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Objective: Autism spectrum disorder (ASD) is a widespread neurodevelopmental condition
with a range of potential causes and symptoms. Children with ASD exhibit behavioral and
social impairments, giving rise to the possibility of utilizing computational techniques to eval-
uate a child’s social phenotype from home videos.

Methods: Here, we use a mobile health application to collect over 11 hours of video footage
depicting 95 children engaged in gameplay in a natural home environment. We utilize auto-
mated dataset annotations to analyze two social indicators that have previously been shown
to differ between children with ASD and their neurotypical (NT) peers: (1) gaze fixation
patterns and (2) visual scanning methods. We compare the gaze fixation and visual scan-
ning methods utilized by children during a 90-second gameplay video in order to identify
statistically-significant differences between the two cohorts; we then train an LSTM neural
network in order to determine if gaze indicators could be predictive of ASD.

Results: Our work identifies one statistically significant region of fixation and one significant
gaze transition pattern that differ between our two cohorts during gameplay. In addition, our
deep learning model demonstrates mild predictive power in identifying ASD based on coarse
annotations of gaze fixations.

Discussion: Ultimately, our results demonstrate the utility of game-based mobile health
platforms in quantifying visual patterns and providing insights into ASD. We also show the
importance of automated labeling techniques in generating large-scale datasets while simulta-
neously preserving the privacy of participants. Our approaches can generalize to other health-
care needs.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
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1. Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social
impairments, communication difficulties, and restricted and repetitive patterns of behavior.
Currently, 1 in 59 children in the United States have been diagnosed with ASD, with males
four times more likely than females to be affected.»?ASD usually manifests in infants and
children and presents a wide range of symptoms that vary in intensity from person to person.
The heterogeneity of ASD presents a major diagnostic challenge, with clinicians typically
employing a combination of lengthy parent questionnaires and clinical observation in order to
evaluate children.

Standard diagnostic mechanisms for ASD are often accompanied by a range of issues that
result in long waiting times for results.®® However, in recent years, significant strides have
been made in the fields of computer vision and mobile technology, giving rise to the possibility
of utilizing home videos of a child’s natural behaviors in order to identify characteristics linked
with ASD and enable a more accurate and timely diagnosis.®

We previously created a mobile application called GuessWhat, which yields video data
of children engaged in socially-motivated gameplay with parents in a natural home environ-
ment.” 2 The application presents a charades game, encouraging kids to act out a series of
given prompts, such as emotions, sports, or chores. During a game, parents will open the
GuessWhat application and place the smartphone on their foreheads, with the front-facing
camera pointing at the child; the child then proceeds to act out the prompt displayed on the
device, while the parent attempts to predict the answer (Figure 1). The game ends when the
90-second time limit is exceeded. At this point, the parent can view the video recording of the
child and is then given the option to share this data with our research team.

b

(a)

Fig. 1. GuessWhat Mobile Application. (a) The parent places the mobile phone in a fixed location,
allowing for the generation of a semi-structured video of gameplay. (b) The children are presented
with a variety of charades prompts, such as emotions and animals.

The data collection pipeline employed by GuessWhat provides a number of benefits that
make the obtained information amenable to computational analysis. First, although children
are performing varied tasks in diverse environments, GuessWhat videos contain some inher-
ent structure, with factors such as the position of the phone camera, the location of the child
relative to the camera, and the game-based social interaction between the parent and child
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remaining generally consistent between videos. In addition, since children are in a home envi-
ronment and are unencumbered by bulky hardware such as eye trackers or head mounts, they
can interact with their parent and their surroundings in a natural manner. As a result, we
hypothesize that computer vision algorithms can be designed to monitor socially-motivated
facial engagement in children during gameplay, allowing effective identification of behaviors,
eye contact events, and social interactions potentially correlated with the ASD phenotype.

In this work, we utilize computational techniques to analyze these videos and identify
differences in social interaction between children with ASD and neurotypical (NT) children.
We specifically focus our analysis on two common social engagement signals that are included
in standard clinical diagnostic instruments and can be identified through computer vision
methodologies: (1) gaze fixation patterns, which represent the regions of an individual’s visual
focus, and (2) visual scanning methods, which refer to the ways in which individuals scan
their surrounding environment. We perform these tasks without sharing participant videos or
private patient information with human annotators.

