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ABSTRACT 

Background 

Assessing the impact of temperature on COVID-19 epidemiology is critical for 

implementing non-pharmaceutical interventions. However, few studies have accounted 

for the nature of contagious diseases, i.e., their dependent happenings. 

Aim 

We aimed to quantify the impact of temperature on the transmissibility and virulence of 

COVID-19 in Tokyo, Japan. We employed two epidemiological measurements of 

transmissibility and severity: the effective reproduction number (𝑅𝑡) and case fatality risk 

(CFR). 

Methods 

We used empirical surveillance data and meteorological data in Tokyo to estimate the 𝑅𝑡 

and time-delay adjusted CFR and to subsequently assess the nonlinear and delay effect of 

temperature on 𝑅𝑡 and time-delay adjusted CFR. 

Results 

For 𝑅𝑡  at low temperatures, the cumulative relative risk (RR) at first temperature 

percentile (3.3℃) was 1.3 (95% confidence interval (CI): 1.1-1.7). As for the virulence 

to humans, moderate cold temperatures were associated with higher CFR, and CFR also 

increased as the temperature rose. The cumulative RR at the 10th and 99th percentiles of 

temperature (5.8℃ and 30.8℃) for CFR were 3.5 (95%CI: 1.3-10) and 6.4 (95%CI: 4.1-

10.1). 

Conclusions 

This study provided information on the effects of temperature on the COVID-19 
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epidemiology using 𝑅𝑡 and time-delay adjusted CFR. Our results suggest the importance 

to take precautions to avoid infection in both cold and warm seasons to avoid severe cases 

of COVID-19. The results and proposed framework will also help in assessing possible 

seasonal course of COVID-19 in the future. 
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Introduction 

The COVID-19 pandemic has imposed significant health and economic burdens all over 

the world. A better understanding of the factors affecting the COVID-19 epidemic is 

critical to the design of tailored public health and social measures (PHSMs), e.g., travel 

restrictions, school closures, cancellation of public events and gatherings, etc. and much 

attention has been given to the impact of meteorological factors on the COVID-19 

transmissibility and severity. 

Over the last couple of decades, important factors related to the transmission of 

viral respiratory diseases have been investigated such as the highly predictable seasonal 

pattern of influenza epidemics [1]. These epidemiological studies are supported by 

laboratory evidence that low temperature and/or humidity improve the stability of 

influenza virus [2], impair the human innate immune system [3] and contribute to the 

aerosol evaporation [4, 5]. 

Since the COVID-19 pandemic started, many research groups worldwide have 

aimed to reveal the relationships between temperature and COVID-19 transmission. 

Some of these investigated the possibility that the transmissibility is associated with 

temperature, where the transmissibility is often translated into the number of positive 

cases [6, 7]; however, these studies did not fully account for the transmission dynamics 
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influenced by PHSMs of various intensities. A few of the earlier studies have explored 

association between temperature and mortality [6–8] as an indicator of the clinical 

severity, although they did not address the issue that daily fluctuations in the number of 

deaths are also vulnerable to the epidemic dynamics. Transmission dynamics of infectious 

diseases should also be considered when performing the regression models because 

observation of each case with a contagious disease is not independent, which 

characteristics is referred to as dependent happening and explicitly distinguishable from 

other non-communicable diseases; otherwise, such inferences get largely biased [9, 10]. 

The present study explored the association between temperature and both the 

transmissibility and the severity of COVID-19 from the early 2020 to the early 2021. We 

used the effective reproduction number (𝑅𝑡), defined as the mean number of secondary 

cases generated by a single primary case, to quantify the transmissibility of the ongoing 

epidemic in Tokyo. To explore the association between temperature and severity, we used 

case fatality risk (CFR), an epidemiological measurement of severity. Crude CFR 

calculated from the ratio of the cumulative number of deceased cases to the cumulative 

number of confirmed cases can underestimate the actual CFR when cases are increasing 

and overestimate it when they are decreasing due to the time that passes from the onset 

illness to death. Such issues are also known as right censoring. We therefore estimated 
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the time-delay adjusted CFR for every illness onset date which accounted for the delay.  

Method 

Epidemiological and meteorological data 

The data used in the present study were from lab-confirmed, illness onset, and death cases 

in Tokyo. Meteorological data of temperature, relative humidity, ultraviolet radiation, and 

wind speed were also analysed.  

We used data from 16th February 2020 to analyze the transmissibility with the 

regression model, as it was the earliest date of the limited publicly available dataset. To 

analyse severity, data in the regression model were used from 25th May 2020, when the 

first state of emergency was lifted in Tokyo because CFR may be underestimated given 

the under-ascertainment rate, and downward ascertained trend early in the epidemic. To 

avoid the influence of the different infectivity and severity between the previous strain 

and other evolved strains, e.g., B1.1.7, we cut off the period in both analyses after March 

2021. 

