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Abstract 33 

Psychiatric disorders are complex, heritable, and highly polygenic. Supported by findings of abnormalities 34 

in functional magnetic resonance imaging (fMRI) based measures of brain connectivity, current 35 

theoretical and empirical accounts have conceptualized them as disorders of brain connectivity and 36 

dysfunctional integration of brain signaling, however, the extent to which these findings reflect common 37 

genetic factors remains unclear. Here, we performed a multivariate genome-wide association analysis of 38 

fMRI-based functional brain connectivity in a sample of 30,701 individuals from the UK Biobank and 39 

investigated the shared genetic determinants with seven major psychiatric disorders. The analysis revealed 40 

significant genetic overlap between functional brain connectivity and schizophrenia, bipolar disorder, 41 

attention-deficit hyperactivity disorder, autism spectrum disorder, anxiety, and major depression, adding 42 

further genetic support for the dysconnectivity hypothesis of psychiatric disorders and identifying 43 

potential genetic and functional targets for future studies.   44 
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Introduction 45 

Psychiatric disorders are heritable and highly polygenic1–4, and carry a high burden of disease, measured 46 

in years lived with disability5. Akin to the polygenic architecture of the disorders, where a number of 47 

variants each contribute with small effects, findings from imaging genetics studies have documented a 48 

distributed pattern of small effects across the genome for brain phenotypes derived from magnetic 49 

resonance imaging (MRI)6. Likewise, brain imaging studies of psychiatric disorders have revealed 50 

distributed anatomical and functional alterations across the brain, with a large body of literature indicating 51 

alterations in functional brain connectivity in individuals with a range of psychiatric disorders, including 52 

schizophrenia (SCZ; e.g. Petterson-Yeo et al., 20117), bipolar disorder (BIP; e.g. Syan et al., 20188), 53 

autism spectrum disorders (ASD; e.g. Hong et al.,20199), attention-deficit hyperactivity disorder (ADHD; 54 

e.g. Gao et al., 201910), major depression (MDD; e.g. Brakowski et al., 201711), post-traumatic stress 55 

disorder (PTSD; e.g. Akiki et al., 201712) and anxiety disorders (ANX; e.g. Xu et al., 201913).  56 

Altered brain connectivity in psychiatric disorders might reflect changes in synaptic functioning. 57 

Evidence from induced pluripotent stem cell research shows that mutations relevant to psychiatric 58 

disorders cause synapse deficits14, genome-wide association studies (GWAS) of psychiatric disorders 59 

identified various genes involved in synaptic functioning4,15–17, and gene expression studies identified 60 

differential expression patterns in synapse related genes in these disorders18. 61 

While both neuroimaging and genetic studies each have pointed to synaptic alterations in psychiatric 62 

disorders, only a few have specifically tested this hypothesis in an integrated imaging-genetics framework. 63 

A few studies have explored the genetic architecture of functional brain connectivity19–23, and studies 64 

assessing polygenic risk scores have indicated links between psychiatric disorders and abnormal brain 65 

connectivity24,25. Previous studies also illustrated genetic correlation between various brain imaging 66 

phenotypes and psychiatric disorders that confirm a large degree of shared effect sizes across single 67 

nucleotide polymorphisms (SNPs)26–28. However, we still lack a concise map of the overlap in genetic 68 

architecture between psychiatric disorders and the brain functional connectome. 69 

Recent evidence from anatomical imaging suggests a distributed nature of genetic effects on the brain, 70 

calling for tools that take a multivariate approach to imaging genetics, beyond univariate genome-wide 71 

association studies of single brain phenotypes29. We hypothesized that such distributed nature of the 72 

genetic effects is also observable in functional imaging given the functional interplay of brain regions 73 

(nodes) in the connectome. A multivariate approach would perform better at capturing these distributed 74 

effects than conventional univariate GWASs29, and we therefore deployed such approach to study the 75 

genetic architecture of functional brain connectivity – here defined as the partial correlation between 76 

temporal signal of large-scale brain network nodes30,31 using data from the UK Biobank. Based on 77 

previous research pointing at dysconnectivity in psychiatric disorders, we expected that there is 78 

overlapping genetic architecture between the functional connectome and the disorders that can be captured 79 
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using our multivariate approach. We therefore assessed genetic overlap between the connectome and 80 

seven major psychiatric disorders (ADHD, ANX, ASD, BIP, MDD, PTSD and SCZ; Supplementary 81 

