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Abstract 

The implementation of Electronic Health Records (EHR) in UK hospitals provides new 
opportunities for clinical ‘big data’ analysis. The representation of observations routinely 
recorded in clinical practice is the first step to use these data in several research tasks. 
Anonymised data were extracted from 11 158 first emergency admission episodes (AE) in 
older adults. Irregular records from 23 laboratory blood tests and vital signs were normalized 
and regularised into daily bins and represented as numerical multivariate time-series 
(MVTS). Unsupervised Hidden Markov Models (HMM) were trained to represent each day of 
each AE as one of 17 state spaces. The visual clinical interpretation of these states showed 
remarkable differences between patients who died at the end of the AE and those who were 
discharged. All states had marked features that allowed their clinical interpretation and 
differentiation between those associated with the patients’ disease burden, their 
physiological response to this burden or the stage of admission. The most evident 
relationships with hold-out clinical information were also confirmed by Chi-square tests, with 
two states strongly associated with inpatient mortality (IM) and 12 states (71%) associated 
with at least one admission diagnosis. The potential of these data representations on 
prediction of hospital outcomes was also explored using Logistic Regression (LR) and 
Random Forest (RF) models, with higher prediction performance observed when models 
were trained with MVTS data compared to HMM state spaces. However, the outputs of 
generative and discriminative analyses were complementary. For example, highest ranking 
features of the best performing RF model for IM (ROC-AUC 0.851) resembled the laboratory 
blood test and vital sign variables characterising the ‘Early Inflammatory Response-like’ 
state, itself strongly associated with IM. These results provide evidence of the capability of 
generative models to extract biological signals from routinely collected clinical data and their 
potential to represent interpretable patients’ trajectories for future research in hypothesis 
generation or prediction modelling. 
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1. INTRODUCTION 

The National Health Service (NHS) provides medical care to 66 million UK residents from 
‘cradle to grave’ and is undergoing digital transformation. This is presenting opportunities to 
improve the delivery, quality and safety of healthcare [1,2] and the research potential of real 
world healthcare data is well recognised [3,4]. However, although key descriptors of inpatient 
clinical activity, such as procedure or diagnostic codes, have been available for some time 
[5], hospital records have been largely, digitally inaccessible. Thus, inpatient treatment 
decisions and service developments have not benefited from research using the wealth of 
routinely collected healthcare data available. 

The implementation of Electronic Health Records (EHRs) in NHS hospitals heralds an 
opportunity to address this. Comprehensive real-time clinical information is recorded for 
every patient from admission to discharge. This generates large and detailed datasets, with 
thousands of data pertaining to thousands of patients collected and stored every day. 
Machine Learning (ML) can unlock the research potential of this ‘big data’ by unravelling 
hidden relationships within its large and complex structure. In selected settings, hospital 
EHRs have already been used to explore how ML could augment development of stratified 
medicine, automated medical image analysis, and the prediction of clinical diagnoses and 
outcomes [6–9]. 

This potential for ML to transform healthcare delivery [10] has not yet been realised. Ethical 
and legal guidance, balancing the benefits of using routinely collected healthcare data for 
research against potential harm through breaches in patient confidentiality, is evolving. Data 
security can limit access to and sharing of data for ML, and data quality varies across 
organisations and according to the parameter [11,12]. Data are collected with the primary 
purpose of supporting clinical care and different mechanisms for entering information can 
complicate data extraction. Additionally, datasets often contain heterogeneous entries. Not 
only is there unstructured, semi-structured and structured data, even amongst structured 
numerical variables there is variation in scale, frequency, regularity and completeness. 
Therefore, generation of a research ready dataset from hospital EHRs requires clinical, 
technical, ethical and information governance expertise.  

Numerical time-series data, such as commonly measured laboratory blood tests and bedside 
vital signs, is a sub-group of hospital EHR data that presents a rich longitudinal account of 
patients’ metabolic and physiologic profiles throughout an admission. However, given the 
irregularity and heterogeneity in these data it is not clear how data should be optimised for 
ML analyses. Although different ML techniques require different degrees of feature 
engineering [13], most ML methods benefit from an intermediate, regularised representation 
of the raw data, with this representation used as input data to train prediction models [14–
16]. A particular task in real world data is how to handle missing entries. While some ML 
techniques can handle missing data implicitly in their scheme, most of them require a 
complete dataset and, therefore, an imputation step prior to model training. The 
missingness, distribution and normalisation of these data in general inpatient populations is 
also infrequently studied, partly because there are few publicly available hospital EHR 
datasets. The ‘Medical Information Mart for Intensive Care’ database is a notable exception, 
but  focuses on intensive care patients only [17]. Furthermore, some approaches ignore test 
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values and only include the occurrence of a test, reflecting a previous reliance on code 
based representations of EHR data [8].  

Representations of EHR data are usually evaluated on prediction tasks and by the 
performance of ML models, measured by metrics such as recall and precision [9,18,19]. 
However, clinicians often want to evaluate associations between features and outcomes to 
make hypotheses about causal pathways. This is hard to do from ML models, which by 
design have been developed to maximise prediction, and this ‘black box’ of ML limits the 
clinical translation of research findings [14,20,21]. Successful representations of EHR data 
need to address the interpretability of ML models as well as their performance on prediction 
tasks. Additionally, less emphasis has been placed on simply exploring hospital EHR data, 
and thus the inherent variation in patient populations, which will also be of value to clinicians 
trying to understand relationships between health determinants and outcomes or disease 
clusters. 

Considering this current landscape, we formed a collaboration between clinicians, data 
scientists, research governance experts and clinical informatics specialists. Our shared aim 
was to extract comprehensive, anonymised, high quality data from an EHR at a tertiary care 
NHS hospital and analyse it for exploration of the inherent variation in the dataset and 
certain straightforward prediction tasks. We focus on data from older adult inpatients 
admitted as an emergency under any hospital specialty. Older adults place a 
disproportionately high demand on emergency inpatient services [22] and relatively modest 
gains in healthcare delivery and effectiveness can have large system wide effects. We aim 
to develop methods of representing hospital EHR data from this heterogenous inpatient 
group for ML analyses, particularly exploring pre-processing approaches that work across a 
range of modern and classical ML methods. We also explore the interpretable representation 
of inpatient trajectories, derived from irregular time-series numerical data including 23 
commonly measured laboratory blood test and vital sign values. Thus, our main goal is to 
use generative, unbiased ML techniques (Hidden Markov Models), which make only broad 
assumptions of the data, and to compare the outcome of these models to hold-out clinical 
diagnoses and outcome information for clinical interpretation. We also evaluate the potential 
of these representations as input variables for hypothesis driven discriminative models, pre-
registering our hypotheses explicitly using the Open Science Foundation scheme 
(https://osf.io/6zp3d).  

