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Abstract  18 

SARS-CoV-2 infection results in highly heterogeneous outcomes, from cure without symptoms to acute 19 

respiratory distress and death. While immunological correlates of disease severity have been identified, 20 

how they act together to determine the outcomes is unknown. Here, using a new mathematical model of 21 

within-host SARS-CoV-2 infection, we analyze diverse clinical datasets and predict that a subtle interplay 22 

between innate and CD8 T-cell responses underlies disease heterogeneity. Our model considers essential 23 

features of these immune arms and immunopathology from cytokines and effector cells. Model 24 

predictions provided excellent fits to patient data and, by varying the strength and timing of the immune 25 

arms, quantitatively recapitulated viral load changes in mild, moderate, and severe disease, and death. 26 

Additionally, they explained several confounding observations, including viral recrudescence after 27 

symptom loss, prolonged viral positivity before cure, and mortality despite declining viral loads. 28 

Together, a robust conceptual understanding of COVID-19 outcomes emerges, bearing implications for 29 

interventions.             30 

 31 

Teaser 32 

Modeling explains how a subtle interplay between innate immune and CD8 T-cell responses determines 33 

the severity of COVID-19.  34 
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Introduction 35 

Coronavirus disease 2019 (COVID-19), a respiratory infection caused by the severe acute respiratory 36 

syndrome coronavirus 2 (SARS-CoV-2), evokes remarkably heterogeneous clinical outcomes (1, 2). 37 

While some individuals are cured without any symptoms, others suffer mild to moderate symptoms, and 38 

yet others experience severe disease requiring hospitalization and intensive care, with a sizeable fraction 39 

of the latter suffering death (1–3). Several demographic correlates of disease severity, such as gender, co-40 

morbidities, and age, have been identified (4). Further, immunological correlates of severe disease 41 

outcomes, such as a subdued early innate immune response (5), and a late surge of proinflammatory 42 

cytokines (6, 7) have also been reported. Yet, what determines this diversity of outcomes has remained an 43 

outstanding question, challenging our understanding of infectious disease biology and, more immediately, 44 

precluding optimal strategies for combating the raging COVID-19 pandemic.  45 

While viral factors, including emerging mutations (8), may have a role in determining the outcomes, the 46 

heterogeneous outcomes were reported in early studies (2, 3), before the majority of the clades of SARS-47 

CoV-2 emerged (9), suggesting that the heterogeneity potentially originates from the variability in the 48 

host immune responses to the infection (6). Rapidly accumulating evidence reinforces the role of the 49 

immune response, particularly of the innate and the CD8 T-cell responses, in determining disease 50 

outcomes: Soon after infection, an innate immune response is first mounted, involving the production of 51 

cytokines, particularly type I and type III interferons, by virus-infected and immune cells (10). Interferons 52 

work across viruses and, through autocrine and paracrine signaling mechanisms, can reduce viral 53 

production from infected cells and render proximal target cells temporarily resistant to infection, 54 

controlling disease progression (10, 11). With SARS-CoV-2, patients with mild disease had higher levels 55 

of interferons in their upper respiratory airways than those with more severe disease, suggesting that 56 

robust innate immune responses contribute to reduced severity of infection (5).  57 

A few days into the infection, the adaptive immune response involving virus-specific effector CD8 T-58 

cells is triggered. CD8 T-cells are thought to play a critical role in the clearance of SARS-CoV-2 (7): The 59 

earlier the first detectable CD8 T-cell response, the shorter is the duration of the infection (12). CD8 T-60 

cell numbers were higher in the bronchoalveolar lavage fluids of individuals with mild/moderate 61 

symptoms than in those with severe infection (13). Clonal expansion of CD8 T-cells was compromised in 62 

patients with severe symptoms (13, 14). Infected individuals often suffer lymphopenia (15, 16), with the 63 

extent of lymphopenia correlated with disease severity (15, 17). Finally, the severity of the symptoms was 64 

proportional to the level of exhaustion of CD8 T-cells (15, 17). Accordingly, a combination of the innate 65 

and CD8 T-cell responses appears to drive viral clearance.  66 

Once the disease is resolved, typically in 2-3 weeks, the cytokines and activated CD8 T-cell populations 67 

decline and eventually fade away, leaving behind memory CD8 T-cells (7). If the disease is not resolved 68 

in a timely manner, uncontrolled cytokine secretion may result, triggering immunopathology and severe 69 

disease (6). Indeed, an elevated interferon response was detected in the lower respiratory tracts of 70 

severely infected and deceased patients (5, 18, 19), with the lung suffering the most damage (20). Innate 71 

immune cell-types, such as neutrophils, macrophages and natural killer cells, which are thought not to 72 

contribute significantly to clearance, may nonetheless worsen the damage (6, 21). Prolonged disease, 73 

where viral load could be detected in patients over extended durations–up to 66 days on average in some 74 

cohorts–has been reported (22–24). Proliferation and differentiation of CD8 T-cells were compromised in 75 
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prolonged SARS-CoV-2 positive patients (22). The innate immune and CD8 T-cell responses thus appear 76 

to be involved in these undesirable outcomes of the infection as well.  77 

Antibodies, the other component of the adaptive immune response, arise much later, a couple of weeks 78 

into the infection (7, 25). While important in vaccine-mediated protection (26, 27), their role in clearing 79 

infection in the unvaccinated is thought to be less significant than that of CD8 T-cells (7). Antibody titers 80 

are higher in severely infected than in mildly infected individuals (7). Whereas a subset of antiviral 81 

antibodies possibly contribute to the clearance of infection (28), autoantibodies, typically generated in 82 

