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ABSTRACT 

Background 

The app-based COVID Symptom Study was launched in Sweden to disseminate real-time estimates of disease 

spread and to collect prospective data for research. The aim of this study was to describe the project, develop 

models for estimation of COVID-19 prevalence and to evaluate it for prediction of hospital admissions for 

COVID-19. 

Methods 

We enrolled 143 531 study participants (≥18 years) throughout Sweden, who contributed 10.6 million daily 

symptom reports between April 29, 2020 and February 10, 2021. Data from 19 161 self-reported PCR tests were 

used to create a symptom-based algorithm to estimate daily prevalence of symptomatic COVID-19. The 

prediction model was validated using external datasets and used to forecast subsequent new hospital admissions. 

Results 

A prediction model for symptomatic COVID-19 based on 17 symptoms, age, and sex yielded an area under the 

ROC curve of 0.78 (95% CI 0.74-0.83) in an external validation dataset. App-based surveillance proved 

particularly useful for predicting hospital trends in times of insufficient testing capacity and registration delays. 

During the first wave, our prediction model estimates demonstrated a lower mean error (0.38 average new daily 

hospitalizations per 100 000 inhabitants per week (95% CI 0.32, 0.45)) for subsequent hospitalizations in the ten 

most populated counties, than a model based on confirmed case data (0.72 (0.64, 0.81)). 

Conclusions 

The experience of the COVID Symptom Study highlights the important role citizens can play in real-time 

monitoring of infectious diseases, and how app-based data collection may be used for data-driven rapid 

responses to public health challenges. 
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Key messages:  

• The app-based COVID Symptom Study, which was launched in Sweden in April 2020 collecting 

symptom and test data from voluntary adult study participants, could within weeks disseminate real-

time estimates of disease spread contemporaneously collecting prospective data for COVID-19 

research. 

• A prediction model for symptomatic COVID-19 based on symptoms, age, and sex was able to 

discrimate between test-positive and test-negative individuals with an area under the ROC curve of 0.78 

(95% CI 0.74-0.83) in an external validation dataset. 

• App-based surveillance proved particularly useful for predicting hospital trends in times of insufficient 

testing capacity and registration delays. 

• The experience of the COVID Symptom Study highlights the importance of citizen science in real-time 

monitoring of infectious diseases, and how app-based data collection may be used for data-driven rapid 

responses to public health challenges. 
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INTRODUCTION 

In the midst of the COVID-19 pandemic, this global health crisis has stimulated abundant research that might 

help improve our response to future public health challenges. Amongst the most promising is the use of modern 

app-based technologies allowing real-time monitoring and prediction of the dynamics of the pandemic. Such an 

approach was indeed launched almost simultaneously in the United States (US), United Kingdom (UK), and 

Sweden with the COVID Symptom Study app (1, 2). The Swedish experience of the pandemic, which has 

received global attention, might be particularly informative because the public health response to the pandemic 

was much less restrictive than in most other countries (3), and also entailed a 4.5 to 10-fold higher death rate up 

to December 2020 than in neighbouring Nordic countries (4).  

Community transmission of SARS-CoV-2 was confirmed in Sweden in early March 2020 (5). By late March, 

visits to care homes as well as public gatherings of more than 50 people had been banned, universities and upper 

secondary schools had initiated distance learning, and adults were encouraged to work from home if possible. 

Other measures recommended by the European Centre for Disease Prevention and Control (ECDC), such as 

household quarantine when one individual in the household had confirmed COVID-19, were not implemented 

until the second wave in the autumn 2020. In addition, during the first pandemic wave, PCR testing was only 

available for hospital patients and healthcare staff (3), and assessments of national and regional prevalence were 

based on a few smaller PCR surveys performed by the Public Health Agency (Folkhälsomyndigheten, FoHM). 

Nationwide PCR testing for symptomatic adults was only introduced in June 2020 (3) and has since suffered 

delays throughout Sweden during periods of high demand.  

