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Abstract

Background: The COVID-19 pandemic has led to a high interest in
mathematical models describing and predicting the diverse aspects and
implications of the virus outbreak. Model results represent an important part of
the information base for the decision process on different administrative levels.
The Robert-Koch-Institute (RKI) initiated a project whose main goal is to predict
COVID-19-specific occupation of beds in intensive care units:
Steuerungs-Prognose von Intensivmedizinischen COVID-19 Kapazitäten (SPoCK).
The incidence of COVID-19 cases is a crucial predictor for this occupation.

Methods: We developed a model based on ordinary differential equations for the
COVID-19 spread with a time-dependent infection rate described by a spline.
Furthermore, the model explicitly accounts for weekday-specific reporting and
adjusts for reporting delay. The model is calibrated in a purely data-driven
manner by a maximum likelihood approach. Uncertainties are evaluated using the
profile likelihood method. The uncertainty about the appropriate modeling
assumptions can be accounted for by including and merging results of different
modelling approaches.

Results: The model is calibrated based on incident cases on a daily basis and
provides daily predictions of incident COVID-19 cases for the upcoming three
weeks including uncertainty estimates for Germany and its subregions. Derived
quantities such as cumulative counts and 7-day incidences with corresponding
uncertainties can be computed. The estimation of the time-dependent infection
rate leads to an estimated reproduction factor that is oscillating around one.
Data-driven estimation of the dark figure purely from incident cases is not
feasible.

Conclusions: We successfully implemented a procedure to forecast near future
COVID-19 incidences for diverse subregions in Germany which are made available
to various decision makers via an interactive web application. Results of the
incidence modeling are also used as a predictor for forecasting the need of
intensive care units.

Keywords: COVID-19; infectious disease models; input estimation; ordinary
differential equations; parameter estimation; nonlinear systems; SEIR models

1 Background
Mathematical models of infectious disease epidemiology have experienced a boost

of attention since the beginning of the COVID-19 pandemic. One can divide these

models into three categories according to their purpose: scenario simulation, now-

casting, and forecasting.
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Scenario simulation focuses on different assumptions about some aspects of the

model in order to compare and illustrate differences between several scenarios of in

principle conceivable progressions of the transmission and other dynamics, which do

not allow for proper uncertainty assessment. These approaches are used to exam-

ine the impact of changing certain parameters in the system, e.g. social behaviour,

vaccination rate, etc. Nowcasting focuses on the precise description of the present

situation based on incomplete, noisy and/or systematically biased data about the

current state ([1], [2]). Forecasting tries to make predictions about the near future

providing policy makers with reliable estimates of advancing developments. Similar

to nowcasting, forecasting is strongly oriented towards realistic settings. The work

presented in this publication focuses on a near-future prediction and can therefore

be classified as forecasting.

1.1 The SPoCK Project

Figure 1 Schematic workflow of the SPoCK project The SPoCK project predicts the needed
hospital capacity of ICUs for COVID-19 patients. A key ingredient is the number of newly
reported cases from the RKI which also has to be predicted (indicated by blue box). Results are
used for visualization by the DLR and by decision makers, such as the BBK and RKI as well as
local and regional health authorities.

In Germany, local health authorities collect data about the infection dynamics on

population level as mandated by the Infektionsschutzgesetz (IfSG) and report it to

the national public health institute, the Robert Koch-Institut (RKI). In this paper,

We describe the fitting and short term forecasting of this quantity, i.e. the newly

reported cases of COVID-19 in Germany.