COVID-19 patients, against cytokines and cell surface and structural proteins of the host, may adversely 83 

affect clinical outcomes (29).  84 

Based on these observations, we hypothesized that the strength and the timing of the innate and the CD8 85 

T-cell responses were the predominant factors responsible for the heterogeneous outcomes of SARS-86 

CoV-2 infection. To test this hypothesis, we developed a mathematical model of within-host SARS-CoV-87 

2 dynamics that incorporated the key features of the innate and the CD8 T-cell responses. We validated 88 

the model against patient data and employed it to elucidate the interplay of the two immune arms in the 89 

outcomes realized. 90 

Results 91 

Mathematical model of within-host SARS-CoV-2 dynamics  92 

We considered an individual infected by SARS-CoV-2. We modeled disease progression in the individual 93 

by following the time-evolution of the population of infected cells (𝐼), the strength of the effector CD8 T-94 

cells (𝐸), the cytokine-mediated innate immune response (𝑋), and tissue damage (𝐷) (Figure 1). We 95 

considered the essential interactions between these entities (30) and constructed the following equations 96 

to describe their time-evolution: 97 

𝑑𝐼

𝑑𝑡
= 𝑘1(1 − 𝜀𝐼𝑋)𝐼 (1 −

𝐼

𝐼𝑚𝑎𝑥
) − 𝑘2𝐼𝐸 98 

𝑑𝐸

𝑑𝑡
= 𝑘3 (

𝐼𝐸

𝑘𝑝 + 𝐼
) − 𝑘4 (

𝐼𝐸

𝑘𝑒 + 𝐼
) 99 

𝑑𝑋

𝑑𝑡
= 𝑘5𝐼 − 𝑘6𝑋 100 

𝑑𝐷

𝑑𝑡
= 𝛼𝐼𝐸 + 𝛽𝑋 − 𝛾𝐷 101 

Here, the infected cells follow logistic growth (30), with a per capita growth rate 𝑘1 and carrying capacity 102 

𝐼𝑚𝑎𝑥. This growth represents the infection of target cells by virions produced by infected cells (30). 𝐼𝑚𝑎𝑥 103 

is the maximum number of cells that can get infected, due to target cell or other limitations. The growth 104 

rate 𝑘1 is assumed to be reduced by the innate immune response, 𝑋, with the efficacy 𝜀𝐼𝑋, due to 105 

interferon-mediated protection of target cells and/or lowering of viral production from infected cells (10). 106 

Effector cell-mediated killing of infected cells is captured by a mass action term with the second-order 107 

rate constant 𝑘2. The proliferation and exhaustion of CD8 T-cells are both triggered by infected cells at 108 

maximal per capita rates 𝑘3 and 𝑘4, respectively. 𝑘𝑝 and 𝑘𝑒 are the levels of infected cells at which the 109 

proliferation and exhaustion rates are half-maximal, respectively. Following previous studies, we let 𝑘3 <110 
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𝑘4 and  𝑘𝑝 < 𝑘𝑒, so that proliferation dominates at low antigen levels and exhaustion at high antigen 111 

levels (30–32). The innate response, 𝑋, is triggered by infected cells at the per capita rate 𝑘5 and is 112 

depleted with the first-order rate constant 𝑘6. To assess the severity of infection, we employ 𝐷, which 113 

represents the instantaneous tissue damage, with contributions from CD8 T-cell mediated killing of 114 

infected cells, determined by 𝛼𝐼𝐸, and from proinflammatory cytokines, represented by 𝛽𝑋. Inflamed 115 

tissue may recover with the first order rate constant 𝛾.  116 

Solving these equations would predict the time-course of the infection. We tested the model by applying 117 

it to describe available patient data of viral load changes. 118 

 119 

Figure 1: Schematic of the mathematical model of within-host SARS-CoV-2 infection. 𝐼 represents 120 
infected cells, 𝑋 represents the innate immune response, 𝐸 the CD8 T-cell response and 𝐷 the tissue 121 
damage. Arrows and blunt-head arrows depict positive and negative regulation, respectively. The 122 
parameters and expressions shown next to the arrows are described in the text.  123 

 124 

Model fits patient data  125 

A number of studies have reported viral load measurements during the course of SARS-CoV-2 infection 126 

(33, 34). In most studies, measurements begin from the time of symptom onset because the time of 127 
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contracting the disease is rarely known. Because the prodromal period may vary substantially across 128 

individuals (35), measurements from symptom onset may miss the initial phases of the immune response, 129 

which can be an important determinant of disease outcome. In asymptomatic individuals, this early 130 

response clears the infection (36). We therefore sought datasets that included accurate estimates of the 131 

time of contracting the disease. Fortunately, we found such data in a study of one of the first SARS-CoV-132 

2 transmission chains in Germany in early 2020 (37, 38). The study traced the dates of first exposure to 133 

the virus for each patient in the transmission chain (38) (supplementary text section A; supplementary 134 

table S1). Further, daily viral load data, measured in nasopharyngeal swab and sputum samples, for all 135 

patients starting from the onset of symptoms or earlier were reported (37). Data from the nasopharyngeal 136 

swabs are thought not to be the best correlates of disease outcome and severity (39). The sensitivity of 137 

SARS-CoV-2 detection in sputum is substantially higher than in nasopharyngeal swabs (40). We 138 

therefore employed data from the sputum samples in this study. We considered data from day zero to day 139 

