Keywords: Compartmental model with Vaccine, SEIRDV, switched model, hybrid model,11

forcing function, model calibration.12

1. Introduction13

Compartmental models are essential mathematical tools in the analysis of the evolution of14

epidemics, for prediction and simulation of future strategies which can be used by governments15

and policymakers to allocate sanitary and economic resources. The parameters of such models16

are related to meaningful characteristics of the epidemic disease, such as infection rate, infectious17

period, lethality rate. Moreover, through such models, it is possible to estimate the number of18

secondary cases produced by a single infected person at start time (basic Reproduction number19

R0) and during the epidemic evolution (effective time-dependent Reproduction number Rt). In20
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particular, the trend of Rt is of great importance to check the epidemic evolution over time.21

The COVID-19 pandemic, caused by the Sars-CoV-2 virus, has renewed interest in studying22

these models and a significant number of papers appeared on this subject since the beginning of23

2020 (refer to LitCovid database for up to date literature [1]). They differ each other for the24

type of model proposed, the external events considered, such as movement restrictions imposed by25

governments or quarantines, and the regions where models are applied.26

Starting from the first SIR (Susceptible (S), Infected (I), and Recovered (R)) model, proposed27

in 1927 by Kermack and McKendrick [2], several generalizations have been formulated over the28

years by increasing the number of compartments, such as, for example, the Susceptible – Exposed –29

Infectious – Recovered (SEIR) and the Susceptible - Exposed - Infected - Recovered - Dead (SEIRD)30

schemes. Further extensions have been proposed to model the COVID-19 outbreak considering the31

different social distancing policies and control measures applied in the various geographic areas to32

contain the epidemic spread. More compartments have been added, making the models more and33

more complex (see [3], [4], [5], [6], to mention only a few of the most recent).34

In this paper we intend to consider the effects of the vaccine on the epidemic spread by fur-35

ther extending the SEIRD model adding the compartment of Vaccinated people, thus obtaining36

a SEIRDV scheme. Among the vaccine-related papers within the COVID-19 literature several37

hypothetical scenarios are analysed based on different prioritisation policies according to vaccine38

efficacy and its availability [7]. Other papers focus on the possible benefits of combining vaccina-39

tion with Nonpharmaceutical Interventions (NPIs) such as surveillance, social distancing, social40

relaxation, quarantining, patient treatment/isolation (see [8, 9] and references therein).41

Following the approach in [10], we introduce a switching rule that governs the SEIRDV model42

state at any given time. Besides producing optimal fit to epidemic data, introducing such a hy-43

brid approach allows us to represent disease evolution when restriction policies and virus variants44

cause changes in fundamental parameters such as infection rate, recovery periods, and death rates.45

Although switched models are widespread in various engineering applications, studies about epi-46

demic models are less common; see, for example, [11] (SIRV), [12](SIR) and [13] (SEIRD). In47

particular the authors in [13] propose a hybrid SEIRD model with a mortality rate represented48

by an inverse exponential function where the residual correction is based on the ARIMA method.49

The model, tested on US COVID statistic data in the period February-September 2020, made50

precise predictions for up to 2 months ahead. The reader can also refer to [13] for an exhaustive51

bibliography.52

Concerning the model parameters, it is well known that COVID-19 epidemic data cannot53

be accurately represented by any compartmental approach with constant parameters all over the54

epidemic duration. To face this problem, some authors use variable parameters in the time interval55

(for example [6] ) or change the fitting function (see [5]). In our approach all the model parameters56

are constant in each switching time interval, except for the infection rate which is a time-dependent57
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forcing function modelled as piecewise continuous.58

The model calibration is carried out by solving a sequence of constrained minimisations of the59

weighted least-squares residuals between the measured epidemic data and the value of the state60

variables, which satisfy the initial value ordinary differential system representing the SEIRDV61

model.62

This paper is an extension of our previous work [14], where we proposed a SEIRD model (before63

the availability of vaccines), with two different forcing functions, to monitor the first phase of the64

evolution of Covid-19 in Italy (2020/02/24-2020/05/24). Compared to [14] we modify the model,65

by including the Vaccinated compartment (we remark that the vaccination campaign started in66

Italy on 27 December 2020), by representing the proposed model into the hybrid models’ theoretical67

frame, and by changing the expression of the forcing functions. Moreover in the calibration phase,68

we add weights in the fitting objective function and bound constraints, thus improving the model69

computational effectiveness and accuracy.70

In the experimental section, we report the results obtained by our scheme on the Italian national71

and regional epidemic data in the period 2020/12/27-2021/06/12. The inclusion of two different72

expressions for the infection rate function allows us to obtain different possible scenarios which73

prove to be very useful in the prediction phase.74

1.1. Contributions75

We summarize here the main contributions of this paper.76

• We propose a SEIRDV scheme by adding the Vaccinated compartment to the well known77