Table 1). 82 

 83 

Results 84 

We performed two multivariate GWAS using the Multivariate Omnibus Statistical Test (MOSTest)29, one 85 

based on connectivity of 210 connections between 21 network nodes defined for the whole brain 86 

functional connectome, and one based on temporal signal variance in the respective nodes. The main 87 

analysis included data from 30,701 white British individuals aged 45-82 years (52.8% females) and 88 

replication analysis included a cross-ethnic sample of 8954 individuals aged 45-83 years (53.0% females). 89 

The Miami plots in Figure 1A illustrate the genetic associations calculated using MOSTest, and for 90 

comparison the associations identified using the traditional min-p approach, which takes the smallest p-91 

value across univariate GWASs. Supplementary Fig. 2 depicted corresponding QQ-Plots. MOSTest 92 

identified 15 genetic loci significantly (P < 5e-8) associated with functional brain connectivity (FC) and 5 93 

loci significantly associated with node variance, whereas the min-p approach only identified 2 loci for FC 94 

and 3 loci for node variance. Seven of 15 FC loci (47%) and 2 of 5 node variance loci (40%) were 95 

replicated at nominal p-value in the cross-ethnic independent replication sample (See Suppl. Fig. 2). Four 96 

of the five loci identified for node variance were also present for FC, in line with the phenotypic 97 

relationship between the two. The bottom row in Figure 1A shows individual univariate p-values for the 98 

MOSTest-discovered loci, illustrating that the univariate approach is only good at capturing strong effects 99 

(e.g. locus 3 for FC), yet fails to discover loci with enriched signal across brain phenotypes. This also 100 

indicates that signal captured by the min-p approach reflects mostly the effect of individual phenotypes, 101 

rather than the combined signal as captured by MOSTest. Figure 1B and corresponding Suppl. Figure 3 102 

further illustrate the distributed nature of effects across the brain, where a given locus shows differential 103 

patterns of regional SNP effects. Finally, genetic correlation analysis of univariate node variance GWAS 104 

illustrated strong genetic correlations between different brain network nodes, largely in line with the 105 

phenotypic correlations observed when correlating the fMRI time series, and adding further support to a 106 

distributed nature of effects in fMRI-based connectomics (Suppl. Fig. 4). 107 

 108 
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Figure 1. Multivariate and univariate architecture of the brain functional connectome. A) The first column 

of the figure illustrates the results for functional connectivity, the second column for node variance. The first row 

of panel A shows the Miami plots with the multivariate GWAS results from the MOSTest approach in the top, and 

the results from the traditional min-p approach at the bottom. The second row shows for each locus identified by 

MOSTest, the univariate p-values of the lead SNP in each locus. A majority of loci identified by the multivariate 

approach were not detected via the univariate approach. B) This panel show the univariate p-values for the lead 

SNPs of the significant loci identified by MOSTest. The first row of the panel shows the SNPs significant at 

nominal p-value (P < 0.05), the second row shows the significant SNPs at P < 5e-8. In the first column (FC) the 

non-significant SNPs are hidden. The lead SNPs from different loci are identified by a different color. Lead SNP 

associated with FC locus 3 were most often significant. The patterns are visualized in more detail in Suppl. Figure 

3. In the second column (node variance), non-significant SNPs are denoted by a cross and color indicates the p-

value for the significant nodes. Most significant SNPs were part of node variance locus 2. 

 109 

To complement the multivariate stream, we further analyzed the univariate GWAS for each 110 

connection in the full brain network and for each node variance separately. Figure 2 depicts the SNP-111 

based heritability for each connection (panel A) and for each node (panel B). SNP-based heritability 112 

ranged from 0.14% to 10.58% for brain connectivity (for 7 connections it could not be computed) and 137 113 

out of 210 connections had a heritability above 1.96 times its standard error, indicating genetic signal32. 114 

The connection with the highest heritability was the connection between nodes reflecting activity in the 115 

prefrontal cortex (network 16) and the default mode network (network 14). We also observed high 116 

heritability estimates between bilateral homologous networks (e.g. network 21 and network 6) or between 117 

networks that involve the default mode network (e.g. network 14 and network 9, network 14 and network 118 