15 into the infection (supplementary text section A; supplementary tables S1-S3). Beyond two weeks, the 140 

humoral response is mounted in most patients (7, 25), the role of which, as mentioned above, is poorly 141 

understood (7).   142 

We fit our model to the above viral load data, representing the dynamics of the infection and immune 143 

responses in the respiratory tract. All patients in this dataset had mild symptoms, which waned by day 7 144 

after the first virological test. The patients were of working age and otherwise healthy. In such patients, 145 

markers of T-cell exhaustion are not significantly higher than healthy individuals and are markedly lower 146 

than severely infected patients (15). Therefore, to facilitate more robust parameter estimation, we ignored 147 

CD8 T-cell exhaustion in the present fits (by fixing 𝑘4 = 0). Furthermore, we assumed that the viral 148 

population, 𝑉, is in a pseudo-steady state with the infected cell population, so that 𝑉 ∝ 𝐼. Since, the 149 

dynamics of tissue damage (𝐷) is dependent on but does not affect the dynamics of infected cells (𝐼), CD8 150 

T-cells (𝐸) and the cytokine mediated innate response (𝑋), in our model, we ignored 𝐷 for the present 151 

fitting. This is further justified because the patients considered for fitting are mildly/moderately infected, 152 

and are expected to suffer minimal tissue damage. Because the patients were all similar, we assumed that 153 

𝐼𝑚𝑎𝑥 would be similar in them and proportional to 𝑉𝑚𝑎𝑥, the highest viral load reported across the 154 

patients. We thus fit log10(𝐼/𝐼𝑚𝑎𝑥) calculated with our model to the normalized data of log10(𝑉/𝑉𝑚𝑎𝑥). 155 

Our fits were not sensitive to 𝐼𝑚𝑎𝑥 (supplementary tables S4, S5). We allowed a delay following exposure 156 

to account for the incubation period before viral replication can begin. We used a nonlinear mixed-effects 157 

modelling approach for parameter estimation (41). Our model provided good fits to the data (figure 2, 158 

first column of subplots) and yielded estimates of the parameters at the population-level (supplementary 159 

table S6) and for the individual patients (supplementary table S7). 160 

To ascertain the robustness of our model and fits, we tested several variants of our model. We fit variants 161 

without the adaptive response, without the innate response, with a logistic growth formulation of the 162 

innate immune response, with the innate response amplifying the adaptive response, or combinations 163 

thereof to the same data (supplementary text section B, supplementary table S8). The fits were all poorer 164 

than the present model (figure 1, supplementary table S8). We thus employed our present model for 165 

further analysis. 166 
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 167 

Figure 2: Fits of the mathematical model to patient data. X-axis represents time from viral exposure in 168 
all subplots. The quantity plotted on the Y-axis for all subplots in a given column is mentioned at the top of 169 
the column. The first column shows data from patients in open circles (37). These represent normalized 170 
viral loads from sputum samples. Best-fit model predictions are shown as black curves. Patient IDs as 171 
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provided in Bӧhmer et al. (38) are in the top-left corner of each subplot. The magenta curves in the 172 
second column, the blue area plots in the third column and the green area plots in the fourth column 173 
represent the corresponding dynamics of infected cells, cytokine mediated innate immune response and 174 
effector CD8 T-cell mediated adaptive immune response, respectively. Parameter values used are listed 175 
in supplementary table S7. 176 

 177 

Model elucidates distinct patterns of viral clearance and associated immune responses  178 

The best-fits above yielded important insights into the underlying dynamics of disease progression and 179 

clearance. First, the time between viral exposure and noticeable escalation of the viral load, i.e., the post-180 

exposure delay in viral replication, varied from 0.8 d to 6.6 d in the patients analyzed, with a mean of 181 

2.7±0.8 days, reflecting the variability in the time of the establishment of systemic infection following 182 

exposure, and consistent with the variable prodromal period observed (35). The initial, possibly stochastic 183 

(42), events during the establishment of infection might be associated with the variability in the delay in 184 

viral replication. Second, our model offered an explanation of the two distinct patterns of clearance 185 

observed in the patients. Patients 1, 2, 3, 4, and 14 had a single peak in viral load (or infected cell 186 

numbers) followed by a decline of viral load leading to clearance (figure 2, second column of subplots). 187 

Patients 7, 8 and 10, in contrast, had a second peak following the first. Our model predicted these distinct 188 

patterns as arising from the temporal variation in the dynamics of the innate and CD8 T-cell responses.  189 

The interactions between the innate response, 𝑋, and infected cells, 𝐼, in our model have signatures of the 190 

classic predator-prey system (43) with 𝐼 the prey and 𝑋 the predator: In the absence of 𝑋, 𝐼 grows. 𝐼 also 191 

triggers 𝑋, which in turn suppresses 𝐼. 𝑋 declines in the absence of 𝐼. These interactions, as with the 192 

predator-prey system (43), predict oscillatory dynamics. Thus, following infection, 𝐼 grows, causing a rise 193 

of 𝑋 in its wake. When 𝑋 rises sufficiently, it suppresses 𝐼. When 𝐼 declines substantially, the production 194 

of 𝑋 is diminished and 𝑋 declines. This allows 𝐼 to rise again and the cycle repeats. This cycle is broken 195 

in our model by CD8 T-cells, 𝐸. Viral clearance is not possible in our model without 𝐸 (supplementary 196 

figure S1). When 𝐸 rises, it can suppress 𝐼 independently of 𝑋, breaking the cycle and allowing 𝑋 to 197 