The aim of the study was to collect symptom data across Sweden, develop models for estimation of symptomatic 

COVID-19 prevalence and to evaluate it for prediction of hospital admissions for COVID-19. 
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METHODS 

COVID Symptom Study Sweden 

The COVID Symptom Study was launched in Sweden on April 29, 2020, to provide COVID-19 infection 

surveillance data and to build a large-scale repeated measures database for COVID-19 research (Figure 1). More 

than 166 000 participants (2.4% of the adult population) joined CSSS in the first five weeks after launch. The 

non-commercial mobile application used in the study was initially developed by health data science company 

ZOE Limited in partnership with King’s College London and Massachusetts General Hospital (1, 2), and 

adapted for use in Sweden by ZOE Limited in collaboration with Lund University and Uppsala University. The 

app has been used to study the contemporary burden and predict future consequences of COVID-19 (6-8).  

All individuals ≥18 years of age living in Sweden with access to a smart device have been eligible to participate 

in the CSSS by downloading the app and providing informed consent. Participants are asked to report year of 

birth, sex, height, weight, postal code, if they work in the healthcare sector, and to complete a health survey 

including pre-existing health conditions. Subsequently, participants are asked daily (with voluntary response 

frequency) if they feel “healthy as normal” or not, and to report the date and result of any COVID-19 PCR or 

serology test. If they do not feel healthy, they are asked about an array of symptoms potentially associated with 

COVID-19. Questions on COVID-19 vaccinations, added on March 27, 2021, are not included in the current 

analysis. All questionnaire variables are presented in Supplementary Table 1, with additional information 

available in the Supplementary Material. 

In this analysis, we included data from April 29, 2020 to February 10, 2021. Individuals were excluded if they: 

1) never submitted a daily report (n=5931), 2) had missing age or reported an age <18 or >99 (n=801), or 3) 

stated their sex as other/intersex (n=236) as this sample size was insufficient for a separate analysis 

(Supplementary Table 2). Individuals whose last report was within seven days of joining the study (n=45 483) or 

did not provide a valid postal code (n=7310) were excluded from the prevalence estimation, but included in 

model training if they had reported a PCR test and had submitted at least one symptomatic daily report within 

seven days preceding or on the test date (n=967). The final study population consisted of 143 531 individuals 

(Figure 2 and Supplementary Figure 1). 

Symptom prevalences were investigated in participants with a positive (n=5178) or negative (n=32 089) PCR 

test during 15 days preceding or following the test date. If a participant reported multiple PCR tests during the 

study period, only one randomly selected test was included. 
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Comparison with other data sources 

We used external data sources to evaluate the representativeness of the CSSS cohort as a sample of the Swedish 

general population. Aggregate population demographic and socioeconomic information was obtained for all 

postal code areas from Statistics Sweden (9). We calculated a neighbourhood deprivation index (NDI, lowest = 

most disadvantaged) for each postal code based on the proportion of adult inhabitants employed or studying, the 

proportion with a university education, and the median yearly net income (10) (for details, see Supplementary 

Material). We also obtained data from the Living Condition Surveys in Sweden from 2018-2019 (11) on current 

smoking status and BMI in the general population. 

We compared symptom reporting from CSSS with data collected by NOVUS, a private company which 

conducts opinion polls and other surveys using panels recruited by random sampling of the Swedish population 

(12). Since March 2020, NOVUS has carried out repeated surveys on COVID-19-related symptoms and 

healthcare contacts, not including PCR test results, with a response rate of approximately 70% (13). While in the 

CSSS participants report symptoms on the same day they experience them, NOVUS participants report any 

symptoms experienced over the past 14 days even if these reflect their baseline health status (Supplementary 

Material).  

Prediction model training 

We developed a prediction model to estimate the probability of a positive PCR test in participants with 

symptoms. The model was based on participants who reported at least one PCR test between April 29 and 

December 31, 2020 and at least one reported candidate symptom within seven days before or on the test date 

(n=19 161, of whom 2586 tested positive). Reports submitted during the first seven days after joining the study 

are excluded to reduce participation bias from increased motivation among symptomatic individuals. For 

participants who had not submitted daily reports, we assumed the last observation to be current for no more than 

seven subsequent days. If a participant submitted more than one report on a given day, all reports were combined 

into a single daily report; a symptom was treated as reported if it was mentioned in at least one of these reports.  