In a second step, which is not covered in this publication, the data about COVID-

19-specific occupation of beds in intensive care units which is collected and reported

daily by the DIVI Intensivregister run by RKI with support of the Deutschen In-

terdisziplinären Vereinigung für Intensiv- und Notfallmedizin (DIVI), is fitted and

forecasted by our cooperation partners. The results of the first step are utilized as a

predictor to obtain short-term future predictions on the level of intentsive care unit

(ICU) capacities. This two-step procedure is referred to as the Steuerungs-Prognose

von Intensivmedizinischen COVID-19 Kapazitäten (SPoCK) project. Several deci-

sion makers including the Federal Ministry of Health (BMG), the Robert Koch Insti-

tute (RKI), the Federal Office of Civil Protection and Disaster Assistance (BBK),
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the local planners of ICU capacities as well as the Bundesamt für Bevölkerungsschutz

und Katastrophenhilfe (BBK) incorporate these predictions into their risk assess-

ment of the current COVID-19 situation. In addition, the predicted incidences are

visualized on an interactive web application provided by the Deutsches Luft- und

Raumfahrtzentrum (DLR) called Pandemic Mapping and Information System for

Germany (panDEmis).

The workflow within the SPoCK project is depicted in Figure 1. In this paper, we

describe the daily analysis and prediction of incident cases of COVID-19 in different

regions in Germany which are, in addition to the entire country, the 16 federal states

(Bundesländer) and their 413 counties (Land- und Stadtkreise) summing to a total

of 430 regions.

2 Methods
A standard approach when describing infectious disease transmission are compart-

mental models or SIR-like models [3]. In general, both approaches divide the popu-

lation into subpopulations with disjoint properties. Transition rates allow for flows

between the subpopulations and define, in combination with the initial values of the

subpopulations, the time evolution of the system. The ordinary differential equation

(ODE) representation of the compartmental scheme we use is the well-known SEIR

model [4]:

Ṡ = −β(t) · I · S/N
Ė = β(t) · I · S/N −δ · E
İ = δ · E −γ · I
Ṙ = γ · I

(1)

with N = S+E+ I+R and where the dot notation is used to indicate time deriva-

tives. A special characteristic of the current pandemic is the massive political and

social reaction. In contrast to, e.g. the annual influenza season during which the

social and professional life used to proceed pretty much as usual, the COVID-19

pandemic has led to vast political interventions and personal restrictions aiming

mainly at the reduction of infections [5]. Within the SEIR scheme these changes

over time can be described by a time-dependent infection rate β(t). There are sev-

eral studies dealing with this problem in different manners. For example, at the

beginning of the COVID-19 pandemic the impact of different non-pharmacological

interventions (NPIs) was examined via step functions that implement β(t) via dif-

ferent variants of (smoothed) step functions, e.g. to examine the impact of different

NPIs [6, 7, 8, 9]. Often, these approaches are restricted to time ranges in which the

infection rate is assumed to be constant or monotonously decreasing or increasing,

respectively.

In contrast, we aim for a more general approach which enables the infection rate to

vary flexibly, i.e. to decrease and/or increase repeatedly within the considered time

range. This is necessary for an accurate description of the COVID-19 transmission

dynamics since it is influenced by many factors that may vary over the course of

the ongoing COVID-19 pandemics:

1 Various NPIs are implemented, repealed and reintroduced iteratively.
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2 The population’s compliance to regulative measures changes over time.

3 Seasonal effects, e.g. weather conditions, lead to changes in infection risk.

4 Mutations alter the physiological mechanisms underlying the disease trans-

mission and other aspects.

5 Vaccinations reduce the population’s susceptible fraction.

In order to fit a strictly positive and time-dependent infection rate simultaneously

with the SEIR model’s parameters, we introduce the following parametrization for

the infection rate:

β(t) = b · 1

1 + e−f(t)
, (2)

where the argument of the exponential function is given by an interpolating cubic

spline

f(t) = cubic spline
(
t, {τi, ui}i∈{1,...,n}

)
. (3)

We utilize joint estimation of input spline and ODE parameters as introduced for

biological systems in [10]. The composition of the interpolating spline (3) with

the logistic function (2) allows for a nearly arbitrary time dependence, while still

ensuring that the infection rate β(t) is strictly positive, smooth and restricted to

a maximal value b. The cubic spline curve is determined by estimated parameters

ui = cubic spline(τi) that represent its values at fixed and evenly spaced dates τi

for i ∈ {1, . . . , n − 2} which cover the time range of observed data. In our model,

the last two spline knots are placed after the date tLast of the last data point:

τn−1 = tLast + 50d and τn = tLast + 300d. The value un−1 is fitted to allow for some

flexibility in the most recent regime, whereas un = 0 is fixed for numerical stability

and reflecting the end of the pandemic in at least 300 days.