     The daily number of confirmed cases, illness onset cases, and deaths with COVID-

19 in Tokyo were collected from 16th January 2020 to 19th March 2021. Confirmed data 

with age (decades) were also collected from 16th February 2020 to 7th April 2021. To 

address the measurement of overwhelmed medical situations, we obtained the daily 

number of cases of emergency transportation whose destination had not been determined 
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within 20 minutes from the start of the Emergency Medical Services team’s request, or 

who had been refused by at least five medical institutions. To deal with the impact of 

human mobility, we resorted to Google’s COVID-19 Community Mobility Reports [11], 

which provides three data-streams on movement in Tokyo: “residual”, “retail and 

recreation”, and “workplace”. All measures quantify the percentage of deviation from a 

baseline which indicates the median value for the day of the week during the 5 weeks 

from 3rd January 2020 to 6th February 2020. 

     Daily weather data (mean temperature (℃), relative humidity (%), solar radiation 

as a ultraviolet (MJ/㎡), and mean wind speed (m/s)) were obtained from the Japan 

Meteorological Agency including. 

Statistical estimation 

The daily 𝑅𝑡 estimates were derived from the daily number of confirmed cases and 

implemented in “EpiNow2” package in R v4.0.2 which method accounted for the week 

effect and the smoothed renewal process with an appropriate Gaussian process with a 

squared exponential kernel [12]. The distribution of generation time was adopted from 

the earlier work [13]. 

Non-linear and delayed effects of temperature on the transmissibility of COVID-

19 were identified by using the generalized additive Gaussian model with the 

distributed lag non-linear model [14, 15]. 
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𝑙𝑜𝑔(𝐸(𝑅𝑡)) = 𝛼 + 𝑐𝑏. 𝑡𝑒𝑚𝑝 + 𝑠(𝑡𝑖𝑚𝑒, 7) + 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑡 +𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠𝑡 
(1) 

where 𝑐𝑏. 𝑡𝑒𝑚𝑝 represents the nonlinear and delayed exposure-lag-response 

relationship between the daily 𝑅𝑡 and temperature as a form of cross-basis spline 

function. We used a natural cubic spline with four equally spaced internal knots in the 

log scale in the cross-basis function [16], accounting for up to 7 days of lag for 

temperature to examine the lag effect from infection to secondary infection, which is 

referred to as generation time [13]. Four degrees of freedom (df) of lag were chosen by 

Akaike Information Criteria (AIC). 𝑠(. ) is a natural cubic spline function. The median 

value of temperature for calculating relative risk (RR) was 15.3℃. We controlled 

calendar dates for seasonality (𝑡𝑖𝑚𝑒) as a confounder. Seven df per 380 days to 𝑡𝑖𝑚𝑒 

were chosen. In addition, 𝑅𝑡 would be also influenced by the suppression or mitigation 

strategies, and other social behavioral changes due to increase in individual awareness 

of infection [17]. Therefore, we used mobility data, specifically classified into 

recreation, work, and residual place based on Google mobility data, assuming the three 

types of places as major possible sites of infection as the variables in the model which 

involved in some non-pharmaceutical interventions. To compensate above-mentioned 

issues other than human mobility, we reflected three categorical variables 

(𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑡) as 0/1/2. 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛𝑡 was imputed as 0 when there were 
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interventions with low intensity on the day 𝑡, 1 was denoted when the shortened 

business hours were requested by the Tokyo Metropolitan Government, and 2 was 

denoted when the state of emergency was declared. Here we did not include a variable 

for week effect because the framework to estimate 𝑅𝑡 has implicitly accounted for the 

week effect [12]. Distributed lag non-linear model was implemented via “dlnm” 

package in R v4.0.2. 

Subsequently, the association between temperature and the severity of COVID-19 

was explored using CFR as a proxy of severity, and the unbiased CFR and daily CFR 

were estimated [18]. Unbiased CFR was time consistent value while daily CFR was 

fluctuated on every illness onset date and both accounted for the delay from illness 

onset to death. We assumed 𝑓𝑠 = 𝐹𝑠 − 𝐹𝑠−1 for 𝑠 > 0 where 𝐹𝑠 was cumulative 

density function of the time-delay. The empirical time-delay distribution was fitted to 

lognormal, Weibull, gamma, and exponential distributions and best fit gamma 

distribution with mean 16.6 days and standard deviation 118.4 days by the lowest value 

of AIC (Supplementary Figure S1). We designated 𝛿𝑡, 𝑑𝑡, and 𝑗𝑡 as the number of 

illness onset dates of deaths, deceased dates of deaths, and daily new cases on day 𝑡, 

respectively. To adjust for the time-delay, we developed a framework to estimate daily 