Ultimately, the development of this system can help improve diagnosis of ASD through
automated detection of impaired social interactions, mitigating the problems associated with
limited diagnostic resources for neurodevelopmental disorders, especially in regions where
access to care is limited.'® This work also demonstrates the utility of game-based approaches
and automated labeling methods in preserving privacy, generating large diagnostic datasets,
and improving human understanding of complex conditions.

2. Background

Researchers have demonstrated the utility of video data in providing diagnostic insights into
gaze and engagement behaviors associated with ASD. Prior work can generally be divided
into three categories: (1) manual annotation methods, (2) eye-tracking systems, or (3) use of
structured environments.

Manual Annotation Methods

Some studies have utilized human annotators to label social interaction and engagement in-
formation in video frames. Several prior works, such as those by Tariq et al. and Leblanc et
al, performed manual annotation of behavioral features in home videos, which enabled the
creation of classifiers that could identify ASD with high accuracy.'*!® Chorianopoulou et
al. collected structured home videos from participants and had expert annotators label the
dataset with the actions, emotions, gaze fixations, utterances, and overall level of engage-
ment in each video; this information was then used to train a classifier to identify specific
engagement features that could be correlated with ASD.?° Rudovic et al. trained a large and
generalizable neural network to estimate engagement in children with ASD from different
cultural backgrounds.?! Engagement labels were manually annotated by trained individu-
als. Although these methods enable the creation of human-vetted, accurate datasets, such
approaches require large numbers of trained annotators when implemented at scale, which
is both expensive and time-consuming. In addition, these techniques may compromise the
privacy of participants by providing annotators with access to video footage, although some
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methods have been developed to address privacy concerns with crowdsourced annotations.?%23

FEye-Tracking Systems

A number of studies have utilized eye trackers to identify patterns in gaze and engagement
behaviors that may be indicative of ASD or other developmental conditions.?* 2" Pusiol et
al. showed that deep learning models trained on data collected from a head-mounted eye-
tracker and camera could be utilized to perform classification of idiopathic developmental
disorder and fragile-X syndrome with high precision.?® Similarly, Riby et al. used eye trackers
to show that individuals with ASD had atypical gaze patterns when watching movies and
cartoons.?? In an effort to counteract artificial movements often associated with facial eye
trackers, Noris et al. developed a non-intrusive eye-tracking device mounted on a hat that
recorded a child’s interactions with an interviewer; the study concluded that children with
ASD were more inclined to look downwards during social interaction than their NT peers.?’
Despite the accuracy and quality of gaze data collected from such systems, eye trackers require
custom hardware that can often be expensive and inaccessible, especially for individuals living
in resource-limited regions. As a result, these approaches are unlikely to scale to the general
population.

Use of Structured Environments

A study by Hashemi et al. explored the use of computer vision algorithms to identify behav-
iors associated with ASD.3! A trained clinician administered a series of pre-defined, structured
tasks involving toys and other visual stimuli, while a video camera captured footage of the
child’s response. A computer vision system that analyzed the child’s body orientation and
facial movement was able to evaluate the child’s engagement with high accuracy. Similarly, a
study by Chang et al. used the front-facing camera of a mobile device to capture gaze scan-
ning patterns as children watched strategically-designed short movies.?? Automated computer
vision techniques were then utilized to identify differences in gaze patterns between children
with ASD and neurotypical individuals. Both studies demonstrate effective methods for an-
alyzing engagement patterns without the use of manual annotations or external eye-tracking
hardware; however, both were conducted in clinical settings with highly-structured tasks and
controlled environmental factors (for example, room lighting and distance of the camera from
the participant’s face were fixed). As a result, the ability of these techniques to translate to
natural non-clinical environments and unstructured tasks remains to be explored.

Our Contributions

To the best of our knowledge, this is the first study that attempts to obtain diagnostic insights
into ASD from mobile phone videos without the use of eye-tracking hardware, manual frame-
level annotations, and structured clinical environments. We show that semi-structured home
videos collected on mobile devices reveal specific regions of gaze fixation as well as visual
scanning patterns that differ between individuals with ASD and neurotypical children during
gameplay. With further research and development, our system can be deployed as a diagnostic
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tool in diverse settings at scale.