We used an L1-penalized logistic regression model (LASSO) to select variables predicting symptomatic 

COVID-19. The shrinkage parameter was determined using ten-fold cross-validation and set to be the shrinkage 

that minimized the cross-validation error most. The starting set of predictors included all symptoms introduced 

through May 7, 2020 (excluding hay fever and chills or shivers), as well as their interaction with loss of smell 

and/or taste, as the latter constituted the strongest predictor of COVID-19 (6). Predictors in the final model were: 
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fever, persistent cough, diarrhoea, delirium, skipped meals, abdominal pain, chest pain, hoarse voice, loss of 

smell and/or taste, headache, eye soreness, nausea, dizzy or lightheaded, red welts on face or lips, blisters on 

feet, sore throat, unusual muscle pains, fatigue (mild or severe), and shortness of breath (significant or severe), 

interaction terms between 14 of those and loss of smell and taste, as well as age and sex (see Supplementary 

Table 3 for model coefficients). 

To better assess the time course of symptomatic COVID-19 retrospectively, we constructed a second time-

dependent model, based on the first model with the addition of restricted cubic splines for calendar time with six 

knots placed according to Harrell's recommendations (14) (coefficients in Supplementary Table 4).  

Prediction model validation 

The models were internally evaluated in terms of discrimination and calibration using the ROC area under the 

curve (AUC) estimated by tenfold cross-validation within the dataset from April 29 to December 31, 2020, as 

well as based on CSSS data from a time period not used for model training (i.e., January 1 to February 10, 2021). 

Model calibration was assessed by plots with expected probabilities divided into deciles. For external validation, 

we used data from the CRUSH Covid study, which invites all individuals (≥18 years) to complete a symptom 

survey if they have conducted a COVID-19 PCR-test in the Uppsala healthcare county. Using data from October 

18, 2020 to February 10, 2021, the classification ability was assessed using ROC analysis among individuals 

who had completed the survey on the day of the test, reported at least one symptom, and had a conclusive test 

result (n=943; see Supplementary Material and Supplementary Table 5). 

Evaluation of prevalence estimates 

The daily regional prevalence of symptomatic COVID-19 infection was estimated in real-time using a weighted 

mean of individual predicted probabilities for a given county weighted by age (<50 and ≥50 years) and sex. 

Participants not reporting any of the symptoms included in the prediction model were assigned a probability of 

zero. Participants with long-lasting COVID-19 symptoms were excluded after their 30th day of reporting loss of 

smell and/or taste to ensure that the estimates were not inflated due to COVID-19 sequelae. We then averaged 

the predicted probabilities and the number of participants reported for each subgroup, day, and county. 

Prevalence estimates were subsequently reweighed using direct standardization, yielding daily prevalence 

estimates for each county. 

The odds ratios for all variables in the prediction model were assumed to be generalizable to the background 

population. Because the model was trained in a dataset with higher prevalence of COVID-19 compared to the 
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general population, the intercept was inflated. We therefore recalibrated the model intercept until the nationwide 

app-based predictions for 27 May, 2020 matched the estimated nationwide prevalence of 0.3% (95% CI 0.1-

0.5%) between May 25-28, 2020 (15). In that survey, performed by FoHM, self-sampling nasal and throat swabs 

with saliva samples were delivered to a random sample of 2957 individuals (details provided in the 

Supplementary Material). We assumed both the sensitivity and the proportion of symptomatic COVID-19 in the 

FoHM survey to be 70% (16, 17). 

The 95% confidence intervals (95% CI) for predictions were generated using the function ageadjust.direct from 

the epitools package in R (18), using the method of Fay and Feuer (19). This function accommodates the sum of 

the model-generated probabilities, number of participants for each of the four strata on a given day, and the total 

population of Sweden. The output is a weighted probability with a 95% CI. The method assumes that the sum of 

the model-generated probabilities is Poisson-distributed using an approximation based on the gamma 

distribution. Although this method may be regarded as conservative, we assume the FoHM point estimate for 

May 25-28, 2020 the PCR sensitivity and the proportion of asymptomatic individuals to be known quantities. 