2. METHODS 

2.1. Collaboration 

The primary collaboration was between clinician scientists at Cambridge University Hospitals 
NHS Foundation Trust (CUHNFT), and technical experts in artificial intelligence at the 
European Molecular Biology Laboratory’s European Bioinformatics Institute (EMBL-EBI). 
This collaboration was supported by Clinical Informatics and Research Governance experts 
at CUHNFT. 
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2.2 Ethics 

The project was approved by the NHS Health Research Authority (HRA) (IRAS: 253457), 
North East – Newcastle & North Tyneside 1 Research Ethics Committee (REC) (REC 
reference: 19/NE/0013) and by the EMBL Scientific Advisory Committee (BIAC). 

2.3 Data 

Data from all patients aged 65 years or older admitted to Addenbrooke’s Hospital as an 
emergency between January 2015 and December 2019 were retrieved by the hospital’s 
Clinical Informatics team from the Epic EHR system introduced in October 2014. 
Supplementary Table 1 summarises the variables retrieved and the anonymisation process, 
which was developed by clinical and research governance experts. In brief, patients were 
characterised by five-year age groups, sex, month of admission, hospital admission and 
discharge service, clinical frailty scale (CFS) score [23], disease phenotype information at 
admission and discharge (top-level ICD-10 category class), laboratory blood test results 
(comprised of clinically relevant and commonly requested tests), bedside vital signs 
(indicative of a patient’s physiological status and illness acuity), length of inpatient stay and 
clinical outcomes of the admission episode (AE) including: discharge alive (DA), inpatient 
mortality (IM, referred to as Inpatient Death [ID] in multiclass outcome analyses), 30-day 
post-discharge readmission (PDR), post-discharge readmission and 30-day post-discharge  
mortality (PDRM) and 30-day post-discharge mortality (PDM). 

2.4 Data transfer and access 

A bespoke data sharing agreement was established between CUH and EMBL-EBI. 
Anonymised data was uploaded to a private and password protected STP site hosted by the 
EBI server and stored using electronic protection from UNIX security models. Data is shared 
through a dataset specific UNIX group and all individuals granted access to the data receive 
internal training and acknowledge their responsibilities before being granted access to the 
data. The lead technical and clinical analysts also hold honorary contracts with CUHNFT and 
EMBL-EBI respectively. No data is stored outside of the controlled, project storage volumes 
at EMBL-EBI. 

2.5. Pre-processing: data cleaning, normalization, and regularization for 
time-series numerical data 

23 different variables denoted laboratory blood test results (17/23) and vital signs (5/23). 
Data were first normalized for each variable using inverse rank normalization (IRN) to reduce 
the impact of outliers without having to define maximum or minimum reference levels. We 
defined 24-hour bins running from midnight to midnight and aimed to select a unique 
observation for each lab test or vital sign in each daily bin. Blood tests are not often 
measured more than once per day but if multiple observations were recorded on the same 
day, the earliest record was selected as the unique value. The time the blood sample was 
taken from the patient was defined as the ‘reference time’ for each daily bin for each patient 
and the closest vital sign measurements to this reference time were selected, since vital 
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signs are usually measured several times per day. Observations not recorded for a given 
daily bin were considered ‘missing observations’. Values for laboratory tests were also 
discarded if the sample collection time was recorded as later than the time test results were 
reported, if they contained non-numeric symbols, or were duplicate entries. Point-of-care 
(POC) and non-POC results for the same laboratory test were considered as the same 
variable, although it is recognised that the laboratory procedures are different. A similar 
process of data cleaning and normalisation was conducted for vital signs. 

 

 
Figure 1. Summary of data pre-processing and imputation 

 

After data cleaning, normalisation and regularisation some daily bins had none or a very 
small number of non-recorded laboratory test and vital sign values, whilst others had a large 
proportion of missingness. Daily bins were defined as ‘rich-information’ or ‘poor-information’ 
days depending on the number of recorded and missing observations. A ‘rich-information’ 
day was defined as a day with information for at least 4 vital signs and 14 laboratory test 
values.  

2.6 Patient cohort 

AEs were included if patients were admitted to a hospital ward (i.e., not discharged from the 
Emergency Department) and if information on disease phenotype on admission (admission 
diagnosis) or discharge was available. Only the first AE within the study period for each 
patient was included and the length of stay was set at a minimum of 3 days, since our aim 
was to focus on time-series numerical data.  

Additional inclusion criteria were defined to avoid potential biases due to imputation of a 
large number of missing values whilst not restricting the cohort to a very closely monitored 
sub-sample. AEs were included if the first and last days were ‘rich-information’ days and if 
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‘rich-information’ days accounted for at least 2/3 of the length of the time series. The 
minimum number of recorded laboratory test results (≥ 14 out of 18) used to define a ‘rich-
information’ day was chosen in an iterative process as the largest number leading to the 
desired sample size (around 10,000 patients). 

The final dataset was randomly divided into a ‘training and testing’ set (80% AE) for 
exploratory analyses and a ‘hold-out validation’ set (20% AE) for confirmatory analyses. 

2.7 Imputation of missing values 

Imputation was a two-step process: multiple imputation (MI) of ‘rich-information’ days and 
linear interpolation (LI) imputation of ‘poor-information’ days. MI is the method of choice for 
complex incomplete data, and is commonly used in clinical research [24]. MI was 
implemented with Predictive Mean Matching (PMM) and conducted for each time interval 
(i.e., it does not specifically include information on the time series) using information from the 
same and the other patients in the cohort. Explanatory variables were defined for each 
predicted variable excluding 1) variables with the largest fractions of missingness in the 
dataset (glucose, alkaline phosphatase [alp], alanine transaminase [alt] bilirubin, urea and 
respiratory rate); 2) variables with highly correlated missingness patterns (usually variables 
requested as a batch, i.e., alt and alp); and 3) highly correlated variables (e.g., neutrophils 
and white blood cell counts [WBC]). Age, sex, discharge specialty and primary diagnosis at 
admission were also included as predictors. The predictors matrix is shown in 
Supplementary Figure 1D. The dataset was imputed ten times. 