3. Methods

3.1. Data Collection

We utilized the GuessWhat mobile application to collect 449 videos of children engaged in
gameplay with a parent. The participants range in age from two to fifteen and include 68
children (15 females, 53 males) who have been diagnosed with ASD as well as 27 NT children
(9 females, 18 males). Each child contributed a mean of 4.7 videos (standard deviation of
7.3), resulting in a total dataset size of 1,084,267 individual frames and 11.1 hours of footage
(Figure 2). All parents involved in the study consented to share their videos with our research
team and completed a survey to provide the age, sex, and diagnostic status of their children.
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Fig. 2. Dataset Information. These graphs show the breakdown of our dataset by age, diagnosis,
and sex. One NT male in our dataset failed to provide his age and has been excluded from this figure.
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3.2. Data Preprocessing

Although the semi-structured format of our video dataset presents numerous advantages,
home videos are naturally heterogeneous in quality; this results in a number of challenges that
must be addressed prior to computational analysis. Specifically, excessive camera movement
and poor lighting conditions render some frames in our dataset too blurry for use. Also,
other adults or siblings would often join in gameplay, resulting in multiple faces in the frame
that make identification of the participating child challenging. Another major challenge arises
from the lack of fine-grained annotations and ground truth labels; although the lack of eye-
tracking hardware enables natural child motions and interactions, this also results in a lack of
calibration information for obtaining accurate gaze locations.

We began our analysis with extensive quality control and data pre-processing. In order to
preserve privacy, we annotated our dataset solely through the use of computational methods.
We first utilized Amazon Rekognition, a powerful off-the-shelf computer vision platform de-
veloped by Amazon, to perform noisy labeling of key features in each still frame, including
thirty facial landmarks and facial bounding boxes. Frames with zero or greater than two faces
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were removed from the dataset. We then used an open-source facial landmark annotation
platform called OpenFace to obtain automated estimates of gaze directions.?*3* Each frame
with an identifiable face was assigned a coordinate pair (z,y) representing the direction of the
individual’s gaze. The value of z ranges from -1 (indicating a leftward gaze) to 1 (indicating
a rightward gaze); similarly, the value of y ranges from -1 (indicating a downward gaze) to 1
(indicating an upward gaze) (Figure 3). Since these coordinates were assigned with respect to
the smartphone camera, a frame in which an individual is gazing straight ahead into the cam-
era is assigned a coordinate pair of (0,0). If the OpenFace model demonstrated low confidence
in gaze estimation values (defined as confidence below 75%) as a result of occluded eyes or
insufficient image quality, the frame was removed from the dataset; as a result, we expect the
final annotations to be of high quality, but the presence of some noise and incorrect labels is
to be expected. This procedure resulted in a total of 619,620 annotated frames, representing
520,536 frames from children with ASD and 99,084 frames from NT children.
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Fig. 3. Gaze Annotations. (a) Gaze coordinates range between -1 and 1 on both the x-axis and
y-axis. (b) In order to categorize gaze coordinates into discrete regions, we divided the gaze map into
sixteen buckets. Each area of interest (AOI) is labeled with corresponding row and column letters.

Finally, in an effort to discretize gaze annotation data, we divided the coordinate map into
16 distinct areas of interest (AOIs), as shown in Figure 3. All gaze coordinates that fall within
the bounds of a particular AOI are grouped together. Such an approach allows us to identify
trends in an individual’s gaze fixations and scanning patterns.

3.3. D:ifferential Pattern Analysis
3.3.1. Gaze Fixation Patterns

Gaze fixation, which occurs when one’s gaze is held on a single target for an extended period
of time, plays an important role in social interaction by signaling communicative intent and
enabling interpersonal relationships. In a dyadic social interaction, individuals usually fixate
their gaze on the target’s eyes. However, individuals with ASD often face difficulty with
maintaining eye contact and instead tend to focus their visual attention on other regions of
the target’s face. Several studies involving eye trackers and visual stimuli have shown that
children with ASD tend to fixate on the mouth or other body parts; this has even been
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observed in children as young as two to six months of age who were later diagnosed with
ASD.3537 Eye contact avoidance, which is explicitly examined in standard clinical diagnostic
examinations, can result in decreased facial identification and social engagement.