The predictions for the infection dynamics are primarily determined by the time-

dependent infection rate β(t). In general, assumptions for the future development of

β(t) are difficult to justify as many different factors contribute to it. For illustrative

purposes, several different assumptions could be made and visualised as done e.g. in

various online simulator tools [11]. For example, one such scenario study nicely

illustrates the effectiveness of a Test-Trace-Isolate strategy [12].

For a data-driven approach focused on short-term forecasts, we need to be more

practical: For extrapolation purposes, we fix

β(t > tLast) = β(tLast) (4)

i.e. we assume the infection rate to be constant starting from the day where the

last data point is reported.

2.1 Data-Driven Approach

Typically, there exist a multitude of model classes and structures which can be used

to describe the same phenomenon. However, it is generally not possible to transfer

results about estimated parameters between different models in a straightforward
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manner due to their differing mechanistic structures. To circumvent this problem, we

here rely on a purely data-driven approach meaning that no prior knowledge about

parameter values is incorporated into the optimization procedure. The only three a

priori fixed parameters are the initial number of individuals in the susceptible, the

exposed and the recovered state: Sinit, Einit and Rinit. Time point zero t0 is set to

the first day that has at least a total of 100 reported cases to ensure the well-mixing

assumption of ODE modeling. Sinit was set to the total population of the respective

region as given by the Federal Statistical Office of Germany [13]. Einit was set to

γ · Iinit/δ, which is motivated by the assumption that İ ≈ 0 at the beginning of

an epidemic reflecting a slow onset. Rinit is set to zero. The only remaining initial

occupation number Iinit is estimated from the data.

2.2 Link between Model and Observed Data

In order to calibrate the ODE model, it needs to be linked to the observed data.

The data we use for calibration is the daily incidence yi published by the reporting

date (Meldedatum) ti at the local health authority. Therefore, we introduce the

observation function

y(ti) = q · λD(ti) · (δ · E(ti) ·∆) , (5)

where the parameters can be interpreted as follows:

• q ∈ [0, 1] is the fraction of all infectious individuals that are detected and

reported.

• D(ti) ∈ {1, ..., 7} is an index for the weekday at date ti where {1, ..., 7} are

naturally identified with the weekdays W = {Monday, . . . ,Sunday}.
• λD is a factor for the weekday D that adjusts for the weekly modulation

occurring in the IfSG data (see 2.2.1).

• (δ · E(t) ·∆) approximates the influx into the state I(t) of equation (1). As

the considered data represents daily incidences, we set ∆ to 1 day. This ap-

proximation of the true incidence quantity
∫ t
t−1 δ ·E(t′)dt′ is exact if the state

E(t) remains constant within that day. Comparison with this exact but com-

putationally much more expensive approach showed minor deviations for real

data applications.

The observable function (5) connects the model’s predictions to the reported data.

The observations are assumed to scatter around this mean according to a normal

distribution:

yi = y(ti) + εi, εi ∼ N (0, σ2
i ) . (6)

As we are dealing with a count process we use the standard deviation inspired by

a Poisson model

σi = C ·
√

1 + y(ti) . (7)

The error parameter C is fitted jointly with all others.
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2.2.1 Weekly Modulation Factors

The IfSG data shows an oscillatory pattern with a period of one week. The main

reason for this is the reporting procedure, displaying a major delay during weekends,

instead of actual infection dynamics. Therefore, we account for this effect within

the observation function via seven weekday-specific factors λD with the integer

D ∈ {1, ..., 7}. In order to

1 guarantee that the factors λD essentially do not change the 7-day-incidence

and

2 separate the weekly modulation from a global scaling of the observation func-

tion, which is realized via the factor q,

we, furthermore, set the constraint that∑
D∈{1,...,7}

λD = 7 . (8)