Prediction of cases and hospital visits 

To compare CSSS prevalence estimates with reported confirmed cases by FoHM, we extracted a linked dataset 

of all COVID-19 cases from SmiNet, an electronic notification system of communicable diseases maintained by 

FoHM, where all confirmed cases are registered by law. To evaluate the ability to predict in- and out-patient 

hospital visits on a regional level, we acquired data from the National Patient Register from January 1, 2020 to 

January 4, 2021. Because the time lag for registrations of COVID-19 hospital visits was up to one month, we 

utilized data from the register until December 4, 2020 for these analyses. 

We evaluated the agreement of CSSS-estimated prevalence with case notification rates and hospital trends by 

inspecting trend plots. We further applied a median regression model with either CSSS-estimated prevalence or 

case notification, modelled as linear exposures with new hospital admissions as the dependent variable, assessing 

the mean absolute prediction error (lower indicating higher accuracy) for both models during the first and second 

wave, respectively, using leave-one-out cross-validation (excluding one week from the model building for each 

iteration). We also calculated the Spearman correlation of CSSS prevalence and case notification to 

hospitalization the following week, during the first (up to July 6, 2020) and the second (from October 19, 2020) 

waves. We defined the end of the first wave based on the date on which there were fewer than three new ICU 

COVID-19 admissions per day and the start of the second wave when there were again three or more new ICU 
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admissions per day (20). We also compared the average agreement between the five top-ranked counties in 

CSSS with the five counties with the most new cases and highest hospital notification rates the following week.  

Ethical approvals 

The Swedish Ethical Review Authority has approved CSSS (DNR 2020-01803 with addendums 2020-04006, 

2020-04145, 2020-04451, and 2020-07080) and CRUSH Covid (DNR 2020-07080, and DNR 2020-04210 with 

addendum 2020-06315).  
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RESULTS 

Descriptive characteristics  

Table 1 shows characteristics of the 143 531 study participants. Compared with the general population, the study 

cohort included a larger proportion of women and fewer smokers and people aged ≥65; the cohort had a similar 

prevalence of obesity to the national average. The median duration of study participation was 151 days (IQR 52-

252) with a median of 43 days with submitted reports (IQR 13-119). Thirty percent of participants reported at 

least one COVID-19 PCR test during the study period and 20% at least one serology test (Table 1). Six % of 

women and 4% of men reported a positive PCR test during the study period. CSSS participants resided in postal 

code areas with a higher median NDI, a similar proportion of inhabitants with foreign background, and a higher 

population density than the general population. The number of study participants per capita is depicted by county 

in Supplementary Figure 2.  

The majority of CSSS participants with confirmed COVID-19 experienced loss of smell and/or taste, with 

headache, fever, and sore throat constituting other common symptoms (Figure 3a). Among participants who 

tested negative, the most common symptoms were headache and sore throat, whereas loss of smell and/or taste 

was rarely reported (Figure 3b). The non-adjusted prevalence of different symptoms was considerably higher in 

NOVUS than in CSSS, with the exception of loss of smell and/or taste, but temporal trends were similar 

(Supplementary Figure 3).  

Training and validation of the prediction model 

The final model selected by LASSO included 17 symptoms and sex, as well as 2-way interactions between loss 

of smell and/or taste and 14 symptoms and a 2-way interaction between loss of smell and/or taste and sex. The 

AUC for the main model was 0.76 (95% CI 0.75-0.78) during the training period and 0.72 (95% CI 0.69-0.75) 

during the evaluation period from January 1 to February 10, 2021. The AUC for the time-dependent model was 

0.84 (95% CI 0.83-0.85) and 0.72 (95% CI 0.69-0.75) for the two time periods, respectively.  