In order to determine the gaze fixation patterns of individuals during a single 90-second
game, we utilized the coarse gaze annotations obtained from our preprocessed dataset. For
each video in our dataset, we computed the percentage of time that the child fixated his or
her gaze on each of the sixteen pre-defined AOIs. A two-sided permutation test was utilized at
every AOI to identify statistically significant differences between the ASD and N'T populations,
with the null hypothesis that the fixation times for both populations followed an equivalent
distribution; we calculated the difference in mean fixation times for 100,000 rearrangements
of the two groups. Bonferroni correction was applied to account for multiple hypothesis tests.
It is important to note that since AOIs are correlated, the Bonferroni correction is extremely
stringent and will reduce the likelihood of Type 1 errors.

3.3.2. Visual Scanning Patterns

Humans tend to transition their gaze between various objects in their environments when en-
countering visual stimuli, a phenomenon called visual scanning. The patterns and frequencies
with which humans scan their surroundings can provide insight into how individuals process
the world around them. In the context of social interaction, prior research has shown that in-
dividuals with ASD vary in the way that they scan a target’s facial landmarks during a social
scenario, which may contribute to difficulty with interpreting emotion or nonverbal cues. This
was shown by Pelphrey et al., who demonstrated that when presented with images of faces,
NT individuals typically transitioned their gaze between core features, such as the eyes and
nose, while individuals with ASD appeared to scan non-feature areas of the face, such as the
forehead and cheeks.?® A similar study conducted by Chawarska and Shik on toddlers corrob-
orated these findings, providing evidence of atypical scanning patterns in children with ASD
when compared to their age-matched NT peers.?® Understanding these patterns can reveal
differences in the way that individuals with ASD process visual stimuli and interact in social
situations.

Modeling gaze transition patterns as a graph problem can provide insight into the regions
that children focus on while scanning their environments.*® For each 90-second video of game-
play, we constructed a network consisting of sixteen nodes naa,nag,...,npc,npp, with each
node representing a predefined AOI. When a child shifts his or her gaze between locations on
the 16-AOI gaze map, an undirected edge e = (n;, n;) is drawn between the two corresponding
nodes. Edges are weighted by the number of transitions that occur during the game. The
graph can then be converted to a 16 x 16 adjacency matrix (Figure 4).

We computed adjacency matrices for all gameplay videos and normalized each matrix by
dividing each entry by the total number of transitions. Then, we compute the average of all
matrices associated with the N'T individuals in our dataset, allowing us to obtain a single 16
x 16 matrix depicting the mean percentage of transitions occurring between each pair of AOIs
in a single game. This process was repeated for the gameplay videos associated with the ASD
cohort. Two-sided permutation tests were conducted at each location in the transition matrix
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Fig. 4. Graph Model of Gaze Transitions. We modeled the gaze transitions in each gameplay video
as a graph, which was then used to generate a 16 x 16 adjacency matrix.

in order to determine if there were significant differences in transition types between the two
groups.

3.4. Deep Learning Model

Next, we utilized deep learning techniques to measure the predictive power of gaze fixation
patterns. We began by formulating an approach to convert fixation data points into feature
matrices that can serve as input to our classifiers. We first extracted the sequence of gaze
coordinates from each video using the coarse annotation procedure described in the previous
section. This resulted in a vector of n ordered pairs (z,y) for every video, where n represents
the number of valid frames in the video and z and y are gaze fixation coordinates ranging
from -1 to 1. We then matched each ordered pair with its associated AOI, as demonstrated
in Figure 3. This yielded a vector of n AOIs, representing the regions of the gaze map that
each individual fixated on during the course of a game. Next, each of the sixteen pre-defined
AOQOIs was assigned a number from 0 to 15 in alphabetical order, with 0 representing AA and
15 representing DD; this formed a vector of n integers, which we will refer to as v.