As a consequence, we are left with six degrees of freedom to describe the weekly

effects. For a convenient implementation in the used software, we introduce a Fourier

series with six parameters Θweekly = {A1, A2, A3, φ1, φ2, φ3}:

ψ(t) = A0 +

3∑
k=1

Ak · cos (kωt+ φk) (9)

where offset and frequency are fixed to

A0 = 1, ω =
2π

7 days
. (10)

Instead of fitting the factors λD directly, we rewrite them in terms of equation (9)

as

λD =
ψ(D)∑7
j=1 ψ(j)

(11)

and calibrate the parameters Θweekly. Doing so allows to set the amplitudes A1, A2

and A3 to zero in order to get an adjusted curve that does not feature the weekly

oscillations and therefore reflects the ideal case of no reporting artifacts in the data.

2.2.2 Correction of Last Data Points

The IfSG data published on date tn contains information about the reported cases

at all past dates tn, tn−1, . . . , t1 since the beginning of reporting. However, due to

reporting delays between the test facilities, the local health authorities and the RKI,

the data update from date tn−1 to tn contains not only cases that were reported to

the local health authorities at date tn−1, but also before that at dates tn−2, tn−3, . . .

and so on. This means that the number of reported cases on day tn will be underes-

timated especially for the most recent dates. For some regions this correction factor

be as big as three for the most recent day.

Meaningful handling of this data artifact can be done in at least two ways: For

instance, one could choose to ignore some of the latest data points, since they are
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most prominently affected by this data artifact. An alternative is to estimate the

systematic deviation from historically published data sets. In order to avoid the bias

towards smaller incidences in the prediction, the data can be adjusted accordingly.

Therefore, one assumes, that the future data sets of tn will not change reported

counts older than four weeks tn−28. Let N t2
t1 denote the number of reported cases,

that were published at time point t1 to be reportedly infected at date t2 where

N t2>t1
t1 = 0 as future cases cannot be reported. Then, one can learn from this

history of published data sets the correction factor CFk

CFk =

∑
t̂N

t̂−k
t̂∑

t̂N
t̂−k
tLast

(12)

the initial publication of k day old counts had to be corrected to obtain the number

in the latest data set tn. The factors CFk can then be applied to the newest data

set.

This was done for Germany and all the federal states separately. We showcase the

resulting differences of these two data preprocessing strategies in section 2.4.2.

For the county level, this adjustment is not as crucial for two reasons: 1) the count

numbers are much lower, so the stochasticity can lead to wrong correction factors

and 2) the shape of the estimated dynamics is inherited from the federal states in

our model.

2.3 Parameter Estimation

In general, we follow the maximum likelihood estimation (MLE) approach. As there

are a total of 429 regions for which the data has to be fitted and predictions are

calculated, we rely on a two-step procedure to reduce computation time which is

described in the following paragraphs.

2.3.1 Federal States and Germany

The parameter estimation problem given by the above defined ODE model and the

IfSG daily incidence data is solved separately for Germany and each federal state

by an MLE approach. The latter has been well established for ODE models [14].

The deviation between data and the model’s observation function as specified in

equation (5) is minimized, taking into account the error model of equations (6)

and (7). The simultaneous parameter estimation of the spline parameters ui follows

the lines of [10]. In particular, no explicit regularization term is implemented that

penalizes non-vanishing spline curvatures.

2.3.2 County Level

Analysis at the rural and urban county level (Land- and Stadtkreise) is important

to obtain a spatially resolved picture of the infection dynamics in Germany. The

previously described approach is computationally not feasible because the analysis

of 429 regions cannot be performed within 24 hours without access to a sufficiently

large computing cluster which can be used 24/7 without queuing. Moreover, the

number of infected individuals can generally be so small at the county level that
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inference and prediction based on a purely deterministic model is not appropriate.