dominate 𝐼. Together, 𝑋 and 𝐸 can then clear the infection. In patients 7, 8, and 10, our best-fits predicted 198 

an early innate immune response and a delayed CD8 T-cell response. The second peak was thus predicted 199 

as a result of the above predator-prey oscillations that occurred before the CD8 T-cell response was 200 

mounted. In patients 3, 4, and 14, a relatively early CD8 T-cell response was predicted, which precluded 201 

the second peak. In patients 1 and 2, both the innate and CD8 T-cell responses were delayed, leaving little 202 

time for the oscillations to arise in the 15 d period of our observations. We note that interpretations of the 203 

multiple peaks in longitudinal viral load data have not been forthcoming (44). Our predictions offer a 204 

plausible interpretation. 205 

Third, the transient but robust innate immune response predicted (figure 2, third column of subplots) is 206 

consistent with observations in mildly infected patients (45). Fourth, our prediction of the dynamics of the 207 

CD8 T-cell response, where a gradual build-up is followed by a stationary phase (figure 2, fourth column) 208 

is also consistent with observations. In mildly infected patients, SARS-CoV-2 specific T-cells were 209 

detected as early as 2-5 days post symptom onset (12). This effector population remained stable or 210 

increased for several months after clinical recovery (16, 46). 211 

Our model thus fit the dynamics of infection in individuals showing mild symptoms and offered 212 

explanations of disease progression patterns that had remained confounding. We examined next whether 213 
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the model could also describe more severely infected patients.  For this, we varied different parameters in 214 

our model and assessed the resulting dynamical features of the infection.  215 

Interplay between innate and CD8 T-cell responses underlies heterogeneous disease outcomes 216 

We reintroduced the CD8 T-cell exhaustion term, which we had ignored in the fits above because the 217 

patients were mildly infected, and selected associated parameter estimates from previous studies (30). We 218 

ensured that this did not affect our fits above (supplementary figure S2). 219 

Next, to estimate the severity of the disease, we also examined the dynamics of the instantaneous tissue 220 

damage (𝐷). Typically, 𝐷 rose as the infection progressed and declined as it got resolved (supplementary 221 

figure S3A, C). We reasoned that the severity of infection would be determined by the maximum tissue 222 

damage suffered and the duration for which such damage lasted. Significant damage that is short-lived or 223 

minimal damage that is long-lived may both be tolerable and lead to mild symptoms. We therefore 224 

calculated the area under the curve (AUC) of 𝐷, starting from when 𝐷 ascended above its half-maximal 225 

level to the time when it descended below that level (supplementary figure S3A), as a measure of 226 

immunopathology (𝑃) and associated disease severity. (Note that the parameters 𝛼, 𝛽, and 𝛾, which 227 

describe the dynamics of tissue damage, are unknown constants; our results were not sensitive to their 228 

values because changing them only minimally affected the relative extents of immunopathology across 229 

different disease severity categories (supplementary text section C; supplementary figure S5).) 230 

With this framework, we varied the strengths of the CD8 T-cell and innate responses, by changing the 231 

values of the parameters 𝑘3 and 𝑘5, respectively, and examined the predicted dynamical features (figure 232 

3A). Recall that 𝑘3 is the proliferation rate of CD8 T-cells and 𝑘5 is the rate of generation of the innate 233 

immune response. The other parameters were fixed (supplementary table S6) at their population 234 

estimates, for which the model elicited clearance of the infection by day 14 (figure 3A, center, subplot 235 

with an arrowhead). Increasing 𝑘5 resulted in a decrease in the peak of infected cells (figure 3A, the row 236 

of subplots with arrowhead, right to left). With decrease in 𝑘5, the induction of the cytokine mediated 237 

antiviral innate response was substantially delayed and that corresponded to an increased number of 238 

infected cells (supplementary figure S4A, B). Clearance was achieved in all cases without substantial 239 

variation in the infection duration because of the CD8 T-cell response (figure 3A, the row of subplots 240 

with arrowhead, right to left). Decreasing 𝑘3 weakened the CD8 T-cell response and increased the 241 

duration of the infection (figure 3A, the column of subplots with arrowhead, bottom to top). We next 242 

explored the effects of varying both 𝑘3 and 𝑘5 simultaneously.  243 

When 𝑘3 was high, i.e., the response of CD8 T-cells was strong, irrespective of the innate immune 244 

response, the infection was cleared within ten days (figure 3A, subplots on bottom-left and bottom-right). 245 

Associated immunopathology was nominal. These predictions were akin to asymptomatic and mild 246 

infection scenarios. An early and robust effector T-cell response has been associated with milder 247 

infections (12, 16, 46). Here, in some cases with high 𝑘5, a blip of the viral load was observed after an 248 

initial phase of clearance. When 𝑘5 was decreased, marking a weaker innate response, the peak viral load 249 

rose and immunopathology moderately increased. This was also observed when we decreased 𝜀𝐼, which 250 

lowered the efficacy with which the innate immune response inhibits the spread of the infection (figure 251 

3B). The latter trends associated with high 𝑘3 and low 𝑘5 have parallels to infected patients with robust 252 