1). Likewise, for node variance SNP-based heritability ranged from 3.92% to 13.64% with all nodes above 119 

1.96 times their standard error, and highest heritability observed for node 9 (default mode network). 120 

Univariate analysis revealed no significant loci for any of the nodes or edges when controlling for the total 121 

number of edges or nodes through Bonferroni correction. The number of significant loci for the 122 

multivariate stream compared to the univariate stream adds further support that the genetic signal is 123 

distributed across the brain functional connectome, allowing us to capitalize on the signal for loci 124 

discovery.  125 

 126 
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Figure 2. Heritability across edges and nodes. Partitioned heritability (h2) across 210 edges (panel A) and 21

nodes (panel B). (A) Upper half and lower halves of the figure are identical. Dark green indicates lowest heritability,

bright yellow indicates highest heritability. Edges that did not survive heritability threshold are greyed out. Edges for

which heritability could not be calculated are marked with a cross. (B) Color scheme follows panel A and standard

errors are depicted as bars 

 127 

Next, we tested for overlap between the two MOSTest-derived genetic profiles (connectivity and128 

node variance) with seven major psychiatric disorders (ADHD, ASD, ANX, BIP, MD, PTSD, SCZ) using129 

conjunctional FDR analysis33. We found shared loci for six of the seven disorders, namely for ADHD,130 

ASD, ANX, MD, BIP and SCZ (Fig. 3). By far the largest number of shared loci was implicated for SCZ131 

(43 for FC, 22 for node variance). We found 6 loci for FC and 1 locus for node variance in ADHD, 5 loci132 

for FC and 1 locus for node variance in BIP, and 4 loci for FC and 3 loci for node variance in ASD.133 

Additionally, we found 1 shared locus between FC and MDD, and 1 shared locus between node variance134 

and ANX. We did not find any shared loci between either FC or node variance and PTSD. Supplementary135 

Fig. 5 depicts quantile-quantile plots for all genetic overlap analyses. 136 

Using Functional Mapping and Annotation of GWAS (FUMA)34, we mapped the loci shared137 

between the connectome and the disorders to a number of genes listed in Suppl. Table 2. Strikingly,138 

several of the mapped genes are known for their strong roles in synapse functioning. For example, we139 

mapped BDNF to one of the loci shared between SCZ and FC. BDNF is a major regulator of synaptic140 

transmission and synaptic plasticity35. Another example is NRXN1, found also for SCZ and FC, which is141 

known for its role in the formation of synaptic contacts36. As expected, several of the genes were142 

previously associated with psychiatric conditions, or with neurodevelopment and other brain-related143 
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processes. Utilizing the pathway browser on the identified gene sets37, we also found that the mapped 144 

genes were involved in cell signaling and signal transduction, more specifically protein-protein 145 

interactions at the synapses, WNT and NTRK signaling, but also a number of other biological processes 146 

such as chromosome maintenance and mitosis (Supplementary Fig. 6). 147 

 148 
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Figure 3. Manhattan plots illustrating genetic overlap between disorders and the multivariate functional brain

phenotypes. Association strength per locus is depicted as q-value from the conjunctional FDR analysis33. Values for

FC and node variance are shown in the same figure with separate colors. 
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 149 

In addition to the conjunctional FDR analyses, we also calculated genetic correlation between 150 

each connection or node surviving our pre-defined threshold of 1.96 times its SE, and the seven 151 

psychiatric disorders. Figure 4A illustrates that genetic correlation was generally low for the connectome 152 

and no connection survived after correcting for all 7 disorders and all connections. When only correcting 153 

for the number of connections but not for the number of disorders, we found a single significant 154 

connection for schizophrenia, which was the link between the auditory cortex and the thalamus (rg = 155 