We utilized a sliding window approach to divide v into separate vectors using two pre-
defined parameters: window and shift. The window parameter w represents the number of
frames included in a single feature vector; in our experiments, this value ranged from 50 to
500 frames, which roughly corresponds to 2 to 20 seconds of video content. The shift parameter
s defines the number of elements by which the window slides between feature vectors, and we
experimented with shift values between 10 and 100. These parameters allowed us to extract
feature vectors from v consisting of w elements, with vectors separated by exactly s frames;
note that if s < w, vectors will contain overlapping elements. Finally, we converted each w-
vector into a w x 16 feature matrix, with each AOI integer encoded by a one-hot vector. A
demonstrative example is shown in Figure 5.
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Fig. 5. Gaze Fization Feature Representation. In this demonstrative example, we begin with a
video consisting of 9 frames. Gaze coordinates are matched with corresponding AOI regions. Using
a window of 4 and a shift value of 2 divides vector v into three feature vectors. Each feature vector
is then one-hot encoded. All input feature matrices are assigned the same label.

We then utilized deep learning models to determine if gaze fixation patterns could be
predictive of ASD. We assigned 324 videos (275 ASD, 49 NT) in our dataset to the training
set, 71 videos (62 ASD, 9 NT) to the validation set, and 54 videos (43 ASD, 11 NT) to the
held-out test set, ensuring that all videos corresponding to a single child were assigned to
the same set. Input feature matrices were constructed using the approach described above. A
binary label I € {0,1} was assigned to each matrix to represent the diagnosis of the child in
the associated video, with 1 representing the presence of ASD.

In order to exploit the temporal nature of our dataset, we utilized long short-term memory
(LSTM) networks, which are a type of recurrent neural network that can model long-term
dependencies. A w x 16 feature matrix served as input to an LSTM model with w cells; each cell
accepted a one-hot encoded 16-vector as input. We used the Adam optimizer with a learning
rate of 0.001, a batch size of 5, and a weighted binary cross-entropy loss function. The last
cell of the LSTM network was connected to a fully-connected layer with a single-class output
followed by a sigmoid non-linearity; this resulted in a final value ranging between 0 and 1.
This value was rounded to the closest integer to determine the final prediction (Figure 6).
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Fig. 6. Model Architecture. The model consists of an LSTM network with w cells. Each cell accepts
a one-hot vector of size 16, represented in the figure by x;, and outputs a cell state ¢; and a hidden
state h;. The final cell is connected to a fully-connected layer, which generates a single class output.
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Finally, in order to characterize model performance, we report four metrics: macro-averaged
(M-A) recall, macro-averaged (M-A) precision, weighted-average (W-A) recall, and weighted-
average (W-A) precision. Since our dataset exhibits class imbalance with cases outnumbering
controls, these metrics provide the most accurate representation of model performance. Macro-
averaged statistics compute the arithmetic mean of performance on each class, while weighted-
average statistics compute the weighted mean. We performed all parameter experimentation
on our validation set and evaluated our final best-performing models on the held-out test set.

4. Results
4.1. Gaze Fixation Patterns Differ Between ASD and NT

We first analyzed gaze fixation patterns in order to determine if regions of focus differ between
children with ASD and NT children during a single 90-second game. Coarse gaze annotations,
which were obtained using the automated labeling procedure described in the Methods section,
were grouped into sixteen areas of interest (AOIs), and the percentage of time that the child
fixated on each region was computed. Figure 7 shows the mean percentage of time that the
ASD and NT cohorts fixated on each AOI during a game. As shown by the heatmaps, children
mostly fixated on the four central locations BB, BC, CB, and CC, which are located closest
to the camera of the mobile phone. The distributions show that a number of differences exist
between the two populations; children with ASD were most likely to fixate on locations BB
and CB, while N'T children spent the majority of the 90-second game focusing on locations BB
and BC. We conducted a two-sided permutation test at each AOI with 100,000 permutations
of the data, setting a Bonferroni-corrected significance threshold of 0.0031 in order to account
for the sixteen hypothesis tests. A significant difference in fixation distributions between the
two cohorts was observed at location BC (p = 0.00015) (Figure 7).