Therefore, we used the results on the higher-level administrative structure, i.e. the

fitted model of the federal state, as prior information about the dynamics, and

scaled it down to the county level for predictions.

More specifically, the county-level data was used to merely estimate two parame-

ters in a county-specific manner: the scaling parameter q from equation (5), which

in this context can be related to the proportion of current infections occurring in the

county c, and the error parameter C from equation (7) which quantifies the stochas-

ticity of county-level observations analogous to its meaning on the level of federal

states. All other parameter values for a county c are taken from the estimated set

of parameters Θ̂FS(c) for the corresponding federal state FS(c).

The county-level dynamics might change rapidly as new clusters of infection

emerge. For predictions, it is important that such rapid changes are detected by

the model calibration procedure, i.e. fitting of q and C has to account for such

rapid changes. We implemented this requirement by exponentially weighting down

the county level data observed in the past by increasing the standard deviations via

σ2
i ←−

σ2
i

wi
, wi = A ·

√
(exp (ti − tLast)/τ)

2
+ (wmin/A)

2
. (13)

Here, wmin = 0.01 · A denotes the minimal weight factor used for data observed in

the past. A = 7.56 denotes the normalization factor that ensures that the sum of

all weights wi is equal to one. Moreover, we chose τ = 7 as time-constant of this

weighting step. To be clear, on the county-level, σi from equation (7) should be

thought of as first being transformed according to the mapping (13) before entering

equation (6) as the standard deviation of Gaussian observation errors.

Just as the analysis for the federal states, the described scaling procedure for

the counties is updated on a daily basis, i.e. the county-specific parameters q and

C are updated every day. This accounts for time-dependent deviations of the local

infection history on the federal state level, i.e. each county has an individual kinetics.

2.4 Calculation of Uncertainties

To quantify the uncertainty in the predictions of the model, our forecasting tool

provides confidence intervals along with proposed predictions. Here, we describe

two main sources of uncertainties: parameter uncertainty and approach uncertainty.

The first is captured by simulating all parameter combinations that agree with the

observed data as will be explained in section 2.4.1, the second is incorporated by

running the analysis with several models as detailed in section 2.4.2.

2.4.1 Profile Likelihood Analysis

For non-linear models, uncertainties for estimated parameters can be determined

using the profile likelihood (PL) method which estimates parameter values that still

ensure agreement of model and data to a certain confidence level in a pointwise

and iterative manner [15]. This approach has been showcased for infectious disease

models [16]. Parameter uncertainties naturally translate to prediction uncertain-

ties which can be analyzed systematically [17]. Following the given references, we
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simulate the data-compatible parameter combinations from the parameter profiles

and then take the envelope of the resulting family of curves to obtain confidence

intervals.

One could also analyze the uncertainty of a model prediction directly via the pre-

diction profile likelihood method [18]. Prediction profiles need to be computed via

a costly iterative fitting procedure for each predicted quantity and time point sep-

arately. However, by using the parameter combinations from the profile likelihood

method, we can calculate uncertainties for any desired model quantities and time

points only by simulation, thus rendering this method more efficient for our pur-

poses.

2.4.2 Averaging of Approaches

When utilizing ODE models to describe certain aspects of reality, a multitude of

assumptions are implicitly made, which include (but are not limited to) the selected

model structure, the noise model of the data, the appropriate data preprocessing.

All these decisions result in a certain approach. These necessary decisions along

the modeling process impact the space of possibly described and therefore also pre-

dicted dynamics. To account for this origin of uncertainty, we perform the procedure

described so far simultaneously for several approaches and merge their results into

one comprehensive result. The latter is done by taking the mean / minimum /

maximum of the different approaches’ MLE / lower bound / upper bound curves.

Accounting for different modeling decisions prevents overconfidence in the results.

3 Results
Since April 2020, the described methodology has delivered daily predictions and the

ansatz has evolved and several changes and refinements have been implemented.

Currently, the resulting predictions for ICU bed capacity, which use the here pre-

sented results of estimated incidences as a main predictor, are reported bi-weekly

to public health decision makers. The presented methodology and results were gen-

erated on April 1st, 2021. The data fitted had therefore registered infections up to

March 31st, 2021.