LI imputation assumes a linear relationship between data points in the time series and relies 
on non-missing values from adjacent observations to compute the missing value [25]. LI 
imputation was conducted at the patient and variable level meaning the imputed value is 
independent of other variables and other patients. The R packages mice and imputeTS were 
used for MI and LI imputation, respectively. 

Imputation was evaluated by comparing the distribution of original and imputed values and 
analysing the convergence plots for MI. The distributions of randomly inserted missing 
values before imputation versus original missing and non-missing values for MI and LI were 
also compared. The potential impact of imputed values in the output of the HMM model was 
assessed in the visual interpretation analysis of the HMM states representation. 

2.8 Generative models for multivariate time-series representation: HMM 

An unsupervised HMM was trained using expectation maximisation with the numeric 
multivariate time series (23 laboratory test results and vital signs) as input data. The HMM 
framework makes unrealistic assumptions about human biology, such as that a small 
number of disjoint states are an adequate model for a patient’s internal physiological state, 
but it requires a minimum of parameters (in effect, only the number states to train). 
Additionally, being a generative model, it does not require an explicit discriminatory function 
and no diagnosis or outcome data was used in the model, or in its training or assessment. 
One can consider the HMM technique as a dimensionality reduction of the multivariate 
space of patients, which has a natural time dependence. In this case, transforming MVTS 
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data into a simpler state space which maximises the likelihood of the observed data and 
captures some dominant aspects of the patient’s condition on each day. Thus, inpatients’ 
trajectories are represented as a univariate discrete time series, with each day of each AE 
represented as a unique state space, instead of 23 numeric variables. 

An HMM with Gaussian emissions, full covariance matrix and 17 states was trained and 
fitted in the entire ‘training and testing’ dataset with the Python package hmmlearn. The 
number of states set in the model was selected in a 2-fold cross validation process where 
the ‘training and testing’ set was randomly divided into two subsets, which were separately 
used to train a model and then fit the entire dataset. The output of both models was 
compared on a concordance matrix of co-occurrences for patient and day with the aim to 
find an association between states in both output datasets (i.e., a model trained with n states 
in two different datasets would lead to similar results or predicted states), while selecting a 
number of states large enough to capture the heterogeneity of the data. Chi-square tests 
showed that the p-values for all tested numbers of states (2 to 50) were significantly different 
(p-value <0.0001). The visualization of Pearson residuals and contribution plots (the 
contribution of a given cell to the total Chi-square score) showed that 17 states provided 
good concordance between states pairs without being too restrictive (Supplementary Fig 2). 

A clinician (VLK) first inspected the distribution (mean values and variance) of each of the 
vital signs and laboratory test values stratified by state. This information was combined with 
a visual evaluation of: 1) the temporal distribution of the state within AE; 2) the distribution of 
the state across AE organised by the primary admission diagnosis; and 3) the distribution of 
the state in those discharged alive compared to those who died during the inpatient episode. 
Then formal association analyses were conducted using Chi-square tests to confirm the 
expert interpretation. 

2.9 Prediction models in the first days of admission 

In addition to the generative modelling, we also wanted to explore the best timeframe and 
dataset for making discriminatory decisions. This is an obvious use of EHR data and 
clinically it is of interest to identify patients at higher risk early after admission. Two well 
established fixed frame ML techniques were employed, logistic regression (LR) and random 
forest (RF).  LR and RF models were trained to evaluate their performance on the prediction 
of AE outcome.  

Specifically, the impact of combining patients’ representations during the first three days of 
admission (either the MVTS data or the HMM state spaces) with information on age, sex, 
CFS score and primary admission diagnosis was assessed and compared. LR models were 
trained for binary classification only (i.e., prediction of IM) and RF models for binary, 
multiclass (prediction of five disjoint outcome classes: ID, DA, PDR, PDRM and PDM; and 
prediction of primary diagnosis at admission [PDA]) and multilabel classification (prediction 
of diagnoses at discharge [DD]). 

The ‘training and testing’ dataset was divided into a training set (80%) for 5-fold cross 
validation hyperparameter tuning and a test set (20%) to evaluate the performance of the 
model with the selected best parameters. The model was trained in the training set and 
evaluated in the test set ten times to calculate the mean of the performance metrics. 
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Statistically significant differences between models’ performances were assessed using 
Kruskal-Wallis tests. 

Finally, associations between patients’ assigned main HMM state, derived from the 
generative modelling, and outcomes predicted by the best performing LR or RF model for 
each clinical endpoint were evaluated by examining the Pearson residuals of Chi-square 
tests, as a way to identify potential features driving the models’ predictions. The predicted 
outcome will include true positives and false positives.  

In these analyses, the ‘hold out validation’ dataset has not yet been used. We intend to 
utilise this dataset in future work, for further assessment of the best models.  

3. RESULTS: 

 3.1. Patient cohort: characteristics and evaluation of data processing 
 

 
Figure 2. Description of inclusion criteria to select the final cohort of patients; AE: Admission episode. 

 

The initial dataset included more than 146 000 AE from 61 513 patients. After inclusion 
criteria, the final cohort comprised 11 158 unique AE equating to the same number of unique 
patients. The cohort characteristics are summarised in Supplementary Table 2. 

Data was imputed for 25.5% of laboratory test values (7.8% MI; 17.7% LI) and 0.3% (0.26% 
MI; 0.04% LI) of vital sign values in the ‘training and testing’ dataset. Kernel density 
estimates of the imputed and observed data for each variable are shown in Supplementary 
Figure 3A. The distributions match well for all variables except those with very small 
numbers of missing observations (i.e., 4 to 36 imputed values). MI is an iterative process 

Initial Cohort of Patients

146580 AE
61513 unique patients

99010 AE
45825 unique patients

Discharged by Emergency Medicine

No phenotypic information

98722 AE
45625 unique patients

43151 AE (= unique patients)

Inclusion criteria:
• First recorded observations in the first 24h after 

admission for ≥14 lab tests and ≥ 4 vital signs
• First AE per patient only

Final Cohort of Patients

11158 AE (= unique patients)

Inclusion criteria:
• Minimum total length of observations ≥ 3 days
• Number poor-information days ≤ 1/3 length of 

the time series
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and convergence plots show the mean and standard deviation of the synthetic values plotted 
against iteration number for the imputed data (Supplementary Figure 3B). The lack of trends 
and the mixing of streams are indicative of convergence of the algorithm. 