CD8 T-cell responses but impaired innate responses, such as those harboring mutations in the genes 253 
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associated with the activation of the antiviral resistance in host cells (47). Clearance was achieved in such 254 

cases due to the robust CD8 T-cell response. 255 

 256 
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Figure 3: Variations in innate and CD8 T-cell responses capture disease heterogeneity. (A) Effect of 257 
simultaneous variation of parameters determining the strengths of innate and CD8 T-cell responses. The 258 
black, annotated triangles at the top and right indicate the nature and the direction of the variation of the 259 
indicated parameters. For instance, 𝑘5 is decreased from left to right. Individual subplots show the 260 
dynamics of infected cells normalized by carrying capacity, cytokine mediated innate immune response 261 
and effector CD8 T-cell mediated adaptive immune response. The legends are provided at the top-right. 262 
The left Y-axis shows the normalized infected cell dynamics. The right Y-axis shows the other two 263 
species, i.e., cytokine-mediated innate immune response and effector CD8 T-cell-mediated adaptive 264 
immune response. The rectangular, colored patch at the top of each subplot represents the extent of 265 
immunopathology. The range of immunopathology is given by the color scale at the bottom of the figure 266 
(below 3C). At the left of the color scale, a separate legend denotes the texture used for depicting 267 
diverged immunopathology. The arrowhead on the scale indicates the immunopathology for the 268 
population parameters. The central subplot, which also contains an arrowhead, charts the simulation 269 
using the population parameters (supplementary table S6). (B, C) Similar calculations corresponding to 270 
variations in other parameters associated with the innate (B) and CD8 T-cell (C) responses. Plots with the 271 
population parameters are marked with the arrowhead. The colored patches should be interpreted using 272 
the color scale provided at the bottom.  273 

When 𝑘3 was low and 𝑘5 was high (figure 3A, four subplots on top-left), the infection was prolonged. 274 

However, the immunopathology was lower than when both 𝑘3 and 𝑘5 were high. The efficient antiviral 275 

innate response controlled the initial peak of the infection. However, the slow proliferation of the effector 276 

cells delayed clearance. This scenario had parallels to the reported cases of prolonged RT-PCR positivity 277 

of viral loads (22–24). Restrained CD8 T-cell differentiation was associated with such cases (22). 278 

Delayed clearance was also realized when the parameter 𝑘𝑝 was increased, which increased the antigen 279 

level required for significant effector T-cell proliferation (figure 3C). These predictions were consistent 280 

with observations of defects in T-cell proliferation delaying the clearance of infection (22). 281 

When both 𝑘3 and 𝑘5 were low (figure 3A, four subplots on top-right), severe immunopathology along 282 

with prolonged infection with high viral load and high cytokine levels was predicted. When they were the 283 

lowest, clearance was not achieved in our simulations. Although, clearance of the infection is the 284 

predominant outcome associated with a wide range of parameter values (figure 3), our dynamical systems 285 

analysis revealed that in certain parameter regimes clearance may not result (supplementary text section 286 

D, supplementary figures S6, S7). Instead, escape from immune protection with a high level of infected 287 

cells and cytokines together with a high degree of CD8 T-cell exhaustion may occur. Such runaway 288 

trajectories were associated with high immunopathology in our model (figure 3A, top right corner, 289 

supplementary figure S3B, S3C, top right corner) and were predicted to be terminated by fatality. These 290 

trends in the model mirrored clinical features of severe COVID-19 (45), which include consistently very 291 

high viral loads, heightened proinflammatory cytokines and interferons (39, 45, 48), attenuated 292 

proliferation (13) and increased exhaustion of T-cells (13, 14, 17). The predictions also include cases 293 

where in the late phase of the infection, although the viral load in sputum shows a decline (49), and that in 294 

nasopharyngeal swab becomes undetectable (33, 39, 49), mortality results due to intolerable 295 

immunopathology. 296 

Note that the initial pool of CD8 T-cells, 𝐸0, was important in determining outcomes (supplementary text 297 

section D, supplementary figure S7), with a large pool leading to rapid clearance, in agreement with 298 

observations of such clearance facilitated by cross-reactive effector T cells (12, 50). The outcomes were 299 
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less sensitive to the viral inoculum size (supplementary text, section E, supplementary figure S8), i.e., 𝐼0, 300 

consistent with studies on macaques where different inoculum sizes led to comparable disease outcomes 301 

(51).  302 

Model can recapitulate clinical data of varying disease severity across patients 303 

In a recent study, patients were stratified by disease outcome and measurements of longitudinal viral load 304 

from their saliva were fit using cubic splines, yielding ribbons of confidence intervals on viral loads for 305 

each category (39). We digitized these ribbons and tested our model predictions against them (figure 4A-306 

D, grey patches). The study reported data from symptom onset. We therefore added an estimated length 307 

of the prodromal period to the timepoints in order to compare our model predictions. We set this length to 308 

4.8 d from the German transmission chain data (37, 38) (supplementary table S2), which is also consistent 309 

with other reported estimates (33). We estimated the viral load, 𝑉, from our model predictions using the 310 

pseudo-steady state approximation, 𝑉 ≈ 𝑝𝐼/𝑐, where 𝑝 is the per capita rate of viral production from 311 

infected cells and 𝑐 is the per capita rate of viral clearance. We set 𝑝 and 𝑐 to values estimated previously 312 

(52) (supplementary text section A). 313 

 314 
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Figure 4: Model recapitulates viral load data from patients with different severities of infection.  (A) 315 
The grey patch, as provided in Silva et al. (39), represents the confidence interval of a cubic spline fitted 316 
to the viral load data from non-hospitalized individuals. Curves depict simulated viral load trajectories in 317 
individuals representative of those in the patch. The scale on the right represents immunopathology. The 318 
immunopathology associated with the simulated trajectories are marked on the scale using arrowheads 319 
having the same colors as the profiles. (B-D) Simulations recapitulating the viral load trajectories from 320 
moderate, severe and deceased patients, respectively. Immunopathology of deceased individuals not 321 
shown were higher than the upper limit of the scale shown here. The blue bar on the scale in (D) 322 
represents the range of immunopathology beyond which fatality is the likely clinical outcome. The 323 
parameters used for each trajectory are in supplementary tables S9-S12. Those associated with the 324 
profiles with dashed lines were used for sensitivity analyses (supplementary figures S9-S12). 325 
 326 