3.1 COVID-19 Spread in Germany

For the aggregated data over all of Germany, we obtained a fit and predictions

with uncertainties as shown in Figure 2. The data can be described by the model.

Adjusting for weekday effects turned out to be beneficial and the prediction is a

reasonable continuation of the last data points. The most interesting model quan-

tity is the time-dependent infection rate β(t) which translates to an effective time-

dependent reproduction number R(t) = β(t)·S
γ·N . The latter quantifies how many other

people are infected on average by a single infectious individual and determines at

which rate the number of currently infectious individuals is growing (R(t) > 1) or

decaying (R(t) < 1). It should be noted that, despite the fact that β(t) is extrap-

olated as remaining constant (see equation (4)), R(t) is not necessarily constant.

This is because R(t) includes the monotonously decreasing susceptible density S(t)
N .

The estimated reproduction number R(t) oscillates around a value of 1 and il-

lustrates the effect of describing the politics’ countermeasures and the population’s
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Figure 2 Fit and prediction for Germany The incidence data of the entire time course is fitted
(panel a) to estimate all dynamic parameters including the time-dependent infection rate that
corresponds to R(t) (panel d). Predictions of incidences (panels b and c) and derived quantities
(panels e and f) for a zoomed in time span are shown. 95%-confidence intervals (color-shaded
areas) are inferred by profile likelihood calculation.

compliance to them (Figure 2, Panel (d)). This is in line with several publications

[9], [19], [20] reporting similar behavior of the reproduction number. In general, os-

cillations in dynamical systems often are attributed to a feedback with delay, which

is also the case here for the reproduction number R(t). Several additional quanti-

ties of interest, such as the 7-day incidence or the cumulative number of cases can

be computed from the model’s predictions. In addition, the associated confidence

intervals of these quantities can be determined using the parameter sets below the

95% threshold of likelihood profiles. We stress here again, that only the incidence

data was used for model calibration (Figure 2, Panel a).

3.2 COVID-19 Spread in Subregions of Germany

For the county-level (Landkreise) we obtain results by the scaling approach de-

scribed in section 2.3.2. The shape of dynamics is preserved and describes the latest

data. Due the exponential scaling on later data points, it is unlikely that the entire

time course is described well by the scaled dynamics. As we are primarily interested

in the forecast, we display only the latest time interval. The data is more noisy due

lower numbers of cases and inhabitants (Figure 3). Here, we show already merged

results for clarity (see section 3.3).
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Figure 3 Fit and prediction for one Bundesland and four counties. The dynamic of the one
exemplary Bundesland Baden-Württemberg (panel a) governs the dynamics of the corresponding
Landkreise, four of them are shown here (panels b through e). For regions with fewer inhabitants,
lower case numbers are expected: note the different scaling of the y-axis for Bundesland and
Landkreise.

3.3 Approach Averaging
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Figure 4 Merged Approaches for the example of Germany. The two approaches differ in their
data handling strategies for considering reporting delays: Approach 1 (panel a) simply ignores the
two latest data points. Approach 2, in contrast, uses estimated correction factors on the latest
data points (panel b). The result of the merging (panel c) indicates that both approaches describe
the data well, but make differing predictions. Therefore the resulting uncertainty is bigger than the
individual uncertainties. In general, this procedure generalizes to more different approaches.

The analyses can be carried out for different approaches representing a variety

of a priori equally feasible modeling strategies. To account for the uncertainty
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that arises from (possibly over-)simplifying modelling assumptions, those different

approaches are analyzed independent from each other. After results for all regional

entities, i.e. federal states (as in 2 and counties 3) have been obtained for each

approach, the results are merged into one comprehensive prediction, which features

by construction (see 2.4.2) a higher uncertainty, now including both the uncertainty

in the data and the uncertainty which modeling strategy is used. We illustrate this

for two different approaches which differ only in the handling of the most recent

data points (Figure 4). In general, this methodology generalizes to an arbitrary

number of different approaches with the available computing resources as the only

limiting factor.