Out of the 2116 participants in the CRUSH Covid study, 943 completed the survey and the COVID-19 test on 

the same day, reported at least one of the symptoms included in the CSSS model training, and had a conclusive 

test result (144 positive (15.3%)). The AUC for the main model was 0.78 (95% CI 0.74-0.83) and the AUC for 

the time-dependent model was 0.75 (95% CI 0.70-0.79). All calibration graphs are available in Supplementary 

Figure 4. 
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Prevalence estimates and prediction of cases and hospitalizations 

The prevalence estimates of symptomatic COVID-19 based on data from the CSSS depicted in real-time the first 

and second waves of COVID-19 (Figure 4a). In contrast, the SmiNet data on laboratory-confirmed cases of 

COVID-19 did not detect the first wave (Figure 5a). Retrospective comparisons with national and regional 

register data on COVID-19 hospitalizations showed trends similar to CSSS estimates (Figure 5b, Supplementary 

Figures 5a and 5b), with a higher agreement on a national level observed for the retrospective time-dependent 

model (Figure 4b).  

Overall, the average daily hospitalization rate per week ranged from 0-5 new patients per 100 000 inhabitants 

(≥18 years) in the five largest counties in Sweden during the study period (Supplementary figure 5b). During the 

first wave, our prediction model estimates demonstrated a lower mean error (0.38 average new daily 

hospitalizations per 100 000 inhabitants per week (95% CI 0.32, 0.45)) for subsequent hospitalizations in the ten 

most populated counties, than a model based on case notifications from SmiNet (0.72 (0.64, 0.81)). During the 

autumn, mean errors were similar (Table 2, Supplementary Table 6). The rank-based correlation of CSSS main 

model prevalence with next week hospital admission rate was 0.43 (0.24, 0.62) during the spring and 0.70 (0.49, 

0.90) during the autumn of 2020 (Table 2). The main model further successfully identified three (95% CI 2.3, 

3.7) out of five counties with the highest rates of hospitalizations the following week during the spring and four 

out of five (3.0, 4.6) during the autumn.  

We observed a higher estimated prevalence of symptomatic COVID-19 in women than in men across the entire 

study period, which was most apparent in those aged ≤64 years (Figure 6a). Post-hoc analyses revealed that this 

difference was mainly driven by participants who were healthcare professionals, where women were over-

represented (Figure 6b). 
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DISCUSSION 

In this study, our main findings were two-fold. Firstly, app-based prediction estimates allowed for monitoring of 

COVID-19 prevalence on county level in Sweden before the general PCR testing programme was initiated and 

during gaps in reporting, and secondly, the prediction model could be used to forecast new COVID-19 

hospitalizations. 

The CSSS data collection method allowed rapid data analysis and dissemination of results. National and regional 

CSSS prediction estimates from interim models were shared daily with the public via the CSSS dashboard (21). 

In addition, weekly summaries have been sent to health care leaders across Sweden since May 2020. In contrast, 

we estimate that the time interval between the first presentation of symptoms, confirmation via PCR testing, and 

the reporting of COVID-19 test data on the county and municipality level from the FoHM has taken at least 10 

days throughout the study period, with larger delays during weekends, holidays and problems with the national 

SmiNet register during suspected data breaches. Furthermore, CSSS data proved valuable when testing capacity 

is suddenly compromised, as happened in the fourth most populated county in Sweden during November 2020 

(22). Prevalence estimates derived from the CSSS data were valid during that period, as confirmed by the 

concurrent pattern of COVID-19 hospitalizations in the county, highlighting the need of multiple data sources 

for optimal surveillance.  

A previous study from COVID Symptom Study UK demonstrated how app data from March through September 

2020 could be utilized to successfully identify emerging hotpots in England, with findings validated in UK 

Government test data (8). CSSS confirmed the utility of app-based COVID-19 disease surveillance 

encompassing the full second pandemic wave in the separate Swedish population, contemporaneously expanding 

the scope of the syndromic surveillance to also include forecasts of hospital admissions across different regions. 

Early warnings of upcoming increases in hospital admissions may assist in the allocation of limited healthcare 

resources.  