To further assess the imputation method, we randomly introduced missing observations 
before imputation. For MI, the number of randomly inserted missing observations was 
selected to increase the total fraction of missingness to 5% for each variable, while for LI 
missingness was increased to 1/3 of each time series while always maintaining the first and 
last observations. The distributions after imputation match well for inserted missing 
observations and real (non-missing) observations for all variables, even those with very low 
number of actual missing values (Supplementary Figure 3C). The same conclusions were 
observed in the evaluation of LI imputation (Supplementary Figure 3D). 

Lastly, we inspected the distributions of imputed and original observations for each of the 17 
HMM states (Supplementary Figures 4). Distributions of imputed and original observations 
were similar across all states for most variables, except variables with very low numbers of 
imputed values.  These did not alter the key defining characteristics of each state. 

3.2. Clinical interpretation of HMM states 

We modelled the time-dependent multivariate signal for each patient using HMMs so that 
each day of each AE is represented by one of 17 possible state spaces (see methods 
section 2.5). An important aspect was understanding how the HMM organised the data and 
facilitating clinical interpretation. Figure 3 shows the overall proportion of HMM states 
grouped by inpatient mortality and AE trajectories represented as the different states. Figure 
3a and 3b demonstrate that some states were far more common in patients discharged alive 
(e.g., state q) rather than dead (e.g., state a). This overall pattern also matched the time 
trajectory of patients (Figure 3C), with states associated with patients finally being 
discharged alive enriched at the end of the admission period in those discharged alive.  

 

 
Figure 3. Representation of the relationship between states and outcome at the end of admission (inpatient death 
[ID] or discharged alive [DA]). A and B: Overall proportion of states by outcome at end of admission episode ranked 
by higher proportion on the inpatient death group. C: Representation of patients’ trajectories as the different states 
for each day with a zoom on the first 21 days of admission. 
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Figures 4A and 4B similarly visualise the first day of admission and show that most patients 
shared the same state on Day 1 (state h), whether they were discharged alive or died during 
the inpatient episode. However, on Day 2 patients transitioned to a greater range of states 
and the distributions of these differed depending on whether patients died during the 
inpatient episode or not (Figure 4C). These differences were even greater when examining 
the last day of admission (Figure 4D). 

 

 
Figure 4. Overall proportion of states on first (A), second (C) and last day of admission (D). The most common 
state on day one of admission is highlighted on the representation of patients’ trajectories during the first 21 days 
and grouped by outcome at the end of admission (B). 

 

An expert clinician provided a visual clinical interpretation of each state using output 
information from the HMM detailed in section 2.5 and Supplementary Figure 5, with 
explanatory visualisations shown in Figures 5-7. The clinician also provided an overall 
classification of the states, dividing them into three groups based upon the predominant 
feature that delineated them from other states: ‘Disease-like’, ‘Admission-like’ and 
‘Physiological-like’. The HMM state spaces are summarised in Table 1 and further detailed in 
Supplementary Table 3.  
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Table 1. Summary of states and their most relevant features 

	 State Key features Key associations	

Disease-like states 

o Hepatic Abnormal liver function tests Primary diagnosis: digestive 
system (K) & neoplasms (C) 

j Stable renal Abnormal renal function tests Primary diagnosis: 
genitourinary system (N) 

a Unstable renal Abnormal renal function tests 

Primary diagnosis: 
genitourinary system (N) 
Clinical outcome: inpatient 
death 

l Stable but static renal Abnormal renal function tests Clinical outcome: Discharge 
alive 

i Blood dyscrasia Abnormal full blood count (wide 
variance for most values) 

Primary diagnosis: neoplasms 
(C) & diseases of the blood (D) 

g Bone marrow 
suppression 

Abnormal full blood count (low 
values) 

Primary diagnosis: neoplasms 
(C) & diseases of the blood (D) 

Admission-like states 

h Acute presentation 
High WBCs, Haemoglobin, 
Haematocrit and abnormal vital 
signs 

Stage of Admission: Day 1 

e Treatment response (1) 
All values nearer group mean 
compared to Acute 
Presentation-like state 

Stage of Admission: Day 2 to 
Day 8 (or discharge) 

d Treatment response (2) 
Low values of some WBCs with 
other values around group 
mean 

Stage of Admission: Day 2 to 
Day 8 (or discharge) 

m Early discharge All values near group mean Stage of Admission: last days 
of short admission episodes 

n Pre-discharge 
All values near group mean 
except creatinine (lower), urea 
(lower) and platelets (higher) 

Stage of admission: last days 
of long admission episodes 

Physiological-like states	

b Early inflammatory 
response 

Markedly high WBCs, urea, and 
abnormal vital signs 

Clinical outcome: inpatient 
death 

k Resolving inflammatory 
response 

High WBCs but vital signs 
nearer to group mean 
 

Clinical outcome: long length 
of stay 

p Autoimmune/ atopic High basophils, eosinophils and 
lymphocytes 

Clinical outcome: Weakly 
associated with discharge 
alive 

q Acute thrombotic High haemoglobin, haematocrit 
and lymphocytes 

Clinical outcome: short length 
of stay and discharge alive 
Primary diagnosis: Diseases of 
the circulatory system (I) and 
symptoms/ signs/ clinical 
findings (R) 

c Prolonged illness 
Most values abnormal but 
especially respiratory rate (high) 
and haemoglobin (low) 

Admission stage: more 
common after Day 4 

f Other illness presentation All parameters at or near group 
mean 

Admission stage: More 
common in first 3-4 days 
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‘Disease-like’ states are characterised by over-representation of the state in patients sharing 
a common primary admission diagnosis and/ or a pattern of abnormality in the laboratory 
blood test and vital signs information that reflects dysfunction in a particular organ (either 
liver, kidney or bone marrow). This is exemplified by ‘Hepatic-like’ state in Figure 5. This 
state is defined by abnormalities in liver function tests and is over-represented in AEs with 
an admission diagnosis coded as ‘Neoplasms’ or ‘Diseases of The Digestive System’. Many 
neoplasms involve the liver as a common site of metastasis and the liver is an organ of the 
digestive system.  