0.2452, pBONF = 0.0137). For node variance, we also found one significant association when correcting for 156 

all disorders and nodes, specifically between SCZ and variance in the tempo-parietal network (rg = 0.2171, 157 

pBONF = 3.9e-06). 158 

 159 
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Figure 4. Genetic correlation between the connectome and psychiatric diagnoses. (A) The tiles show the genetic

correlations between each edge of the whole brain network with diagnosis given psychiatric disorder. Size of the tile
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represents the standard error. Edges with a heritability below 1.96 its standard error were not considered in the 

analysis and marked with a black cross. Among all disorders, only one edge marked with a black border was 

significant for SCZ after correcting for the number of edges (210), whereas none was significant when correcting for 

the number of edges and the number of disorders. Upper and lower half of each matrix are identical. (B) Genetic 

correlation analysis at the node level. Significant genetic correlations within a psychiatric disorder are indicated with 

a white asterisk when correcting for the number of nodes, whereas a green asterisk indicates significance when 

correcting for both, the number of nodes and the number of disorders. The latter stringent correction was surpassed 

for temporal variance of the fronto-parietal node and SCZ. 

 160 

Discussion 161 

Taken together, our study provided insight into the shared genetic architecture between measures of the 162 

brain functional connectome and common psychiatric disorders. Deploying multivariate genetic analyses 163 

of fMRI data from more than 30,000 individuals allowed us to capitalize on the distributed nature of 164 

genetic variation across the interconnected whole brain network to discover novel connectome-associated 165 

variants beyond what can be discovered using standard univariate approaches. Our analyses pinpointed a 166 

number of gene variants overlapping between the connectome and psychiatric disorders, where several of 167 

the corresponding mapped genes are known for their involvement with synapse formation and 168 

functioning.  169 

We used two measures of the brain functional connectome – the 210 temporal correlations of brain 170 

signal from 21 nodes as measures of functional brain connectivity as well as temporal signal variation of 171 

these 21 network nodes. Given the interconnectedness of the connectome, we hypothesized that many 172 

connections or nodes would have overlapping genetic signatures. Indeed, our results illustrate that the 173 

genetic architecture of brain function is distributed across the brain. Our deployed multivariate approach 174 

successfully leveraged this pleiotropy for discovery, revealing a variety of genetic effects that would not 175 

have been discovered with the standard univariate GWAS approach, including the commonly used min-p 176 

approach which identifies the minimum p-value across univariate GWASs. We observed that the 177 

significant lead SNPs from MOSTest were often not significantly associated with the univariate measure. 178 

This demonstrates that using multivariate genetic analysis can be valuable to complement the univariate 179 

approach in settings like brain imaging where the signal is largely distributed. MOSTest is to some degree 180 

dependent on granularity as also previously shown38 which may explain why MOSTest identified more 181 

loci for functional connectivity than for node variance, although  p-values were generally lower in node 182 

variance compared to functional connectivity.. For both, node variance and connectivity the multivariate 183 

approach increased discovery compared to standard approaches, yet different parcellations may yield even 184 

further discoveries in future research. 185 
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From our multivariate signatures of the connectome, we were able to identify a number of shared loci 186 

with psychiatric disorders through conjunctional FDR. The strongest degree of overlap was implied for 187 

SCZ yet all other psychiatric disorders apart from PTSD showed some degree of overlap as well, in 188 

particular with connectivity. Several synapse-related genes were among the overlapping genes, including 189 

some involved in the neurodevelopmental formation of synapses. This is particularly intriguing given that 190 

many psychiatric disorders are conceptualized as neurodevelopmental disorders even if they are typically 191 

diagnosed in adulthood. Further, many disorders are conceptualized as disorders of brain dysconnectivity, 192 

as initially proposed for schizophrenia39. This is now established across various disorders40 and our results 193 

provide further evidence from the genetics end. 194 

We provided univariate analyses in addition to the multivariate stream and showed a map of genetic 195 

correlations between connectivity, node variance and psychiatric disorders. Only a few edges were 196 

significant after correcting for multiple testing. With most stringent correction applied, we corrected for 197 

the number of comparisons in the network (210 edges / 21 nodes) and the number of disorders (7) and 198 

found that variance in the tempo-parietal node was associated with SCZ. Given this high level of 199 

stringency, we also reported results when not additionally controlling for the number of disorders and 200 

found a genetic association between SCZ and an auditory-thalamic edge. While this is a highly interesting 201 

observation in the light of auditory hallucinations observed in SCZ, the results need replication in 202 

independent data given that it only survived partial multiple-testing adjustment.   203 