Syndromic surveillance of a novel virus also enables study participants to report an array of symptoms which 

allows detection of new disease-specific symptoms (6) and symptom clusters associated with disease severity 

(23) or duration (7). In the CSSS data, we observed that the most prevalent symptom in participants with PCR-

confirmed COVID-19 was loss of smell and/or taste, which was rare in participants who tested negative, 

confirming other reports on COVID-19 symptomatology. In the event that novel SARS-CoV-2 variants are 

associated with other symptoms or symptom clustering, this change will also be captured in CSSS app data. 
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More than 166 000 participants (2.4% of the adult population) joined CSSS in the first five weeks after launch, 

supporting the feasibility of large-scale app-based surveillance, which can be rapidly scaled-up without needing 

additional staff or costly resources. The highest rates of participation were in areas where the study’s two 

founding universities are located (Supplementary Figure 5). Run as an academic initiative, the CSSS received 

some media attention in national and local press, but it was only explicitly endorsed by a handful of public health 

leaders. In a survey, only 18% of adults tested for COVID-19 in one of Sweden’s larger cities, Uppsala, had 

heard about the CSSS app. However, among those aware of the CSSS, about half said they were already 

participants. 

CSSS sought to fulfil the core principles of citizen science (24) by allowing participation in multiple stages of 

the scientific process, including defining research questions and study design, gathering and analysing data, and 

communicating results. Participant feedback through the CSSS Facebook page, email, and natural language 

processing of free-text symptom reporting was used to improve the content and design of the app and to expand 

the scope of the research questions. The CSSS dashboard received >8000 visits per month, and our CRAN R 

package covidsymptom (25) for downloading aggregate data was downloaded >900 times (as of April 2021) and 

has been used by public health decision makers.  

Although the use of a smart device app is intended to minimize barriers to enrolment (26), a lesser proportion of 

CSSS participants were male, aged ≥65 years or smokers, and had lower prevalence of comorbidities as 

compared with the general population, indicating overrepresentation of healthy individuals. Even though the 

rates of daily reporting in male and female CSSS participants were comparable, women were also more likely to 

report a PCR SARS-CoV-2 test, which aligns with other Swedish testing patterns (NOVUS (27) and CRUSH), 

as well as with international testing data from the UK and Canada (28, 29). Furthermore, when we applied the 

prediction model to the general population, we observed a higher estimated prevalence of symptomatic COVID-

19 in women than in men, which was partially explained by higher COVID-19 risk among healthcare 

professionals that are more often female.  

A limitation of the CSSS app is that, owing to limited resources, it is only available in Swedish, which precludes 

inclusion of non-Swedish speakers, who may be at high risk of COVID-19 infection (30). It is also possible that 

participants were more likely to join the study and report daily if they experienced symptoms associated with 

COVID-19 than if they were healthy, potentially inflating COVID-19 prevalence estimates. We sought to reduce 
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this bias by excluding the first seven days of data collected for each participant. However, the regional ranking 

of hospital admissions was comparable or slightly less strongly correlated to those based on testing.  

We observed a peak in app-based COVID-19 prevalence estimates in mid-September 2020 with no 

corresponding peak in any disease-specific COVID-19 national register data. The prevalence of loss of smell 

and/or taste, sore throat, and headache were similarly elevated in NOVUS. The FoHM also noted acute 

respiratory infections symptom reporting at this time (31). Weekly laboratory analyses of respiratory viruses 

later indicated a high incidence of common colds caused by rhinoviruses in September 2020 (32). Hence, the 

specificity of the CSSS data was compromised when prevalence of other pathogens with similar 

symptomatology to COVID-19 was elevated. We therefore developed a prediction model, which permitted time-

varying coefficients conditional on the PCR test results during a given period. This model yielded results more 

consistent with the national COVID-19 incidence data. Because of the delay inherent in this type of analysis, the 

time-dependent model is not suitable for real-time COVID-19 surveillance; it is also ineffective when test 

positivity varies greatly across counties. A possible extension of this model would be to use seasonality of 

symptoms from other causes to improve the model. Exceptionally few cases of seasonal influenza were 

confirmed in Sweden in the winter season of 2020/2021 compared with previous years (31, 32), which rendered 

the lower specificity during this period less problematic.  

Conclusion 

Citizen science represents a powerful and rapid asset when combatting public health emergencies. Our 

experience with CSSS suggests that app-based technologies should be incorporated into national research and 

public health efforts to understand and predict the impact of disease.  
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Table 1. Study population characteristics in COVID Symptom Study Sweden.  