The ribbons of data are not amenable to fitting. We therefore varied parameters associated with the innate 327 

and CD8 T-cell responses in our model to achieve dynamical profiles of viral load resembling the 328 

ribbons. For the purpose of these simulations we ignored both the potential adverse and favorable effects 329 

of antibodies. The ribbon for the non-hospitalized patients was associated with low viral loads (figure 330 

4A). The peak viral load was approximately 106 copies of viral RNA. This relatively low peak viral load 331 

could be captured by our model when the strength of the innate response was increased, which we 332 

achieved by increasing 𝑘5 and/or 𝜀𝐼 (supplementary table S9). The duration of the infection was 333 

dependent on the CD8 T-cell response. Strong CD8 T-cell stimulation, achieved with a low value of 𝑘𝑝, 334 

led to rapid clearance, whereas weaker stimulation, corresponding to a higher 𝑘𝑝, allowed the infection to 335 

remain for an extended period. We calculated the immunopathology associated with these simulations and 336 

found it to be low (figure 4A, scale on the right; also see below).  337 

The ribbon for patients eliciting moderate symptoms had a relatively higher viral load at the peak, 338 

reaching approximately 108 copies of viral RNA (figure 4B). Parameters sufficiently close to the 339 

population estimates above allowed us to capture the dynamics for these patients (supplementary table 340 

S10). The associated immunopathology was considerably higher than the non-hospitalized patients.  For 341 

severely infected patients, the viral load peak was above 108, reaching as high as 1010 copies (figure 4C). 342 

We achieved this high peak viral load by lowering the strength of the innate response (decreasing 𝑘5 343 

and/or 𝜀𝐼; see supplementary table S11). The delayed clearance could be recapitulated by lowering CD8 344 

T-cell stimulation (increasing  𝑘𝑝 and/or decreasing 𝑘3). The immunopathology was higher than those 345 

calculated to capture the viral load dynamics in moderate patients (compare the scales in figure 4B and 346 

4C). Lastly, for the deceased individuals, the peak viral load was similar to the severe patients. However, 347 

the downward trend in the viral load after the peak seen with the severely infected patients was no longer 348 

apparent (figure 4D). The viral load remained around 108 RNA copies till day 30 post-exposure. A much 349 

weaker innate response (low 𝜀𝐼) and a weaker CD8 T-cell response (high 𝑘𝑝) could generate matching 350 

profiles (supplementary table S12). The immunopathology for the deceased patients was consistently 351 

higher than the severe patients, indicating that there might be an upper limit to the extent of 352 

immunopathological tissue damage that lay somewhere between our estimates for severe and deceased 353 

patients, and crossing which mortality would almost certainly result.  354 

Our model thus recapitulated the trends in the viral load seen in patients with different severity of 355 

infection. Furthermore, the model indicated that there should be a narrow range of immunopathology, 356 

which acts as a threshold to determine the fatal outcomes in COVID-19 (figure 4D, scale on the right).  357 
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To assess whether variations in other model parameters could also achieve the above trends, we 358 

performed a global sensitivity analysis of our parameters using one representative parameter combination 359 

from each disease outcome category as reference (figure 4A-D, dashed curves; supplementary figures S9-360 

S12; supplementary tables S9-S12). Specifically, we calculated how sensitive our measure of 361 

immunopathology was to the parameters. We found that immunopathology was most sensitive to 𝜀𝐼 and 362 

𝑘6 for non-hospitalized and moderately symptomatic patients (supplementary figures S9, S10). For 363 

severely infected and deceased patients, 𝐼𝑚𝑎𝑥, 𝑘3 and 𝜀𝐼 emerged as the important parameters 364 

(supplementary figures S11, S12). These results reinforce our expectations above. In mild infections, the 365 

innate immune response is strong and any variation in its strength would have the most influence on 366 

disease severity. In more severe infections, the innate and adaptive responses are both involved and the 367 

severity is therefore sensitive to variations in the strengths of both.  368 

Model predictions thus successfully recapitulated the heterogeneous outcomes and the associated 369 

dynamical patterns of SARS-CoV-2 infection. 370 

Discussion 371 

The extreme heterogeneity in the outcomes of SARS-CoV-2 infection across infected individuals has 372 

been puzzling. Here, using mathematical modeling and analysis of patient data, we predict that the 373 

heterogeneity arises from the variations in the strength and the timing of the innate and the CD8 T-cell 374 

responses across individuals. When both the innate and the CD8 T-cell arms are strong, asymptomatic or 375 

mild infections result. When the CD8 T-cell arm is strong, clearance of the infection results. If the innate 376 

arm is weak, the peak viral load can be large, resulting in higher immunopathology and moderate 377 

symptoms. When the CD8 T-cell response is strong but delayed, a predator-prey type interaction between 378 

the innate arm and the virus results, causing multiple peaks in viral load. These oscillations end when the 379 