An important caveat to note is that despite the large sample sizes, only a few edges were significantly 204 

associated with a particular psychiatric disorder in the univariate analyses. These results underline the 205 

distributed nature of the genetic effects across the brain and highlight the importance of large samples. 206 

While the GWASs on the functional connectivity all contained the same number of individuals (n = 207 

30,701), the size of the GWAS for each psychiatric disorder appeared to contribute to the power to detect 208 

genetic overlap. Therefore it is possible that more genetic overlap can be detected with future releases of 209 

psychiatric disorders summary statistics that are based on larger samples. Furthermore, temporal signal 210 

variance at the node level showed both larger heritability and effect sizes than edge functional 211 

connectivity. This may be partly explained by the granularity of the connectivity measure, its partial 212 

correlation account for all other edges in the network, or a better representation of the nodes across 213 

individuals compared to the potentially highly individualized network configurations41,42, yet it may also 214 

imply that functional connectivity is less strongly associated with psychiatric disorders than node 215 

variance. At the phenotypic level node variance has been associated with psychiatric disorders, with effect 216 

sizes comparable to connectivity43–45. Given that our genetic analyses often imply similar genes for node-217 

level and connectivity-level, the underlying sources may align despite differences in current association 218 

effect sizes. 219 
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In conclusion, we here revealed a distributed nature of genetic effects on brain function and 220 

integration, and identified a number of genetic loci associated with key properties of the brain functional 221 

connectome. Further, we revealed a large degree of genetic overlap between multivariate measures of the 222 

brain functional connectome and a number of psychiatric disorders with genes pointing at synaptic 223 

plasticity. This may help further disentangle the complex biological underpinnings of psychiatric disorders 224 

and provide a bridge between functional connectivity alterations and genetic variations in patients. There 225 

is a need for follow-up experimental studies building on the discovered loci to disentangle the biological 226 

mechanisms. 227 

 228 
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Methods 371 

 372 

Sample and exclusion criteria 373 

We accessed resting state fMRI data from the UK Biobank46, a large-scale resource of imaging, genetics, 374 

and other biological and psychological data (access with permission no. 27412). All participants provided 375 

signed informed consent before inclusion in the study. The UK Biobank was approved by the National 376 

Health Service National Research Ethics Service (ref. 11/NW/0382).We selected data from individuals 377 

with White British ancestry, identified based on the genetic clustering performed by the UK Biobank 378 

team47. Data of all eligible participants were included for the main analysis in November 2020 and we did 379 

not exclude individuals based on a diagnosis. The resulting sample comprised data of 30.701 individuals 380 

with a mean age of 64.24 years (SD: 7.50, range: 45-82; 52.8% females). Additional data became 381 

available afterwards and was partly used for replication (see Replication section). 382 

 383 

Image acquisition and pre-processing  384 

Data had been acquired by the UK Biobank study team46. The fMRI images were collected on two 385 

identical 3T Siemens Magnetom Skyra scanners in the UK with a 32 channel head coil (Siemens 386 

Healthcare GmbH, Erlangen, Germany). Data was recorded using a gradient-echo echo planar imaging 387 

sequence with x8 multislice acceleration (TR: 0.735s, TE: 39ms, FOV: 88x88x64 matrix, FA: 52°) with a 388 

voxel size of 2.4x2.4x2.4mm. One fMRI sequence took approximately 6 minutes. The protocol further 389 

included T1 imaging, acquired using a MPRAGE sequence with in-plane acceleration (iPAT) of 2 390 

(resolution: 1mm3, FOV: 208x256x256 matrix).  391 

 Data had been preprocessed by the UK Biobank study team as described in Alfaro-Almagro et al. 392 

(2018). Briefly, preprocessing used the FSL pipeline48,49, which included unwarping, motion correction 393 

using MC-FLIRT (Jenkinson, Bannister, Brady, & Smith, 2002), and intensity normalization. Artifacts 394 

were removed using ICA and FIX preprocessing50,51. The final step was a group ICA using MELODIC52 395 

which decomposed the data using independent component analysis into 25 components.  396 