 All Women Men 

N (%)1 143 531 (100) 89 545 (62.4) 53 986 (37.6) 

Age, years* 48 (37, 59) 47 (35, 57) 50 (38, 61) 

 Aged ≥65 (%) 22 272 (15.5) 11 641 (13.0) 10 631 (19.7) 

Pregnant (%) .. 1251 (1.4) .. 

BMI, kg/m2* 25 (23, 28) 25 (22, 28) 26 (24, 28) 

 Obese, BMI ≥30 kg/m2 
(%) 25 131 (17.6) 16 355 (18.4) 8 776 (16.3) 

Current smoker (%) 9 291 (6.5) 6 650 (7.4) 2 641 (4.9) 

Cardiovascular disease (%) 6 950 (4.8) 3 100 (3.5) 3 850 (7.1) 

Antihypertensive medication (%) 23 526 (16.4) 12 168 (13.6) 11 358 (21.0) 

Kidney disease (%) 1107 (0.8) 594 (0.7) 513 (1.0) 

Diabetes mellitus (%)  

 Yes, type 1 941 (0.7) 515 (0.6) 426 (0.8) 

 Yes, type 2 3 432 (2.4) 1 423 (1.6) 2 009 (3.7) 

 Yes, gestational 9 (<1) 9 (<1) 0 (0.0) 

 Yes, other 107 (0.1) 60 (0.1) 47 (0.1) 

 Yes, type not specified 838 (0.6) 341 (0.4) 497 (0.9) 

Lung disease (%)  

 Yes, asthma only 13 787 (9.6) 10 022 (11.2) 3 765 (7.0) 

 Yes, both asthma and 
lung disease 913 (0.6) 664 (0.7) 249 (0.5) 

 Yes, lung disease only 1 389 (1.0) 828 (0.9) 561 (1.0) 

 Yes, type not specified 2 056 (1.4) 1444 (1.6) 612 (1.1) 

Current cancer (%) 13 787 (9.6) 10 022 (11.2) 3 765 (7.0) 

Immunosuppressive medication2 (%) 5 817 (4.1) 3 926 (4.4) 1 891 (3.5) 

Health care professional (%)  

 Interacts with patients 15 120 (10.5) 12 816 (14.3) 2 304 (4.3) 

 Does not interact with 
patients 6 742 (4.7) 5 539 (6.2) 1 203 (2.2) 

Months entering the study (%)  

 April-May 2020 122 765 (85.5) 76 039 (84.9) 46 726 (86.6) 

 June-July 2020 11 016 (7.7) 7 307 (8.2) 3 709 (6.9) 

 August-September 2020 22 29 (1.6) 1 455 (1.6) 774 (1.4) 

 October-November 
2020 5 761 (4.0) 3 638 (4.1) 2 123 (3.9) 

 December 2020-January 
2021 1 726 (1.2) 1 089 (1.2) 637 (1.2) 

 February 2021 28 (<1) 14 (<1) 14 (<1) 

Number of daily reports* 43 (13, 119) 43 (14, 116) 43 (13, 124) 
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Duration of study participation, days3* 151 (52, 252) 154 (53, 253) 147 (50, 252) 

PCR test4 (%) 43 501 (30.3) 30 702 (34.3) 12 799 (23.7) 

Antibody test4 (%) 29 208 (20.3) 19 216 (21.5) 9 992 (18.5) 

NDI* 0.36 (-0.25, 1.02) 0.34 (-0.27, 1.00) 0.39 (-0.22, 1.07) 

Foreign background, %* 19 (13, 27) 19 (12, 27) 19 (13, 27) 

Population density, inhabitants/km2* 1706 (357.5244) 1686 (334, 5190) 1729 (389, 5340.) 

1Row percentage, 2Corticosteroids, methotrexate and/or biological agents (treatment of cancer and/or rheumatic 
disease), 3From first to last daily report, 4At any time during follow-up, *Median (first and third quartile); BMI: 
Body Mass Index; 
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Table 2. Predictive capacity of weekly CSSS and case notification data for the following week 
hospitalizations in ten most populated counties* in Sweden during first and second wave, respectively.  