CD8 T-cell response is mounted, and clearance ensues. When the CD8 T-cell response is weak, but the 380 

innate arm is strong, prolonged infection can result before clearance. When both the arms are weak, 381 

severe infection including mortality follows. These predictions offer a conceptual understanding of the 382 

heterogeneous outcomes of SARS-CoV-2 infection. They also offer a synthesis of the numerous 383 

independent and seemingly disconnected clinical observations associated with the outcomes and present a 384 

framework that may help tune interventions.      385 

In the last year, several mathematical models of within-host SAR-CoV-2 dynamics have been developed 386 

and have offered valuable insights (53). For instance, they have helped estimate the within-host basic 387 

reproductive ratio (33, 34, 52) and assess the effects of drugs and vaccines (26, 27, 44, 54–57). Attempts 388 

have also been made to capture the role of the immune system in disease progression and outcome (44, 389 

55, 57–61). Available models, however, have either not been shown to fit longitudinal patient data or 390 

have failed to describe the entire range of outcomes realized. To our knowledge, ours is the first study to 391 

describe the outcomes realized comprehensively using a mathematical model that is consistent with 392 

patient data.  393 

Our model predictions help better understand known demographic correlates of disease severity and 394 

mortality, such as gender, age and co-morbidities. In all these cases, as our predictions indicate, more 395 

severe infections are associated with weaker CD8 T-cell responses and/or unregulated innate immune 396 

responses. Male patients trigger higher levels of peripheral cytokine expression and elicit weaker CD8 T-397 

cell responses than female patients (62), resulting in more frequent severity and mortality in males (43). 398 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 21, 2021. ; https://doi.org/10.1101/2021.06.15.21258935doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.15.21258935
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

15 
 

The increased mortality in the elderly is caused by immunosenescence, which is associated with 399 

decreased proliferative capacity of lymphocytes and impaired functionality of innate immune cells (63). 400 

Increased mortality is also associated with co-morbidities, such as type-2 diabetes (64), where 401 

uncontrolled production of proinflammatory cytokines and inappropriate recruitment of lymphocytes is 402 

observed (65).  403 

Factors in addition to the above could contribute to variations in the innate and the CD8 T-cell responses 404 

across individuals. For instance, certain mutations, reported in a subset of severe COVID-19 patients, may 405 

preclude a potent interferon response (47). A section of severely infected patients is reported to harbor 406 

neutralizing autoantibodies against interferons (29, 66). Overzealous production of antibodies against 407 

SARS-CoV-2 might inhibit the pathway for interferon-mediated induction of antiviral genes (67). 408 

Further, in vitro studies suggest that different SARS-CoV-2 proteins can inhibit the TBK1-IRF3 pathway 409 

or the JAK/STAT pathway at several signaling nodes, adversely affecting interferon production and/or 410 

signaling (68). Variability in the CD8 T-cell response may come from different precursor populations, 411 

due for instance to prior exposure to circulating human coronaviruses (50). Patients pre-exposed to other 412 

coronaviruses or rhinoviruses harbor populations of effector T-cells that might cross-react with SARS-413 

CoV-2 antigens and contribute to the early clearance of the infection (50, 69). Population-level variations 414 

in effector cell frequencies (70) and inter-individual heterogeneity in lymphocytic gene expression 415 

patterns (71) may also contribute to the variability in the CD8 T-cell response. 416 

CD8 T-cell exhaustion has been proposed as an evolutionary design to prevent mortality due to 417 

immunopathology (30, 72). By preventing extensive tissue damage due to CD8 T-cell killing of infected 418 

cells, exhaustion can avert mortality. The price of reduced CD8 T-cell efficiency is often persistent 419 

infection, as seen with HIV and hepatitis C (30). With severe SARS-CoV-2 infection, although extensive 420 

CD8 T-cell exhaustion is seen, it appears inadequate to prevent mortality; immunopathology caused by 421 

proinflammatory cytokines dominates. Potent activation of the NF-B pathway by components of the 422 

SARS-CoV-2 virion may trigger the production of detrimental proinflammatory cytokines (73, 74). 423 

Heightened interferon expression in the lung (5, 18, 19, 75, 76) impairs cell proliferation, impeding tissue 424 

repair after proinflammatory cytokine-mediated immunopathology (77). Moreover, interferons may 425 

synergize with proinflammatory cytokines to fuel immunopathology by triggering cell death pathways 426 

(78, 79). (Note that interferons may be subdued in peripheral circulation (80), but that appears to be 427 

uncorrelated with their expression in the respiratory tract in COVID-19 (5).) In contrast, 428 

immunopathology due to CD8 T-cells appears minimal. CD8 T-cells infiltrate the alveolar tissues of 429 

COVID-19 patients (76) and can kill infected cells. At the peak of the infection, 104-106 cells are 430 

estimated to be infected out of the 1011 estimated target cells in the respiratory tract (81). Thus, direct 431 

CD8 T-cell killing of infected cells would affect a small fraction of cells in the respiratory tract. This may 432 

also explain why viral persistence has not been observed with SARS-CoV-2 infection: Inducing CD8 T-433 

cell exhaustion can only minimally affect immunopathology dominated by cytokines. We speculate that 434 

the absence of persistence may be a general feature of those viral infections where immunopathology is 435 

predominantly cytokine-mediated. Indeed, hypercytokinemia has been associated with the fatal outcomes 436 

following influenza A (H5N1) infection (82).  437 

A strategy of great interest today for reinvigorating exhausted CD8 T-cells is the use of immune 438 

checkpoint inhibitors (83). The inhibitors are approved for use in certain cancers. Because of their 439 

promise, five clinical trials are underway for testing their efficacy in treating severe COVID-19, of which 440 
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one (NCT04333914) is on cancer patients, and the remaining (NCT04413838, NCT04343144, 441 