 We retrieved individual level time series data for each subject and component (output from dual 397 

regression at model order 25). We computed functional brain networks using the FSLNets toolbox53. First, 398 

we regressed the time series of four noise components from the time series of the remaining 21 399 

components and subsequently removed those four components. Next, we estimated functional 400 

connectivity (FC) as the regularized partial correlations of the component time series, implementing an 401 

approach developed by Ledoit & Wolf (2012) which performs an automated adjustment of the shrinkage 402 

parameter lambda, as implemented in our earlier work54. As the last step, we regressed age, age2, sex, 403 

scanner, motion, signal-to-noise ratio (SNR), and the first 20 genetic principal components from the 404 
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individual connection strengths, residualizing each edge (210 in total) of the partial correlation matrix. In 405 

addition to functional brain connectivity, we also performed an analysis of the variance in signal 406 

amplitude of the 21 components48, and performed the same residualisation in this node-level analysis as 407 

described above for the edge level. 408 

 409 

Univariate and Multivariate Genome-Wide Analysis 410 

We performed multivariate and univariate GWAS using the Multivariate Omnibus Statistical Test 411 

(MOSTest)29. MOSTest takes as input all univariate test statistics (z-scores) for each SNP, as obtained 412 

through standard association testing with each pre-residualized phenotype, and compares this to test 413 

statistics obtained following a single random permutation of the genotype vector. A multivariate test 414 

statistic is then calculated from this comparison as the Mahalonobis norm, with the probability of the 415 

observed test-statistic being derived from a Chi-square distribution. Further details of the method are 416 

described in Van der Meer et al. (2020). MOSTest returns a multivariate test statistic, where in contrast to 417 

classical univariate GWAS that link a given SNP with a single phenotype, for each SNP the multivariate 418 

association across all included phenotypes is provided. This allowed us to retrieve one multivariate 419 

summary statistic for functional brain connectivity (edge level), and one for node variance (node level). In 420 

addition, we retrieved classical univariate summary statistics for follow-up analyses. 421 

  422 

Summary statistics for psychiatric disorders 423 

We accessed publicly available summary statistics for Attention-Deficit Hyperactivity Disorder 424 

(ADHD)55, anxiety disorder (ANX)56, autism spectrum disorder (ASD)57, bipolar disorder (BIP)58, major 425 

depression (MD)59, Post-Traumatic Stress Disorder (PTSD)60, and schizophrenia (SCZ)61. For details, see 426 

Suppl. Fig. 1. 427 

 428 

Pleiotropy-informed conjunctional false discovery rate 429 

Due to the complex and polygenic architecture of our brain phenotypes, we utilized pleiotropy-informed 430 

conjunctional false discovery rate (conjFDR) as implemented in the pleioFDR toolbox33. The conjFDR 431 

identifies shared genomic loci between two traits regardless of effect directionality and effect size, making 432 

it ideally suited to compare a multivariate summary statistic from MOSTest (here: FC and variance) 433 

against the summary statistics of a given disorder (here: SCZ, BD, MD, ASD, ADHD, ANX, PTSD).  434 

 435 

Linkage Disequilibrium Score Regression 436 

For the univariate summary statistics, we estimated partitioned heritability62 and genetic correlation with 437 

LD-score regression using the LDSC toolbox63.  We also estimated genetic correlation between each edge 438 

and temporal variance in each node with the seven psychiatric disorders using cross-trait LDSC63–65. Of 439 
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note, genetic correlations require effect directions and are thus not applicable to the multivariate summary 440 

statistics derived from MOSTest. We therefore used genetic correlations in connection with univariate 441 

statistics as a complement to the multivariate pipeline.  442 

 443 

Gene mapping and annotation 444 

We used the Functional Mapping and Annotation (FUMA) tool to map loci derived through conjunctional 445 

FDR analyses to genes34. We then used the gene list extracted through FUMA to link the genes to 446 

biological processes using the synGO toolbox to map synaptic genes66, and the reactome toolbox to map 447 

the genes to a range of biological processes37. 448 

 449 

Replication 450 

To validate the discovered loci, we performed a replication analysis of our two main MOSTest analyses 451 

on a dataset containing all non-White British subjects with available data as well as a new batch of data 452 

(including White British) that arrived after we performed the main analyses. This resulted in a dataset 453 

containing 8954 individuals.  454 
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