3.4 Availability of Results

Figure 5 panDEmis visualization. On the interactive web application called panDEmis,
predictions for incidences, 7-day average, as well as cumulative cases can be inspected for all
subregions (panel a). The region can be selected through a map indicating all the regions (panel
b). For the chosen regional district, historic data sets and predictions can be selected and different
layers can be chosen for visualization (panel c). Additionally, key figures about the current
pandemic situation, such as incidences and ICU bed capacities are displayed for the selected
region (panel d).

Sound political or social decisions are based on an empirical or prognostic

foundation. To make the daily generated predictions available to various stake-

holders, the forecasts are integrated into a web-application called panDEmis: In

this interactive application, the recent infection situation is analyzed and dis-

played. For all registered users of the DIVI Intensivregister the tool is available

at https://pandemis.dlr.de/de/#/overview. Current capacities of hospital beds

and intensive care units, exposed population in the catchment areas of hospitals are

merged with the forecast data. The combined display of all available data sets al-

lows a situation picture for each day including also for past and future time steps.

Figure 5 shows different features of the web-application from May 17th, 2021 for

the occurrence of infection in the map entire Germany (panel b), as well as for the
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selected administrative district of Bayern (panel a). Here, the blue graphs represent

1) the daily reported new infections by RKI, 2) the incidence of COVID-19 cases

in the past 7 days per 100,000 people and 3) the cumulative infections. The prog-

nosis is displayed as red curve, including a 95% confidence interval. All data can be

interactively analyzed and visualized for different administrative units, i.e. federal

states and county level.

The results of this incidence modeling approach are also a main predictor for a

prediction analysis of ICU beds. The results of this second analysis step which is

not detailed within this paper, is available for all registered users of the DIVI Inten-

sivregister at https://www.intensivregister.de/#/aktuelle-lage/prognosen.

4 Discussion
Different model classes as ODE models or stochastic differential equation (SDE)

models with or without mixed effects could be used for a data-driven parameter

estimation approach. An SDE approach might be beneficial for small regions with

low infection numbers or during times with very low total infection numbers. In

these cases local outbreaks dominate the infection dynamics and the population

is not well-mixed which renders an ODE approach ineffective. For the presented

regional entities, the underlying assumptions for ODE modeling are reasonable and

the ODE model was successfully adapted. We here focused on a pragmatic procedure

that allows daily analysis and reliably calculates predictions.

When fitting data about the number of reported cases of an infectious disease out-

break, it is beneficial to fit incidences (or fluxes) instead of the total (or cumulative)

number of cases [21]. The residuals of a fit on cumulative data will be correlated

by construction. Most noise models assume independent measurement errors. Thus,

the uncertainty will be underestimated in these cases and obtained results will be

overly confident. By fitting the model to incidence data, the measurement errors

remain uncorrelated.

The presented modeling approach heavily relies on the time-dependent infection

rate β(t). We assume dynamic processes to be continuously differentiable which

leads to a smoothing of possible steps in the real infection rate which might occur

due to rapid policy changes. Also, the temporal change β(t) incorporates many

different mechanisms, which include but are not limited to: vaccinations, NPIs,

changes in compliance to NPIs, viral mutations, seasonality and testing frequency.

For an assumed constant vaccination rate, we saw that our approach delivers the

same results when omitting the explicit vaccination state since β(t) is flexible enough

to compensate the vaccination effect.

In general, it is a priori unclear how much flexibility this function should have. In

the presented procedure, this corresponds to the number of knots employed in the

spline. The spline’s freedom should allow for a good fit of the dynamics, but also

prevent overfitting.

Furthermore, the dynamics of the prediction are primarily determined by the

value of R(t) at the latest data point. Hence, this value should not be estimated by

too few data points meaning that the last spline knot should not be too close to

the end of the time series.