SEIRD model.78

• We consider a dynamical switched framework where the interval length is chosen on the basis79

of the Bayesian Information Criterium.80

• We represent the infection rate as a continuous time dependent function comparing a linear81

and an exponential piecewise formulation.82

The rest of the paper is organized as follows. In Section 2, we present the proposed model and83

the calibration procedure. The Section 3 reports the calibration results for the data of the COVID-84

19 in Italy and in the Emilia-Romagna region as well as possible forecast scenarios. Conclusions85

are drawn in Section 4.86

2. METHODS87

This section introduces the details of the proposed switched compartmental model and its al-88

gorithmic formulation. We start by describing the SEIRDV model in paragraph 2.1, then we intro-89

duce the switched model together with insights about the time-dependent infection rate functions90
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(paragraph 2.2). In paragraph 2.3, we discuss the algorithmic details of the calibration proce-91

dure consisting of a sequence of bound-constrained optimization problems defined by the model92

switches. Finally, in paragraph 2.4 we briefly discuss how we use the model to make predictions.93

2.1. The SEIRDV model with constant parameters94

The SEIRDV model characterized by constant parameters is obtained from the SEIRD model

[14] by adding the new compartment V representing the vaccinated population. The following

differential system represents the populations’ dynamics:

S′ = − β
N
SI − νS,

E′ =
β

N
SI − αE

I ′ = αE − γI (1)

R′ = γ(1− η)I

D′ = γηI

V ′ = νS

where the total population, assumed of constant size N , is subdivided into six compartments: Sus-95

ceptible (S), Exposed (E), Infected (I), Recovered (R), Dead (D) and Vaccinated (V). The system96

(1) is solved starting from an initial time t = t0 where the values S(t0), E(t0), I(t0), R(t0), D(t0), V (t0)97

are assigned on the basis of the available data and integrated up to a final time T .98

The parameter β ≥ 0 represents the infection rate, accounting for the susceptible people in-99

fected by infectious people. Its value is related to the number of contacts between Susceptible and100

Infected. Standard models, as well as our SEIRDV, assume this relationship to be linear.101

The parameter α > 0 represents the incubation rate for the transition from Exposed to Infected102

states. Such value relates to the incubation period AI as follows: AI = 1/α. The average103

incubation ranges from 2 to 14 days (d) (see https://www.worldometers.info/coronavirus/104

coronavirus-incubation-period/). According to [15], more than 97 percent of people who con-105

tract SARS-CoV-2 show symptoms within 11.5 days of exposure. Recently a comparative study106

assesses the incubation period around 6.5 days [16]. The cited studies assess the value of α in the107

interval [0.14, 0.5].108

The parameter γ > 0 representing the removal rate relates to the average infectious period TI as109

γ = 1/TI . At the beginning of the outbreak, an average value TI ' 20d has been measured [17],110

hence γ ∈ [0.03, 0.1].111

After the period TI , the Infected split into Recovered and Dead with weights 1− η and η respec-112

tively (0 ≤ η ≤ 1). Hence the parameter η represents the fraction of the Removed individuals113

who die and its value depends on environmental situations that change over time, such as the114
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population age, the virus spread, medical care availability and treatments. Finally, the parameter115

ν > 0 represents the vaccination rate. Its value is particularly useful in the prediction phase to116

obtain different scenarios.117

Important information about the epidemic development is obtained from the number of infection118

cases generated from a single infectious individual, i.e. the basic reproduction number R0, defined119

as follows (see details in appendix Appendix B):120

R0 =
β

γ
. (2)

It is well known that the epidemic occurs when R0 > 1; however, this information refers to121

the initial stage, assuming that the entire population is Susceptible. In the case of COVID-19,122

estimations of R0 in the interval [1.5, 6.68] were obtained during the first months of 2020 [18].123

2.2. Switched forced SEIRDV model124

The movement restriction policies adopted worldwide as well as the occurrence of different virus

variants cause changes in the value of the infection rate β and possibly of other model parameters

over time. In order to monitor the model parameters from the measured data flexibly, we propose

a hybrid switched version of the SEIRDV model and represent the infection rate β as a continuous

time-dependent function, modelled according to the epidemic data. We split the time interval

[t0, T ] into p sub-intervals ∆k = [tk−1, tk] (k = 1, . . . , p and tp = T ) and define a switching rule Θ

setting the values of the model parameters as follows:

Θ(t) = (αk, βk, γk, ηk, νk)T , t ∈ ∆k.