Model First wave Second wave 

Mean absolute deviation (lower better) from a median regression model (daily new hospital admissions per 100 000 inhabitants (≥18 years)) 

 CSSS main model 0.38 (0.32, 0.45) 0.65 (0.52, 0.79) 

 CSSS time-dependent model 0.38 (0.31, 0.45) 0.70 (0.56, 0.85) 

 Official case notification 0.72 (0.64, 0.81) 0.55 (0.43, 0.66) 

Spearman correlation of ranking of counties with following week hospitalization ranking 

 CSSS main model 0.43 (0.24, 0.62) 0.70 (0.49, 0.90) 

 CSSS time-dependent model 0.44 (0.25, 0.62) 0.66 (0.44, 0.88) 

 Official case notification 0.59 (0.42, 0.76) 0.73 (0.53, 0.92) 

Ability to predict top-5 counties for next week hospitalization (number of correct, possible range 0-5) 

 CSSS main model 3 (2.3, 3.7) 4 (3.0, 4.6) 

 CSSS time-dependent model 3.1 (2.4, 3.8) 4 (3.0, 4.6) 

 Official case notification 4 (3.3, 4.5) 3 (2.1, 3.8) 

*Stockholm, Västra Götaland, Skåne, Östergötland, Uppsala, Gävleborg, Jönköping, Västmanland, Värmland, 
Halland  
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Figure 1. COVID Symptom Study Sweden data flow. 
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Figure 2. Cumulative number of study participants (n=143 531) after initial exclusionsꭞ, and number of 
daily reports from these participants stratified by sex and age (<50 and ≥50 years), in COVID Symptom 
Study Sweden during the study period April 29, 2020 to February 10, 2021. 

 

 
ꭞ Excluding individuals who: 1) did not submit any daily reports even at day of registration (n=5931), 2) did not 
state age or self-reported an age at start of participation outside the range of 18-99 years (n=801), 3) stated their 
sex as other (n=200) or intersex (n=36). 

* Temporary halt in data collection due to a technical issue in the COVID Symptom Study app 
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Figure 3. The prevalence of symptoms reported by participants in COVID Symptom Study Sweden with 
a) a negative PCR test for COVID-19 (n=32 089) and b) a positive PCR test for COVID-19 (n=5178). 
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Figure 4. National prevalence estimates, with 95% confidence interval, of symptomatic COVID-19 in 
COVID Symptom Study Sweden, a) Main model (utilized for real-time prediction estimates), and b) Time-
dependent model. 

 
* Time-point for recalibration of CSSS estimated nationwide prevalence using national point prevalence survey 
findings from FoHM 
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Figure 5. National prevalence estimates, with 95% confidence interval, of symptomatic COVID-19 in 
COVID Symptom Study Sweden, combined with retrospective data on a) daily number of new COVID-19 
cases registered in SmiNet, per 100 000 inhabitants, and b) daily number of new hospital admissions 
registered in the Patient Register, per 100 000 inhabitants.  
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Figure 6. National prevalence estimates of symptomatic COVID-19 in COVID Symptom Study Sweden, 
depicting main model and time-dependent model, stratified by a) sex and age (18-39, 40-64, and ≥65 years) 
and b) sex and age (18-39, 40-64, and ≥65 years) and health care professional (HP).  

a) 

 

b) 

 

0

.2

.4

.6

.8

0

.2

.4

.6

.8

May Aug Nov Feb May Aug Nov Feb May Aug Nov Feb

Women, <40y Women, 40ï64y Women, *65y

Men, <40y Men, 40ï64y Men, *65y

Main model CSSS
Timeïdependent model CSSS

Es
tim

at
ed

 p
re

va
le

nc
e 

(%
)

Date

0

.5

1

0

.5

1

May Aug Nov Feb May Aug Nov Feb May Aug Nov Feb May Aug Nov Feb

Women <40y, not HP Women <40y, HP Women 40ï64y, not HP Women 40ï64y, HP

Men <40y , not HP Men <40y, HP Men 40ï64y, not HP Men 40ï64y, HP

Main model CSSS
Timeïdependent model CSSS

Es
tim

at
ed

 p
re

va
le

nc
e 

 (%
)

Date

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 19, 2021. ; https://doi.org/10.1101/2021.06.16.21258691doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.16.21258691
http://creativecommons.org/licenses/by/4.0/