 

 
Figure 5. Hepatic-Like state. Patients’ trajectories (up to 21 days) grouped by primary diagnosis at admission (left) 
and by outcome at discharge (centre). Distribution of laboratory test results and vital signs for days represented as 
this state by the HMM model (right). AE: admission episode; ID: inpatient death; DA: discharged alive; LOS: length 
of stay. 

 
The predominant feature for ‘Admission-like’ states is over-representation of the state at a 
particular stage of the AE, either at the beginning (Day 1), middle (Day 2 onwards) or in the 
days leading up to discharge or death. Unlike ‘Disease-like’ states, these states are not over-
represented in a particular diagnostic code (Supplementary Figure 5). However, they have 
distinct patterns with respect to the distributions of laboratory and physiological variables, 
and the clinical interpretation of these is consistent with the temporal distribution of the state 
within the AE. For example, ‘Acute Presentation-like’ state is associated with Day 1 (Figure 
6) and values are higher than average for haemoglobin, haematocrit, total WBCs, and 
neutrophils, and all vital signs are abnormal. This pattern is consistent with common 
conditions causing older patients to access emergency inpatient treatment, such as acute 
infections or acute coronary syndromes. For example, high WBCs are associated with 
pneumonia and urinary tract infections, and a high haematocrit is associated with 
cardiovascular disease and related risk factors [26–28]. Abnormal vital signs are also 
consistent with higher illness acuity at the point of emergency hospital admission before 
medical intervention has occurred. In contrast, ‘Early Discharge-like’ state (Supplementary 
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Figure 5) shows a remarkably ‘normal’ distribution of laboratory test and vital sign values. 
This would be consistent with good illness recovery and this state is common on Day 2 of 
the admission onwards, particularly in short AEs for patients discharged alive. 
 

 
Figure 6. Acute Presentation-like state. Patients’ trajectories (up to 21 days) grouped by primary diagnosis at 
admission (left) and by outcome at discharge (centre). Distribution of laboratory test results and vital signs for days 
represented as this state by the HMM model (right). AE: admission episode; ID: inpatient death; DA: discharged 
alive; LOS: length of stay. 

 

‘Physiological-like’ states are characterised by patterns of ‘abnormality’ in laboratory and 
vital sign values. Clinicians might recognise these states as clinical syndromes or the final 
common pathway of a physiological response to a range of insults e.g., autoimmune or 
inflammatory responses. For example, ‘Early Inflammatory Response-like’ state is 
characterised by high respiratory rate, heart rate, WBCs, neutrophils and urea and low blood 
pressure (Figure 7). This is similar to the clinical description of the Systemic Inflammatory 
Response Syndrome (SIRS) [29]. In general, these states are present in several diagnostic 
codes but not strongly over-represented in any one ICD-10 code (Supplementary Figure 5).  

Not all 17 states could be classified confidently. For example, some states such as ‘Stable 
but Static Renal-like’ state and ‘Other Illness Presentation-like’ state did not have a clear 
‘predominant feature’ (Supplementary Table 3).  
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Figure 7. Early Inflammatory Response-like state. Patients trajectories (up to 21 days) grouped by primary 
diagnosis at admission (left) and by outcome at discharge (centre). Distribution of laboratory test results and vital 
signs for days represented as this state by the HMM model (right). AE: admission episode; ID: inpatient death; DA: 
discharged alive; LOS: length of stay. 

 

Patients were assigned to a ‘main state’ if they spent more than half of their time in the same 
state. 80% of patients could be classified in this way. Formal statistical tests were used to 
evaluate associations of each state with sex, age-group, CFS category, month of admission, 
admission diagnosis, discharge specialty, length of stay, number of diagnoses at discharge, 
and hospital outcomes (IM, PDR, PDM). Some trends could be predicted by the initial visual 
clinical interpretation of the states and supported the expert interpretation. For example, 
‘Disease-like’ states showed the strongest associations with admission ICD-10 codes 
(Figure 8) and overall, 12 States (71%) showed at least one association with an ICD-10 code 
(p-value <0.001 with Bonferroni correction). ‘Early Inflammatory Response-like’ state was 
also strongly associated with inpatient and post-discharge mortality (Supplementary Figure 
6C). These associations supported the clinical visual interpretation, and it is important to 
remember that the HMM was trained without any information on ICD-10 codes or outcome 
data.  
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Figure 8. Pearson residuals plots showing associations between patients’ assigned main states and primary 
diagnosis at admission. Blue: positive associations; red: negative associations. Black boxes: statistically significant 
associations (p-value <0.001 with Bonferroni correction) 

 

Other trends added to clinical interpretations. ‘Prolonged Illness-like’ state generally 
occurred 4-5 days into an AE and was characterised by low haemoglobin and haematocrit 
whilst all other parameters were high, especially respiratory rate (Supplementary Figure 5). 
One hypothesis, after visual clinical interpretation, was that an intervention that influenced 
the state had occurred during the AE. Consistent with this, ‘Prolonged Illness-like’ state was 
strongly associated with discharge by a surgical specialty (Supplementary Figure 6A).  

The ‘Disease-like’ states also showed strong positive associations with post discharge 
readmission, particularly ‘Bone Marrow Suppression-like’ and ‘Stable but Static Renal-like’ 
states, perhaps reflecting the role of chronic disease in increasing vulnerability to 
hospitalisation. However, associations did not always add to the clinicians' understanding of 
the HMM state. For example, ‘Treatment Response-like 1 and 2’ states remained difficult to 
fully differentiate in clinical terms.  
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3.3. Results from prediction models focusing on first days of admission 

We used straightforward discriminative models on this dataset and enumerated a relatively 
large number of hypotheses (16 x 6 = 96), defined as combinations of: a) prediction model 
(RF or LR), b) input data representation (MVTS or HMM states), c) inclusion or not of 
phenotypic information (i.e., primary diagnosis at admission), d) different input days lengths, 
and e) different predicted clinical outcomes (Supplementary Table 4). We registered these 
hypotheses before running tests at the Open Science Framework. For each outcome, the 
model with the highest performance by ‘group’ (defined as the combination of model, input 
data representation and phenotypic information) was identified. We refer to these several 
combinations as ‘models’ for simplicity. The selected parameters of the best models are 
summarized in Supplementary Table 5. 