Then the hybrid model is represented as [10]:125

u′
Θ′

 =

FΘ(t, u)

0

 , u = (S(t), E(t), I(t), R(t), D(t), V (t)) (3)

with state variable (u,Θ)T and FΘ(t, u) as in (1), and with model parameters represented by the126

piecewise constant function Θ(t).127

However, using a constant value for the infection rate does not represent the epidemic behaviour128

in a sufficiently flexible way [14]; therefore, we introduce a continuous time-dependent infection rate129

β(t). In this case, the epidemic model is known in the literature as forced model (see for example130

[19] chp 6). In this paper, we represent the infection rate as piecewise linear and exponential131

interpolating functions, yielding to SEIRDV pwl and SEIRDV pwe models, respectively.132

Let us define βk(t) the restriction of β(t) to the interval ∆k, k = 1, . . . , p, and set the values133
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βk ≡ β(tk), k = 0, . . . , p . The SEIRDV pwl defines the infection rate as:134

βk(t) =
t− tk

tk−1 − tk
βk−1 +

t− tk−1

tk − tk−1
βk, t ∈ ∆k, (4)

whereas SEIRDV pwe defines the infection rate as follows:135

βk(t) = βk−1e
−ρ(t−tk−1)/(tk−tk−1), ρ = − log

(
βk
βk−1

)
, t ∈ ∆k. (5)

We observe that for both models it holds :

βk(tk) = βk+1(tk), k = 1, . . . , p− 1

hence β is continuous in [t0, T ].136

The evolution of the global hybrid forced model, represented in figure 1, shows the changes137

of the epidemic model at each switching interval ∆k represented by the values of the model pa-138

rameters defined as Θk ≡ Θ(t), t ∈ ∆k. The restriction of the dynamical model (3) on each

Figure 1: The evolution of the global hybrid model, related to the values of the parameters Θk.

139

interval ∆k, is represented in Figure 2, where the model populations, for t ∈ ∆k, are given by140

(Sk, Ek, Ik, Rk, Dk, Vk).

Figure 2: Dynamical model (3) restricted to the interval ∆k.

141
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2.3. Calibration Procedure142

This paragraph describes the calibration procedure in the interval [t0, T ] supposed of n days.143

We calibrate the parameters on the sub-intervals ∆k, k = 1, . . . p with uniform size L = bn/pc144

(special care is taken in the case n 6= L · p to avoid a too small length of ∆p ).145

Generally, we are interested in keeping L as large as possible to guarantee a proper balancing146

between the data fit and the model complexity, evaluated in terms of the number of parameters to147

be calibrated. In section 3 we discuss the details of the choice of a proper value for L.148

We describe now the parameter estimation process in a single sub-interval ∆k. We collect the149

observed data about Infected, Recovered, Dead and Vaccinated compartments in vectors I,R,D150

and V of size L and stack them into the matrix Y ∈ RL×4, Y = [I,R,D, V ]. Then we consider151

Z ∈ RL×4 as the restriction of u(t; Θ) (defined in (3)) to the components I(t), R(t), D(t), V (t)152

computed in the measurement days in ∆k and we compute the model parameters Θk solving a153

weighted constrained nonlinear least squares problem of the form:154

Θk = arg min
Θ∈B

4∑
j=1

L∑
i=1

(Zi,j − Yi,j)2/µj , µj =
1

L

L∑
i=1

Yi,j . (6)

where the positive weights µj are introduced to compensate different data scales. The bound set

B is defined as

B =
{

Θ ∈ R5 : lbi ≤ θi ≤ ubi, i = 1, . . . , 5
}

where the upper bounds ubi = 1, i = 1 . . . , 5 and lower bounds

lb = [10−4, 10−4, 10−4, 0, 10−6]

contain the values estimated in the literature.155

To solve the minimization problem (6) numerically, we use iterative solvers as discussed in156

section 3. Figure 3 schematically represents the calibration steps of the global hybrid model in the157

whole interval [t0, T ]. The scheme highlights that the results Θk of the minimization problem on158

∆k is taken in input as starting guess in the minimization problem on ∆k+1.159

Figure 3: Calibration steps of the global hybrid model parameters Θk.