4.2. Visual Scanning Patterns Differ Between ASD and NT

Next, we utilized graph methods to analyze the ways in which participants scanned their
environments during gameplay. We modeled the gaze transitions in each gameplay video as
a network and computed the mean adjacency matrices for the ASD and NT populations,
which are shown in Figure 8; a cell of the matrix in row ¢ and column j represents the mean
percentage of gaze transitions in a single 90-second game that occur between AOI i and
AOI j. We conducted permutation tests with 100,000 permutations at each of 61 nonzero,
unique locations in the adjacency matrices; since the matrix is symmetric, the distributions
for each distinct transition pair were tested for significance exactly once. We then utilized
a Bonferroni-corrected significance threshold of 0.0008 in order to account for 61 hypothesis
tests. Our results showed a significant difference exists in the percentage of gaze transitions
between regions BB and BC (p = 0.00011). As shown by the heatmaps in in Figure 8, 9.4%
of the gaze transitions made by an individual with ASD occur between BB and BC; however,
for NT children, 13% of the gaze transitions made during a 90 second game occur between
BB and BC (Figure 8).
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percentage of time that an individual fixated his or her gaze on each AOI. The bar charts and box
and whisker plots show the distribution of fixation times across all videos.
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Transition Heatmaps. These heatmaps show the percentage of gaze transitions that

4.3. Gaze Fixation Patterns Provide Mild Predictive Power

We measured classification performance of models trained on gaze fixation patterns. Gaze
fixation coordinates were encoded as one-hot vectors and passed as input to an LSTM network,
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which generated a single-class output representing the likelihood of ASD. LSTM models were
trained with a range of window and shift parameter values and evaluated on the validation
set. Our results from the validation set allowed us to identify our top three models, which
were trained with parameters (1) w = 100, s = 10, (2) w = 200, s = 10, and (3) w = 500, s = 10.
These networks were then evaluated on the held-out test set; results are shown in Table 1.
The model with parameters w = 100 and s = 10 demonstrated the best performance. Macro-
averaged statistics are lower than weighted-average statistics, suggesting that the accuracy of
prediction differs between the two classes. In summary, the results suggest that gaze fixation
patterns can provide mild predictive power.

Table 1. Classifier Performance on Held-Out Test Set with Gaze Fization Features.
Precision and recall values for an LSTM model trained with the window w and shift s
parameter values that achieved the best performance on the validation set.

Window (w) Shift (s) M-A Recall M-A Precision W-A Recall W-A Precision

100 10 0.598 0.595 0.656 0.661
200 10 0.561 0.577 0.662 0.635
500 10 0.576 0.577 0.625 0.624

5. Discussion

In this study, we utilized computational techniques to analyze home videos and obtain di-
agnostic insights into ASD. We collected a large dataset of semi-structured videos featuring
children engaged in gameplay with a parent, and we analyzed two key markers of social en-
gagement that have been shown to differ between children with ASD and their neurotypical
peers: (1) gaze fixation and (2) visual scanning. For each marker, we identified statistically
significant differences between the two cohorts and demonstrated that this information could
be useful in identifying the presence of ASD.

Our study demonstrates the potential that mobile tools hold for quantifying visual patterns
and providing insights into ASD. Despite the presence of high heterogeneity and varied quality
in our dataset, the automated labeling techniques and deep learning classifiers utilized in
this work were able to extract usable signal and identify differences in gaze fixation and
visual scanning patterns between the two cohorts. These methods also enabled us to preserve
participant privacy by avoiding the use of human annotators. Our results suggest that social
and visual engagement differences exist between individuals with ASD and NT individuals
and that this variation can be identified through the use of mobile tools.

This work has some limitations. First, due to class imbalance in our dataset, the pre-
dictive accuracy of ASD differs from that of control individuals; this is reflected in Table
1, which shows variation between macro-averaged statistics and weighted-averaged statistics.
Additional dataset augmentations will be necessary to correct this issue in the future. In ad-
dition, due to camera motion and variation in the location of the smartphone relative to the
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parent’s face, the gaze fixation maps are difficult to qualitatively interpret, and AOIs cannot
be definitely matched to a parent’s specific facial regions.

6. Conclusion

Overall, this study demonstrates the utility of game-based mobile applications and heteroge-
neous video datasets in aiding in the diagnosis of ASD. With further research and development,
the system described in this work can ultimately serve as a low-cost and accessible diagnostic
tool for a global population.

Data Availability: In order to protect participant privacy, raw videos are not made publicly
available at this time.
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