NCT04356508, and NCT04268537) are on non-cancer patients infected by SARS-CoV-2 (84). A major 442 

risk of checkpoint inhibitor therapy is increased immunopathology due to a heightened CD8 T-cell 443 

response. Based on our model predictions and arguments above, we speculate that with COVID-19, the 444 

risk of increased immunopathology from immune checkpoint inhibitor therapy is likely to be minimal, 445 

given the predominance of cytokine-mediated pathology. Indeed, a retrospective analysis of melanoma 446 

patients showed that checkpoint inhibitor therapy did not increase the risk of mortality due to COVID-19 447 

(85). Rather, the beneficial effects of an improved CD8 T-cell response may outweigh any minimal 448 

enhancement in immunopathology.     449 

Our model could be applied to understand the implications of other interventions (86) and of emerging 450 

viral mutants (87) on disease outcomes. Given the mechanisms of action of available drugs and drug 451 

candidates (86), their effects on typical individuals in the mild, moderate and severe infection categories 452 

could be predicted using the corresponding nominal parameter estimates we identified for the respective 453 

categories. Several recently identified circulating mutants are known to be more infectious than the 454 

original SARS-CoV-2 strain and to escape immune responses (88). These characteristics could be 455 

incorporated in our model readily by suitably increasing the infectivity and/or decreasing the strength of 456 

the immune response, to predict how emerging strains could alter the overall severity of the infection. We 457 

recognize that to estimate the effects of such variations at the population level, knowledge of how the 458 

parameter values in our model, particularly those defining the innate and CD8 T-cell responses, are 459 

distributed across individuals in a population would be required. With hepatitis C virus infection, for 460 

instance, the distribution of the strength of interferon responsiveness across individuals quantitatively 461 

predicted the fraction of individuals that spontaneously cleared the infection (89, 90) and together with 462 

the distribution of the CD8 T-cell response captured the success of interferon-based and other therapies 463 

(89–91). Such predictions with SARS-CoV-2, once parameter distributions become available, may help 464 

refine clinical and epidemiological projections of healthcare requirements. 465 

Our study has limitations. First, we neglected the role that cytokines play in the expansion of CD8 T-cells 466 

(92) because fits of our model incorporating such an effect to the available data were poor (supplementary 467 

text section B). Perhaps, a larger patient cohort may improve the fits and allow incorporating the latter 468 

effect. Second, our model did not incorporate any negative effect of immunopathology on the immune 469 

response; for instance, lymphopenia (15, 93), which is generally thought to be caused by 470 

immunopathology, could compromise the immune response. Third, we employed a simplified model of 471 

CD8 T-cell exhaustion, following earlier studies (30–32), which allows exhaustion to be reversed fully 472 

upon lowering antigen levels. Recent studies have demonstrated that exhaustion is reversible only in a 473 

subset of exhausted cells (83). Notwithstanding, we expect our key inferences on the roles of the innate 474 

and the CD8 T-cell responses in determining the heterogeneous outcomes of SARS-CoV-2 infection to 475 

hold.  476 

 477 

Methods 478 

Study design. We constructed a mathematical model of within-host SARS-CoV-2 infection using 479 

ordinary differential equations. Next, we utilized a nonlinear mixed-effects approach to fit the model to an 480 

available clinical dataset and estimated model parameters (supplementary text, section A, B). The model 481 
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was then utilized for exploring the effects of parameter variations (figure 3), recapitulating the viral load 482 

trajectories in patients stratified by disease severity (figure 4), and for sensitivity analysis (supplementary 483 

figures S9-S12). 484 

Model construction. The equations of our model are provided in the results section. The other models 485 

which were fit to the data are described in the supplementary text (supplementary text, section B).  486 

Parameter estimation and model selection. Published data from Wölfel et al.(37) was digitized by a 487 

custom script in the MATLAB (version R2020a) image analysis toolbox (www.mathworks.com). This 488 

dataset was further used for fitting different models using the stochastic approximation expectation 489 

maximization (SAEM) algorithm available in Monolix 2020R1 (www.lixoft.com) (supplementary text, 490 

section A). The Akaike information index (AIC) was calculated within the Monolix environment. The 491 

model with the lowest AIC was selected for further mathematical analysis (supplementary text, section 492 

B). 493 

Fixed points and linear stability analysis. For the steady-state analysis, estimated parameter values 494 

were utilized. MATLAB (version R2020a) was used to estimate the fixed points of the system and to 495 

determine the nature of their stability. Individual fixed points and their corresponding Jacobian matrices 496 

were estimated using the Symbolic Math Toolbox (www.mathworks.com). Calculation of the eigenvalues 497 

and eigenvectors for individual fixed points yielded the nature of their stability and facilitated 498 

determination of the phase portraits (supplementary text, section D, supplementary figures S6, S7). 499 

Recapitulating patient viral load data stratified by disease severity. The published data from Silva et 500 

al. (39), was digitized using a custom MATLAB code, using functions from the image analysis toolbox. 501 

The parameters were manually varied and the quality of the fits determined by visual inspection of the 502 

simulation profile and the confidence interval ribbons.  503 

Sensitivity analysis. We executed variance based global sensitivity analysis (VBGSA) on the models; the 504 

details of the algorithm have been described elsewhere (94). We simultaneously varied the parameters up 505 

to 5% above and below the population parameters in Monte Carlo simulations and calculated total effect 506 

indices for the parameters (supplementary figures S9-S12).  507 
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