To suitably choose the first starting guess Θ0, which has a fundamental role in the quality of160

the final solution, we solve problem (6) on a unique short time interval Ti of about ten days with161
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starting guess (0.1, 0.1, 0.1, 0.1, 0.1).162

In Algorithm 1 we summarize the main steps of the calibration phase to estimate the parameters163

Θk, k = 1 . . . , p.164

Algorithm 1 Calibration Algorithm

1. Compute the solution Θ̃ of problem (6) with starting guess (0.1, 0.1, 0.1, 0.1, 0.1) in the in-
terval [t0, t0 + 10]

2. Set Θ0 = Θ̃.

3. for k = 1, . . . , p do

4. Compute Θk as the solution of (6) in the sub-interval ∆k with starting guess Θk−1

5. end

The forward differential problem (1) is solved by a fourth order variable step Runge-Kutta165

method. The initial conditions in each sub-interval ∆k are given by the observed values of the166

compartments I,R,D, V in the initial day of ∆k. Concerning the starting value E0 of the Exposed167

compartment, which is not available from data, in the starting interval ∆1, we relate it with the168

delay time td between the contact with the infectious agent and the onset of symptoms or signs of169

infection, as follows:170

E0 = I(t0 + td)− I(t0). (7)

(see Section 3 for more details on the values of td). In the successive intervals ∆k, k > 1, we set171

E0 as the last value of Exposed computed in the interval ∆k−1. The starting value of Susceptible172

is the difference between the total population N and the sum of all the other compartments.173

2.4. Prediction174

We use SEIRDV to predict the future behaviour of the disease evolution in short-medium m-175

days interval [T, Tm], with Tm = T +m. In this paper we have adopted the following two strategies176

for prediction.177

1. We set in (1) the parameters Θp = (αp, βp, γp, ηp, νp) computed in the last calibration interval178

∆p and we run the model over a unique time interval [T, Tm]. In our simulations we use both179

the SEIRDV pwl and SEIRDV pwe proposed approaches.180

2. We set in (1) the parameters Θσ = (αp, βp, γp, ηp, σ ·νp), with σ > 1, to simulate an increased181

vaccination rate. We compute also in this case the prediction using both the linear and182

exponential β functions.183

3. Numerical results184

The results presented in this section have been obtained by implementing the SEIRDV pwl185

and SEIRDV pwe algorithms in Matlab 2021a. The codes are available on https://github.com/186

fzama63/COVID-SEIRDV.187
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3.1. Data description188

Epidemic data are downloaded from the repository open source Github https://github.com/189

pcm-dpc/COVID-19 of the Italian Civil Protection Department, containing the official data provided190

by the Ministry of Health (see [20] for a detailed description). We consider here the global national191

data (N = 60360000) as well as the regional data from Emilia-Romagna (N = 4445900).192

Information about vaccine administration is obtained in the Github repository: https://193

github.com/italia/covid19-opendata-vaccini (see details in Appendix A).194

3.2. Model calibration195

We have solved the constrained least squares problems (6) by means of the lsqnonlin Matlab196

function from the Optimization Toolbox with the trust-region reflective algorithm. The initial197

value differential problem (1) has been solved with the ode45 Matlab function.198

To analyse the numerical solution of the calibration in the interval [t0, T ] constituted of n days,

we compute, for any considered population, a Relative RESidual defined as:

RRES =

∑n
i=1(Xi −Xdi)2∑n

i=1Xd
2
i

and the Bayesian Information Criterion (BIC) [21], defined as follows:

BIC = Nθ log(n) + log

(∑n
i=1(Xi −Xdi)2

n

)

where Nθ is the number of the estimated parameters, Xdi represents the acquired compartment199

data and Xi is the corresponding value computed by the calibrated model at day i, i = 1, . . . , n.200

The BIC takes into account the number of model estimated parameters and tends to penalize the201

inclusion of additional parameters. The lower this quantity, the better the model will be.202

To set a convenient initial value E0 for the Exposed compartment we run SEIRDV pwl and203

SEIRDV pwe on the first 15 days, from 2020/12/27 to 2021/01/10, choosing E0 as in (7) with td =204

1, . . . , 10 days. Then we compute RRES for the Infected compartment and choose td corresponding205

to the minimum value. As shown in figure 4, the smallest RRES is obtained when td = 2 for both206

SEIRDV pwl and SEIRDV pwe, hence we continue with td = 2 throughout this section.207

We define the calibration period of n = 85 days, from 2020/12/27 to 2021/3/21 (we remind208

that in Italy vaccination campaign started on 2020/12/27) and run the calibration of SEIRDV pwe209

and SEIRDV pwl models.210

The first aspect of our analysis concerns the choice of the number of switches. We split the whole211

time interval into sub-intervals of fixed length L (except for the last one which can be of different212

size). By increasing their number, we decrease the fit error at the expense of the computation cost,213

determined by the number of parameters, proportional to the number of switches. In order to214

choose the best value L we try all the values in the interval [5, 85] days, we compute the minimum215
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Figure 4: RRES vs td for SEIRDV pwl (blue dash-dotted line) and SEIRDV pwe (red dashed line)

BICmin over all BIC values and we evaluate: ∆BIC = BICX − BICmin where X is any of the216

considered populations (I,R,D or V).217

In Figure 5 we plot the value ∆BIC vs L for each compartment: red dot-dashed line for218