Prediction of inpatient mortality was assessed comparing the performance of RF and LR 
models (Table 2). Almost all models showed highest performance for all metrics when 
trained with either Day 3 (D3) or Days 1 to 3 (D1D2D3) input variables. Best Area Under the 
Receiver Operating Characteristics (ROC-AUC) curve performance was observed for the RF 
model trained with MVTS data for D3 combined with phenotypic information, although 
phenotypic information only modestly increased model performance. This model also 
achieved high performance on precision-recall AUC (Supplementary Table 6). 

 
Table 2. ROC-AUC results for prediction of inpatient mortality (IM) as mean (SD) 

INPUT VARIABLES RF LR 
MVTS STATES MVTS STATES 

N
O 
P
D
A 

D1 0.757 (0.001) 0.686 (0.001) 0.732 (0) 0.698 (0) 
D2 0.799 (0.001) 0.737 (0.001) 0.785 (0) 0.744 (0) 
D3 0.844 (0.001) 0.778 (0) 0.825 (0) 0.782 (0) 
D1D2 0.814 (0.001) 0.742 (0) 0.803 (0) 0.744 (0) 
D2D3 0.841 (0.001) 0.764 (0.001) 0.826 (0) 0.776 (0) 
D1D2D3 0.848 (0.001) 0.765 (0.001) 0.832 (0) 0.774 (0) 

P
D
A 

D1 0.77 (0.002) 0.728 (0.001) 0.746 (0) 0.729 (0) 
D2 0.81 (0.003) 0.764 (0) 0.793 (0) 0.76 (0) 
D3 0.851 (0.002) 0.792 (0.001) 0.829 (0) 0.791 (0) 
D1D2 0.816 (0.001) 0.762 (0.001) 0.805 (0) 0.759 (0) 
D2D3 0.844 (0.001) 0.78 (0) 0.828 (0) 0.786 (0) 
D1D2D3 0.847 (0.002) 0.778 (0.001) 0.833 (0) 0.786 (0) 

RF: Random Forest; LR: Logistic Regression; MVTS: Multivariate time series; No PDA: No phenotypic 
information included as input variable; PDA: Phenotypic information included as input variable 

 

Feature ranking for the best RF model (based on ROC-AUC performance) showed that the 
top five features were respiratory rate, eosinophil count, urea, lymphocytes and neutrophils. 
These features closely resemble those characterising the ‘Early Inflammatory Response-like’ 
state (high WBC, neutrophils, urea, respiratory rate, and heart rate; Figure 7), which 
emerged from the HMM and was associated with inpatient mortality in both the visual clinical 
interpretation and statistical analysis of HMM state associations (Supplementary Figure 6C).  

While only the RF trained with MVTS data (with or without phenotypic information) achieved 
reasonable precision compared to other models (0.718 and 0.617, respectively), recall 
results were very low (highest 0.167). The opposite was observed with the RF models 
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trained with HMM states (highest precision and recall 0.199 and 0.701, respectively). Recall 
obtained by LR models was higher than by RF models, which explains that the highest F1-
score was achieved with a LR model with MVTS data (Supplementary Table 7). The low 
recall of the best model in the test dataset (only 14 patients predicted at higher risk of 
inpatient death in five or more runs out of 226 real cases) limits the analysis of these results.  

Prediction of clinical outcome at 30 days was assessed using the one-vs-rest classifier 
approach, where all tasks are binary classification problems with five disjoint classes: ID, 
DA, PDR, PDRM and PDM. Similar weighted ROC-AUC performance was achieved by the 
four best models. The highest was obtained by the RF model trained with MVTS on D1D2D3 
and phenotypic information (Table 3). Weighted recall and precision were very similar for all 
the models (Supplementary Table 8). As shown in Supplementary Table 9, the averaged 
results are mainly driven by the performance achieved on the prediction of the majority 
class, DA. Results for the class ID did not differ considerably from those observed with the 
RF model in the binary classification of this outcome (Supplementary Table 7). The 
prediction performance for other classes was quite limited, most likely due to small numbers 
of outcome events (especially in the case of PDRM and PDM).  

Feature ranking for the best performing models showed that highest ranking features 
differed by outcome class. Features driving prediction of hospital readmission (PDR) differed 
from those driving prediction of mortality. Examination of the best performing model 
employing the MVTS representation revealed PDR prediction was driven by data on Day 1 
rather than either Day 3 or Days 1,2 and 3. When the best performing model employing the 
HMM states representation of physiological variables was examined, demographics and 
diagnosis codes were the main drivers of PDR prediction (age, sex, frailty score and ICD-10 
code ‘S’).  

The prediction of primary diagnosis at admission (PDA) differs for the different diagnosis 
codes. The models trained with MVTS data achieved higher weighted ROC-AUC. 
Information on D1D2D3 seemed to be more informative, although results were very similar 
within the two groups (Table 3).  An analysis of F1-score by class showed that prediction 
performance was usually higher for diagnosis codes with more instances in the dataset, ICD-
10 codes J, K, N, I, S, C, with the exception of D (good performance with small number of 
instances) and A (worse performance than other codes with similar numbers). As shown in 
Supplementary Figure 13, precision results were better for models trained with MVTS, while 
recall was higher for models trained with HMM state representation. 

Prediction of diagnosis at discharge (DD) was defined as a multilabel classification 
problem because one patient can be predicted to have several diagnosis codes. The model 
trained with MVTS and input data on days D1D2D3 showed the higher weighted ROC-AUC 
(Table 3). Similar to prediction of PDA, precision, recall and F1-score (Supplementary Figure 
15) was better for instances with more examples in the dataset (e.g., ICD-10 codes I or N). 
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Table 3. Weighted ROC-AUC for the prediction of 30-day clinical outcome, primary diagnosis at admission 
(PDA), and diagnoses at discharge, as mean (SD).  