Any prediction model used for forecasting should not exceed a certain time period

as the future infection rate is hard to determine. But even at a short prediction
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time span, it is unclear how recent political measures and the population’s resulting

behavior will alter the future infection rate. Therefore, we assume β(t) to be constant

starting at the last data points. By additional precise knowledge about the effect of

planned or recently made political decisions or other effects like weather conditions,

this assumption could be further refined.

In contrast to other modeling approaches, we do not feed the actual NPIs into the

model, but can instead correlate the estimated time development in a second step

of the infection rate to NPIs. Quantifying the NPIs’ effect and time lag on R(t) is

difficult as most NPIs are not imposed or lifted independently of each other and

estimates will therefore be highly correlated [22].

Whenever discussing the required amount of flexibility to obtain a good model fit,

one should be aware of bias-variance-tradeoff: The introduction of more parameters

included to explain a certain time dependence (reducing the bias), the bigger the

resulting prediction uncertainty will be (increasing the variance). Similar arguments

can be made when discussing the amount of utilized spline parameters or accounting

for age structure. More available and consistent data can help.

There are no explicit states in our model to distinguish between recovered and

dead people, mainly for the reason that there is no reliable data over the entire

time course for those quantities. Recovered individuals are not tested to be non-

sick anymore, and people who died were not consistently assessed in real-time in

Germany.

Furthermore, the unobserved infected and infectious individuals are not in an ex-

plicit state. This fact is compensated by two aspects: Firstly, the used data does not

contain information about the duration from beginning of infectivity to reporting

to the local health authority. Thus, since the additional state would not help to

better describe the used data, it is omitted. Secondly, the factor q introduced in the

observation function in section 2.2 accounts for individuals that are overseen at all

times. The estimated dark figure from equation (5) when fitting only incidence data

is in the presented modeling approach in most regions compatible with a broad set

of values ranging from 0.1 to 1 within the confidence level. This means that any-

where between 10% to 100% of all cases are detected by local authorities and both

edge cases still agree sufficiently with the data. Therefore, the dark figure can not

be estimated solely based on reported incidence cases. For reliable determination of

the dark figure, additional testing in pre-specified cohorts is necessary.

5 Conclusions
We presented a data-driven ODE approach to fit and predict incidences of COVID-

19 cases for different subregions of Germany. The key ingredients in doing so are 1)

likelihood-based estimation and uncertainty quantification and 2) a time-dependent

infection rate which is estimated by utilizing a cubic spline. All parameters are es-

timated from data and uncertainty in parameter estimates are translated to predic-

tion uncertainty. As many different modeling assumptions will affect the outcomes,

we average over similarly plausible approaches to account for this source of uncer-

tainty. A major constraint for a feasible analysis strategy is a maximum runtime

of 24 hours as the analysis should be repeated on a daily basis in an automated

manner including the respectively newest data set.
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In the future, more work for validation of competing modeling approaches and

comparison of the various efforts undertaken in the currently highly dynamic field

of mathematical modeling of infectious diseases is needed and will certainly be seen.
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We thank Matthäus Lottes, Janina Esins and the team from DIVI Intensivregister at the RKI.

Also, we thank the RKI’s statisticians responsible for processing of the raw and routine data.

We thank Mario Menk, Steffen Weber-Carstens, Christian Karagiannidis, Uwe Janssens for fruitful discussions

during project planning and implementation.

Thanks to Rafael Aruntjunjan for critically revising the manuscript.

Author details
1Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg,

Stefan Meier Str. 26, 79104 Freiburg, Germany. 2Institute of Physics, University of Freiburg, Hermann-Herder-Str.

3, 79104 Freiburg, Germany. 3Centre for Integrative Biological Signalling Studies (CIBSS), Schänzlestr. 18, 79104

Freiburg, Germany. 4German Aerospace Center, Earth Observation Center, Münchener Str. 20, 82234 Weßling,

Germany. 5Institute for Geography and Geology, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074

Würzburg, Germany. 6Robert-Koch-Institute, Department for Methodology and Research Infrastructure, Nordufer
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