SEIRDV pwe and blue line for SEIRDV pwl model. Except for the Vaccinated (figure 5(d)), all219

the populations show the minimum BIC for L = 21.220

Hence throughout this section, we split the calibration time into four sub-intervals of length

L = 21 obtaining the following time intervals:

∆1 = [2020/12/27, 2021/01/21] ∆2 = [2021/01/17, 2021/02/07]

∆3 = [2021/02/07, 2021/02/28] ∆4 = [2021/02/28, 2021/03/21]. (8)

We calibrate the model parameter using Algorithm 1. For the solution of the constrained221

optimization problem, we compared the trust-region reflective (TR) method with the Lev-222

emberg Marquardt (LM) one, which overperforms the Broyden-Fletcher-Goldfarb-Shanno (BFGS)223

as noted in [5]. We report in Table 1 the number of function evaluations FCount and the relative224

residual RRES for the Infected, Recovered, Dead and Vaccinated compartments. We find that for225

both exponential and linear infection rates, the TR method is computationally the most efficient226

(smallest number of function evaluations) and it is also slightly more precise than LM. Therefore227

we continue our analysis applying the TR method.

model method FCount
RRES

I R D V

SEIRDV pwl
TR 126 0.0084 0.0019 0.0010 0.0381
LM 3926 0.0087 0.0021 0.0015 0.0381

SEIRDV pwe
TR 132 0.0083 0.0019 0.0010 0.0381
LM 4192 0.0085 0.0020 0.0014 0.0381

Table 1: Number of function evaluations FCount and relative residual RRES obtained by LM and TR solvers for
SEIRDV pwl and SEIRDV pwe. In bold the best results obtained for each algorithm.

228

Figures 6 (a) and 7 (a) and (b) plot the calibrated functions of Infected, Recovered and Vac-229
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(a) (b)

(c) (d)

Figure 5: ∆BIC vs L for each compartment: red dot-dashed line for SEIRDV pwe and blue line for SEIRDV pwl
model. (a) Infects (b) Recovered (c) Dead (d) Vaccinated.

cinated populations, respectively. We can appreciate the good quality of data-fit of SEIRDV pwl230

and SEIRDV pwe. In Figure 6 (b) we represent the difference between the infected population ob-231

tained by SEIRDV exp and SEIRDV pwl algorithms. We observe that the main differences occur232

in the ∆3 and ∆4 intervals.

(a) (b)

Figure 6: Calibration results on Infected compartment. (a) Data from 2020/12/27 until 2021/03/21 (magenta cir-
cles), SEIRDV pwl calibration (black dashed line), SEIRDV pwe calibration (green continuous line). (b) Difference
between SEIRDV pwe and SEIRDV pwl (red circles).

11

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 25, 2021. ; https://doi.org/10.1101/2021.06.21.21259230doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.21.21259230
http://creativecommons.org/licenses/by-nc-nd/4.0/


(a) (b)

Figure 7: Calibration results. (a) Recovered compartment. Data from 2020/12/27 until 2021/03/21 (orange circles),
SEIRDV pwl calibration (black dashed line), SEIRDV pwe calibration (green continuous line). (b) Vaccinated
compartment. Data from 2020/12/27 until 2021/03/21 (cyan circles), SEIRDV pwl calibration (black dashed line),
SEIRDV pwe calibration (green continuous line).

.

Figure 8: Forcing β functions (on the left) and Reproduction index Rt (on the right) for SEIRDV pwl (blue dash-
dotted line) and SEIRDV exp (red dashed line) models.

In Figure 8 we plot the values of both the infection rate function β(t) (on the left) and the233

reproduction number function Rt(t) (on the right) computed as follows234

Rt =
β(t)

γ̂
, γ̂ =

1

p

p∑
k=1

γk. (9)

The red line relative to the exponential model changes more rapidly when the epidemic spread235

increases (∆3 and ∆4 intervals). To analyse the behaviour of the infection rate in the considered236

sub-intervals, we average the values of the calibrated function β(t), represented in figure 8 (a), on237

the intervals [∆1,∆2], getting 0.00286 for both the methods, and in the period [∆3,∆4] obtaining238

0.0480 and 0.0487 for SEIRDV pwl SEIRDV pwe, respectively. These values show that both239

methods capture the increase of the infection rate that causes the inversion of the epidemic curve240

in [∆3,∆4].241

12

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 25, 2021. ; https://doi.org/10.1101/2021.06.21.21259230doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.21.21259230
http://creativecommons.org/licenses/by-nc-nd/4.0/