PREDICTED 
OUTCOME	 30-days clinical outcome	 Primary diagnosis at admission Diagnosis at discharge 

INPUT VARIABLES MVTS	 STATES MVTS STATES MVTS STATES 

N
O 
P
D
A 

D1 0.634 (0.001) 0.588 (0) 0.74 (0)	 0.62 (0)	 0.63 (0) 0.58 (0) 
D2 0.638 (0) 0.625 (0.001) 0.71 (0)	 0.63 (0.001)	 0.63 (0) 0.59 (0) 
D3 0.66 (0) 0.645 (0.001) 0.69 (0)	 0.63 (0.001)	 0.62 (0) 0.59 (0.001) 
D1D2 0.653 (0.001) 0.628 (0.001) 0.75 (0)	 0.64 (0)	 0.64 (0) 0.59 (0) 
D2D3 0.664 (0) 0.647 (0) 0.73 (0)	 0.64 (0)	 0.64 (0) 0.6 (0) 
D1D2D3 0.674 (0.001) 0.647 (0) 0.76 (0)	 0.65 (0)	 0.65 (0) 0.6 (0) 

P
D
A 

D1 0.649 (0) 0.636 (0.001) -	 -	 -	 -	
D2 0.654 (0.001) 0.654 (0) -	 -	 -	 -	
D3 0.679 (0.001) 0.671 (0) -	 -	 -	 -	
D1D2 0.661 (0.001) 0.651 (0) -	 -	 -	 -	
D2D3 0.673 (0.001) 0.667 (0) -	 -	 -	 -	
D1D2D3 0.681 (0.001) 0.664 (0) -	 -	 -	 -	

MVTS: Multivariate time series; No PDA: No phenotypic information included as input variable; PDA: Phenotypic 
information included as input variable 

 

The analysis of Pearson residuals of the Chi-square test was used to examine possible 
relationships between the predicted outcome of the selected best models (counting both true 
and false positives) and patients’ characteristics, including patients’ assigned main HMM 
state, as a way to identify potential features driving the models’ predictions. In the case of 
binary prediction of IM, a strong positive association between AEs predicted at higher risk 
and state ‘Early inflammatory Response-like’ was observed (Supplementary Figure 7). 
Predicted cases of PDR were found strongly associated with some ‘Disease-like’ states such 
as ‘Stable Renal-like’, ‘Stable but Static Renal-like’ and ‘Bone Marrow Suppression-like’ 
states (Supplementary Figure 10), which mirrored associations between the ‘Disease-like’ 
states and the real cases of PDR seen in earlier analyses of the generative modelling 
outputs (Supplementary Figure 6C). Some strong associations were observed between 
predicted diagnosis at admission and patients’ characteristics, outcomes and assigned HMM 
main states (Supplementary Figure 14). For example, a predicted primary diagnosis at 
admission of ‘C’ (Neoplasms) is strongly associated with ‘Hepatic-like’ state and ‘N’ 
(Genitourinary system) is strongly associated with ‘Stable Renal-like’ state. These 
associations greatly coincided with those observed in Supplementary Figure 6, detailing 
relationships between patients’ assigned main HMM state and the actual ICD-10 code 
representing primary admission diagnosis. These observations support some of the 
relationships observed in the visual interpretation of HMM states and the Chi-square test of 
their associations with relevant features (Section 3.2). However, due to the poor predictive 
performance of some models, these and other potential relationships resulting from these 
analyses of associations of predicted outcomes and patients’ characteristics should be 
considered cautiously and confirmed in further evaluations. 
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4. DISCUSSION AND CONCLUSIONS 

We have shown a practical way to provide a dataset from an NHS hospital EHR, which is 
appropriate for ML using the generative time-dependent HMM framework and discriminative 
RF and LR models. Important aspects of our work were development of the governance 
structure to facilitate analysis of routinely collected hospital EHR data by technical experts, 
and development of a protocol to regularise and impute this data into research ready 
components. We incorporated sufficient anonymisation processes to safeguard privacy, 
whilst leaving enough information for hidden relationships within the data to be explored and 
employed secure mechanisms for data transfer and access. We believe it will be critical to 
store these specific datasets as they are generated, as well as protocols for specific 
transformations as defined outputs, to progress this field and generate both reproducible 
research and share expertise. 

All modelling requires assumptions and decisions about: what data to collect? what 
regularisation in time and distribution to use? how should missing data be handled? We 
have provided one methodological approach addressing some of these issues and found the 
most important aspects of data pre-processing were regularisation and imputation of missing 
values. Daily bins across time series records of >3 days were selected because of our 
interest in blood biochemistry as input variables, which were recorded once per day for most 
tests and patients. Regularisation of time series is a necessary step for many ML models but 
implies loss of information for those tests with multiple recorded observations on a pre-
established bin and the introduction of missing values where there are no recorded 
observations. In future, we will explore different ways of feeding or representing this 
information to analyse its impact on inpatient representations or outcome prediction [30]. 

Our approach towards imputation was a two-step process. MI was the preferred method 
because it takes advantage of relationships between variables in the dataset [31] but this 
method cannot be used on days with many missing variables. In that case, LI was used at 
the individual time series level. To reduce the impact of imputed values on our results, strict 
inclusion criteria were used to select the final cohort of patients, aimed to limit missingness 
and avoid imputation of large numbers of consecutive missing observations. Imputation 
evaluation conducted at different stages found no evidence that the distributions of imputed 
values were different from original observations. Importantly, we showed that the main 
characteristics driving the HMM states were not influenced by imputed observations. We 
anticipate our methods can be adapted and replicated by others, since we utilised previously 
validated and commonly used imputation techniques. Future work, with less restrictive 
inclusion criteria or shorter time-bins might benefit from other approaches, such as deep 
learning [32] or alternatives to imputation [14]. 

The representation of how a patient’s condition evolves over time using ML has been 
predominantly studied from the perspective of temporal disease trajectories through 
consecutive clinical encounters [19,33,34]. These representations are derived mainly from 
clinical diagnosis codes, which can be merged with other categorical information such as 
medications, demographics or non-numeric descriptions of laboratory test results [8,18]. In 
this work we focus on a narrower time-window, hospital admissions in a general inpatient 
population, and use laboratory blood tests and vital signs to form a numeric representation of 
patients’ physiological status and illness acuity over time. We have explored this to discover 
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trends on inpatients’ trajectories that are not necessarily linked to a previously specified 
outcome.  