We now discuss the parameters calibrated by Algorithm 1 and reported in Table 2. Concerning242

the incubation rate α, both models report a decreasing behaviour in the period ∆1 − ∆4. It243

corresponds to an incubation period between 2 and 4 days. The removal rate γ is very similar244

for both methods and gives the following removal periods: 34 d(∆1), 25.9 d(∆2), 26.9 d(∆3),245

34.2 d(∆4) producing the average removal period of 30.3 d.246

Regarding the parameter η, we observe that the average value 2.4% obtained by SEIRDV pwl247

slightly underestimates the reference value 3%, reported by Johns Hopkins University Coronavirus248

Resource Center, https://coronavirus.jhu.edu/data/mortality. On the contrary, the average249

value 3.2% obtained by SEIRDV pwe constitutes a slight overestimate. Both models compute the250

same vaccination rate ν in each period.251

parameter model ∆1 ∆2 ∆3 ∆4 mean

α
SEIRDV pwl 0.9790 0.4293 0.3217 0.2571 0.4968
SEIRDV pwe 0.9790 0.4297 0.3433 0.2276 0.4949

γ
SEIRDV pwl 0.0294 0.0386 0.0371 0.0293 0.0336
SEIRDV pwe 0.0294 0.0386 0.0372 0.0293 0.0336

η
SEIRDV pwl 0.0290 0.0238 0.0216 0.0238 0.0245
SEIRDV pwe 0.0294 0.0386 0.0372 0.0293 0.0336

ν
SEIRDV pwl 0.0008 0.0002 0.0010 0.0022 0.0011
SEIRDV pwe 0.0008 0.0002 0.0010 0.0022 0.0011

Table 2: Parameters calibrated in the different time intervals (8).

3.3. Prediction on national data252

In this paragraph, we apply the calibrated SEIRDV pwl and SEIRDV pwe to make predictions.253

To test the forecast reliability, we compute a prediction in the interval ∆5 = [2021/03/21, 2021/04/20]254

using the data available in that period to measure the precision of our forecast in terms of the255

Infected peak time and value.256

In Figure 9 we show the predicted Infected curve. With the red dashed curve we plot the257

prediction obtained by using the values of all the parameters calibrated in the last interval ∆4.258

With the continuous blue line, we plot the prediction obtained by changing only the β(t) function as259

the curve interpolating the infection rate calibrated in 2021/02/28 and 2021/03/21 (drawn with a260

blue and a red star, respectively). Comparing the prediction curves relative to SEIRD pwl (Figure261

9 (a)) and SEIRD pwe (Figure 9 (b)) with the epidemic data represented by magenta empty circles262

we can see that the exponential model is more accurate.263

We highlight that the reported forecast refers to the vaccination rate ν = 0.0022, computed in264

the calibration interval ∆4 corresponding to 133572 administration per day. From Table 3 we can265

see that the peak of infected people is reached on 2021/04/09 and 2021/04/03 with SEIRD pwl and266

SEIRD pwe predictions, respectively. We observe that SEIRD pwe curve is closer to the available267

data that reaches its maximum on (2021/03/28) with 573235 Infected people.268

In the second and third lines of the table, we report the maximum number of Infected and269

the day of forecast peak increasing the vaccination rate. To graphically represent the effects of an270
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(a) (b)

Figure 9: Prediction for the Infected compartment in Italy from 2021/03/22 to 2021/04/20. Data (magenta circles),
prediction with β(t) calibrated in the last interval ∆4 (red dashed line) and prediction with β(t) interpolating the
the values of β in red and blue stars (blue continuous line). (a) SEIRDV pwl (b) SEIRDV pwe

vaccination administration SEIRDV pwl SEIRDV pwe
rate per day #(Infected) peak day #(Infected) peak day

0.0022 133572 628504 09/04/21 594604 03/04/21
0.0055 333930 622139 07/04/21 592549 01/04/21
0.0088 534288 617322 05/04/21 590882 01/04/21

Table 3: Results of the prediction experiment in Italy obtained with different vaccination rates: number of Infected
people and day of the peak for SEIRDV pwl and SEIRDV pwe. The peak of available data is on 2021/03/28 with
573235 Infected people.

increased vaccination rate, we plot in Figure 10 the results given by the two models in 40 days271

using the vaccination rates in Table 3. Comparing the two models, we see that the SEIRDV pwe272

gives the more realistic prediction.273

(a) (b)

Figure 10: 30 days prediction for the Infected compartment in Italy by considering different vaccination rates
v = 0.0022129 (dark continuous line), v = 0.0055323 (dark dashed-dotted line) and v = 0.0088517 (dark dotted
line) : (a) SEIRDV pwl, (b) SEIRDV pwe

3.4. Prediction on regional data274

Finally, we present the prediction obtained using more homogeneous and smaller-scale data275

acquired in the Emilia-Romagna region after performing the calibration on the same sub-intervals276

as in (8). In Figure 11 we plot the prediction obtained with the same procedure as in Figure 9.277

Differently to what happens for the Italian case, in the linear model (Figure 11 (a)) the prediction278
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obtained with the red curve is entirely inaccurate, whereas for the exponential model (Figure 11279

(b)) the red and blue lines define a region containing the Infected data. Therefore, SEIRDV pwe280

can be used to make reliable predictions with both strategies. Finally, in Figure 12 we show the281

results for increasing vaccination rates, as done in Figure 10 for the national data. The SEIRDV pwl282

forecasts are now closer to the Infected data compared to SEIRDV pwe, confirming the importance283

of having both methods available to make different predictions.

(a) (b)

Figure 11: Prediction for the Infected compartment in Emilia-Romagna from 2021/03/22 to 2021/04/20. Data
(magenta circles), prediction with β(t) interpolating the the values of β in red and blue stars (blue continuous line),
prediction with β(t) calibrated in the last interval ∆4. (a) SEIRDV pwl (b) SEIRDV pwe

(a) (b)

Figure 12: 30 days prediction for the Infected compartment in Emilia-Romagna by considering different vaccination
rates v = 0.0022129 (dark continuous line), v = 0.0055323 (dark dashed-dotted line) and v = 0.0088517 (dark dotted
line) : (a) SEIRDV pwl, (b) SEIRDV pwe

284

3.5. Towards the 80% vaccination285

In this experiment we extend the calibration period to the present date (2021/06/12) (using286

L = 21 as in the previous experiments and p = 8) and run the simulations to forecast the time at287

which 70%− 80% population has received at least the first vaccine dose. As already observed, the288

two models have a very similar behaviour concerning the fit of vaccinated population and the last289

estimated vaccination rate is ν = 0.0095 for both SEIRDV pwl and SEIRDV pwe, equivalent to290

584861 administrations per day. Hence we report in figure 13(a) the vaccination data (pink circles),291

the fitted vaccinated population (black dashed line), together with the forecasts obtained with the292
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calibrated vaccination rate (black continuous line) and with an increased vaccination rate 30% (dot293

dashed line) and 60% (dotted line) (computed by SEIRDV pwe). We highlight with dashed lines294

the values of vaccinated individuals corresponding to 70% and 80% of the whole population. The295

reproduction number Rt shown in Figure 13(b), obtained by calibrated data, confirms the positive296

effects of the current vaccination campaign. The progressive decrease of Rt below 1 yields the297

reduction of the disease spread. The expected similarity between SEIRDV pwl and SEIRDV pwe

(a) (b)

Figure 13: (a) Vaccination data (pink circles), fitted Vaccinated (black dashed line), forecast obtained by
SEIRDV pwe considering the calibrated vaccination rate (black continuous line), an increase of 30% (dot dashed
line) and 60% (dotted line) of vaccination rate . (b) Reproduction number Rt.

298

forecasts is confirmed by data reported in table 4, where the unique small difference appears in the299

first row. The increase of 60% in the vaccination rate causes a reduction of one month to obtain300

70% vaccinated population and about two months (57 d) for 80%.301

vaccination administration SEIRDV pwl SEIRDV pwe
rates per day 70% 80% 70% 80%

0.0095 584861 29/08/21 28/10/21 29/08/21 27/10/21
0.0123 760319 10/08/21 25/09/21 10/08/21 25/09/21
0.0152 935778 30/07/21 05/09/21 30/07/2 05/09/21

Table 4: Results of the prediction experiment in Italy obtained by the vaccination rate (first row) calibrated on
12/06/2021 and with a 30% and 60% increase. Dates at which a single vaccine dose is given to 70% − 80% people.

Target ν
SEIRDV pwl SEIRDV pwe

I D I D

70%
0.0095 39716 129425 8890 128655
0.0123 47873 129038 18386 128552
0.0152 55545 128785 27912 128448

80%
0.0095 15895 130048 906 128739
0.0123 19791 129621 3111 128712
0.0152 24829 129346 6713 128672

Table 5: Value of Infected and Dead individuals correspondent to 70% and 80% immunization targets for the
vaccination rates ν displayed in table 4

The differences between the two models can be observed in table 5 reporting the number of302

Infected and Dead individuals in the days of the vaccination targets 70%, 80% reported in table303