We were surprised by the ability of the HMM to provide an informative view of inpatient 
trajectories. The initial analysis of the distribution of states showed remarkable differences 
between patients who died at the end of the AE and those who were discharged. The expert 
clinician provided a visual clinical interpretation for each of the 17 HMM state spaces, with 
most states naturally coalescing into one of three higher level classifications, which made 
biological and clinical sense. The conceptual ‘state’ of a hospitalised patient at any moment 
in time will depend on their disease burden (represented by ‘Disease-like’ states), their 
physiological response to this burden (represented by ‘Physiological-like’ states) and their 
response to medical intervention (represented by ‘Admission-like’ states). There were also 
strikingly different state distributions in patients who died during the AE versus those 
discharged alive and ‘Early Inflammatory Response-like’ state was one of two states strongly 
over-represented in those who died. This state was interpreted by the clinician as resembling 
SIRS, a clinical syndrome often precipitated by infection and associated with high mortality in 
hospitalised patients [29,35,36]. Furthermore, significant numbers of states were associated 
either with specific diagnosis codes or stages of the AE. These findings are all made with no 
explicit training data for outcomes or diagnoses, but rather emerge from the generative 
model of the HMM and strongly suggest the HMM is capturing real patient biology. 

Little emphasis has been placed on simply exploring data extracted from hospital EHR 
systems. Instead, this data is used to develop prediction models for pre-specified outcomes 
[8]. Whilst this focus is understandable, given its potential clinical utility, information is lost 
pertaining to the variability of what happens to patients after emergency hospitalisation. This 
may help inform modelling. Although not the goal for this analysis, our exploration and 
description of inpatient trajectories using generative ML prompts questions about exploring 
better decision support tools or characterisation of patients. Notably, ‘Acute Presentation-
like’ state is almost uniquely observed on the first day of admission and shows the well 
understood need to stabilise patients presenting with acutely deranged physiological status. 
However, the state on Day 1 of admission showed similar distributions in those discharged 
alive versus dead. In contrast, patients transitioned to a greater range of states from Day 2 
onwards, and there were increasingly different state space distributions as length of stay 
progressed depending on the final hospital outcome. This highlights how careful modelling of 
daily, or finer grain, vital signs and laboratory blood tests can be used to better inform 
clinicians of patient risk across the entirety of an AE. Current decision support tools aimed at 
identifying the deteriorating patient [37] have not usually been developed considering 
temporal trends in physiological status and employ simple risk factor categorisations for 
scoring at the bedside [38,39]. The implementation of hospital EHRs offers an opportunity to 
develop new tools that can both utilise continuous risk estimates [40] and consider the 
temporal sequence of data [9], perhaps focusing particularly on Days 2 and 3 of admission 
as patients’ clinical trajectories diverge.  

The discriminative learning models also performed reasonably well. Higher prediction was 
achieved when the MVTS data was used as input data compared to the HMM states 
representations, which likely reflects the reduction of input data from a multivariate to 
univariate time series in the latter case. However, models employing states representations 
still performed comparably well and there were interesting similarities between generative 
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and discriminative ML outputs that made clinical sense. Both approaches identified states 
and features representative of a strong inflammatory response as important for inpatient 
mortality. Additionally, both generative and discriminative modelling suggested factors more 
indicative of chronic problems such as frailty, diagnosis codes, the ‘Disease-like’ HMM states 
and vital sign and laboratory test values on Day 1 rather than Day 3 of admission, may be 
important for risk of hospital readmission. It is notable that ICD-10 code ‘S’ was an important 
feature driving prediction of PDR in the best performing model employing the states 
representation of MVTS data. This code includes ‘injuries’ and will capture older patients 
hospitalised due to the consequences of a fall e.g., hip fracture. Falls and associated injuries 
are key consequences of frailty, place significant burden on the NHS [41] and are associated 
with high readmission rates [42]. Thus, although the limited performance achieved by the 
prediction models prevents establishing associations, these or future analyses could 
generate hypothesis for further investigation. 

Our dataset is extracted from a single NHS hospital and our final patient cohort was subject 
to strict inclusion criteria meaning our results are not generalisable to all inpatients. 
Restricting our cohort to patients with an inpatient stay of >3 days excluded the most acutely 
unwell and fittest patients, truncating the range of physiological and metabolic variation and 
perhaps excluding those whose outcome was easiest to predict. MVTS data were limited to 
commonly measured variables and we were limited to broad categorisation of some 
features, such as the highest level of ICD-10 categorisation. Considering our modelling, the 
HMM has strong and unrealistic assumptions and the clinical interpretations and 
classifications provided require careful consideration. Our prediction work was also limited to 
exploratory analyses and would benefit from inclusion of additional patient features and use 
of ML techniques that account for the sequential nature of data. Lastly, although the 
discriminative learning methods performed reasonably well, similar to other EHR schemes, it 
is important to realise the relatively poor precision. This should be expected since the goal of 
healthcare is to change discharge status via a variety of means, but it also emphasises the 
difference between providing useful summaries of patient data consistent with previous 
knowledge for decision support, compared to making a hard ‘call’ of outcome.   

Nevertheless, we generated a research ready dataset using hospital EHR data that was 
appropriate for both generative and discriminative ML techniques. The clinical interpretation 
of the HMM states was novel, with previous attempts limited to interpretation of states as 
disease stages [19,43,44], and promoted knowledge sharing between clinicians and data 
scientists. Additionally, the HMM appeared to capture real biological signal. Not only were all 
17 states interpreted by the clinician and associated with hold-out clinical information, but 
generative and discriminative models converged on outputs which made clinical sense, such 
as associations between inflammation and mortality. Both approaches appeared 
complementary, discriminative analyses using the raw MVTS variables achieved higher 
prediction and generative modelling facilitated clinical interpretation, and both can provide a 
landscape for hypothesis generation. In future we intend to pursue more focused questions, 
for example capitalising on our characterisation of inpatient trajectories to explore finer grain 
modelling in the first three days of admission and exploring ML techniques that consider the 
sequential nature of data. We welcome collaborations from other ML experts, health data 
scientists and EHR facilities to explore this datasets and others, following governance and 
ethical review.  
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