4. Increasing the vaccination rate ν, we observe a reduction of the Dead individuals for each304
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target and both methods. For each target and vaccination rate, the Infected and Dead individuals305

computed by SEIRDV pwe are smaller than SEIRDV pwl.306

The pie graph of Figure 14 shows the percentage of people of all the compartments corre-307

sponding to 70% and 80% vaccination targets. In particular Figure 14 (a) represents SEIRDV pwl308

reaching 70% vaccination target on 2021/08/29, at the calibrated vaccination rate (ν = 0.0095)309

whereas Figure 14 (b) is relative to SEIRDV pwe reaching 80% vaccination target on 2021/09/05310

at the 60% increased vaccination rate (ν = 0.0152). The 10% increase in the Vaccination target311

causes the same percentage reduction of the susceptible individuals from 23% to 13%, whereas312

the percentages in the remaining populations do not change significantly. We can consider these313

pictures as worse and best case predictions of the vaccination campaign in Italy.314

(a) (b)

Figure 14: Percentage compartments obtained by SEIRD pwl on 2021/08/29 (a) and SEIRD pwe on 2021/09/05
(b).

4. Conclusions315

We have proposed two SEIRDV compartmental models, each involving six populations (Suscep-316

tibles, Exposed, Infected, Recovered, Dead and Vaccinated) for the analysis of COVID-19 spread317

during the vaccination campaign in Italy. The two schemes differ in the forcing time-dependent318

function.319

We have calibrated the model parameters in time intervals of about 20 days through a nonlinear320

constrained least squares minimization. The results on the data on whole Italy and especially on321

the Emilia-Romagna region are very promising. The data fit obtained is really very faithful with322

both models for all the considered compartments with a relative residual value less than 1%. The323

forcing functions, linear and exponential, characterize the model especially when the epidemic324

spread is increasing.325

The simulated predictions of the infected population behaviour in a 30 days period from mid326

March to mid April 2021 show that the SEIRDV exp model performs better when compared with327

the data available in that period. In particular, in the case of Emilia-Romagna we remark that the328

peak day for the infected population is predicted with great accuracy. Simulations of the Infected329
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curve with a different, increasing, vaccination rate in the same period give the idea of how the330

epidemic would evolve in these cases.331

Finally, we applied the model calibrated up to 2021/06/12 to forecast the epidemic behaviour332

when 70%− 80% of population has received one vaccine dose. At the present vaccination rate the333

80% immunization is reached on 2021/10/28 whereas with an increase of 60% (best scenario) it is334

reached on 2021/09/05.335

Future studies and extensions of the proposed models will consider the limited duration of336

vaccine-induced immunity and the possible seasonal pattern of the COVID-19 epidemic waves.337

Appendix A. Vaccines Database Description338

We consider the file ’somministrazioni-vaccini-summary-latest.csv’ in the folder ’dati’. It con-339

tains a table made of 16 fields:340

341

FIELD NAME DATA TYPE

index Integer

area String

data somministrazione Datetime

totale Integer

sesso maschile Integer

sesso femminile Integer

categoria operatori sanitari sociosanitari Integer

categoria personale non sanitario Integer

categoria ospiti rsa Integer

categoria over80 Integer

prima dose nteger

seconda dose Integer

codice NUTS1 String

codice NUTS2 String

codice regione ISTAT Integer

nome regione String

342

343

344

Although some vaccines are administered in two different doses we consider, in our model, as345

vaccinated the people who received at least the first dose. Since some studies report that the346

positive immunity effects obtained from a single dose are evident in the immediate days after the347

vaccine, we can use this information for our short-term prevision.348
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Appendix B. Reproduction Number R0349

Concerning the analysis of stability, equilibrium solutions of an SEIR model with different

vaccination policies please refer to [22] and references therein. Using the relation N = S(t) +

E(t) + I(t) + R(t) + D(t) + V (t), we can eliminate the last equation in (1) and define a disease

free equilibrium (S∗, E∗, I∗, R∗, D∗), with I∗ = E∗ = R∗ = D∗ = 0. Following the next generation

matrix approach [23, 24], we compute the basic Reproduction Number R0, defined as the number

of secondary cases generated by a single Infected. Let X = [E, I]T be the state at infection of

system (1), then the Exposed and Infected equations can be written as: X ′ = F (X)+W (X) where

F (X) =

βSI/N
0

 , W (X) =

 αE

−αE + γI


The Jacobian matrices of F and W at the disease free equilibrium are:

F =

0 βS∗/N

0 0

 , W =

 α 0

−α γ


According to [23] the basic reproduction number R0 is the maximum eigenvalue of the next gen-

eration matrix NGM = FW−1, i.e.

NGM = F

1/α 0

1/γ 1/γ

 =
S∗β

Nγ

1 1

0 0


In the assumption that at disease free state S∗ = N we obtain (2). We note that it coincides with350

the R0 value of a standard SEIR model [19].351
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