CFR on an illness onset date. Then the time-delay adjusted daily CFR 𝜋𝑡𝑖 on a time 
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point 𝑡𝑖 with observation (𝑖 = 1,2, … , 299), i.e., from 25th May 2020 to 28th February 

2021, was modeled as 

 

𝜋𝑡𝑖~𝐵𝑒𝑡𝑎(𝑠ℎ𝑎𝑝𝑒1 = 𝛿𝑡𝑖 + 1, 𝑠ℎ𝑎𝑝𝑒2 = 𝑗𝑡𝑖 − 𝛿𝑡𝑖 + 1) 

 

(2) 

 

𝑑𝑡~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑑′𝑡) 

 

 

(3) 

𝑑′𝑡 =∑𝛿𝑠𝑓𝑡−𝑠

𝑡−1

𝑠=1

 

 

(4) 

We convoluted 𝑓𝑡 with 𝛿𝑡 to obtain the expected number of illness onset dates of 

deceased cases 𝑑′𝑡 and 𝑑𝑡 was assumed to follow a Poisson distribution. To deal with 

the latent variable caused by the convolution, the non-parametric back-projection based 

on Expectation-Maximization-Smoothing algorithm [19, 20] was conducted by using 

“surveillance” package in R v4.0.2. The daily CFR was smoothed by beta distribution. 

In addition, unbiased CFR was estimated as the reference of the daily CFR estimates. 𝜋 

denoted the parameter representing the unbiased CFR on the latest day 𝑡, the likelihood 

of the estimate 𝜋 was given as 

L(𝜋; 𝑗𝑡, 𝜃) =∏(
∑𝑗𝑡

𝑡𝑖

𝑡=1

𝐷𝑡𝑖

)(𝜋
∑ ∑ 𝑗𝑡−𝑠𝑓𝑠

𝑡−1
𝑠=1

𝑡𝑖
𝑡=2

∑ 𝑗𝑡
𝑡𝑖
𝑡=1

)

𝐷𝑡𝑖

(1 − 𝜋
∑ ∑ 𝑗𝑡−𝑠𝑓𝑠

𝑡−1
𝑠=1

𝑡𝑖
𝑡=2

∑ 𝑗𝑡
𝑡𝑖
𝑡=1

)

∑ 𝑗𝑡
𝑡𝑖
𝑡=1 −𝐷𝑡𝑖

𝑡𝑖

 (5) 

where 𝑡𝑖 and 𝐷𝑡𝑖  represent and the cumulative number of deaths until reported day 𝑡𝑖, 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 21, 2021. ; https://doi.org/10.1101/2021.06.15.21258529doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.15.21258529
http://creativecommons.org/licenses/by-nc-nd/4.0/


respectively [18, 21]. The parameter was estimated using Markov chain Monte Carlo 

(MCMC) method in a Bayesian framework with the flat prior (𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1)). We 

employed Hamiltonian Monte Carlo algorithm with No-U-Turn-Sampler and obtained 

five chains of 600 thinned samples from 30,000 MCMC iterations where the first 1000 

samples of the chains were discarded as burn-in. The MCMC simulations were 

performed using “rstan” package in R v4.0.2. 

     We fitted a gamma regression combined with DLNM to estimate the association 

between temperature and the time-delay adjusted daily CFR 𝜋𝑡𝑖 with illness onset 

dates taking into account the delays in effect of temperature. 

𝜋𝑡𝑖~𝐺𝑎𝑚𝑚𝑎(𝜇𝑡𝑖) (6) 

𝑙𝑜𝑔(𝜇𝑡𝑖) = 𝛽 + 𝑐𝑏. 𝑡𝑒𝑚𝑝 + ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝑡 + 𝑎𝑔𝑒𝑡 + 𝐷𝑂𝑊 + ℎ𝑜𝑙𝑖𝑑𝑎𝑦 + 𝑠(𝑡𝑖𝑚𝑒, 5) 

(7) 

where 𝑐𝑏. 𝑡𝑒𝑚𝑝 represents cross-basis spline function of temperature by a natural 

cubic spline with four equally spaced internal knots in the log scale in each cross-basis 

function, accounting for up to 14 days of lag to temperature to examine the period 

between infection to illness onset, i.e., incubation period which have has previously 

been explored elsewhere [22]. We considered the 99 % upper bound of incubation 

period. We also adjusted for the days of the week (𝐷𝑂𝑊), holidays (ℎ𝑜𝑙𝑖𝑑𝑎𝑦), and 

calendar days for seasonality and long-term trend (𝑡𝑖𝑚𝑒) for which five df per 299 days 
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were used by employing a natural cubic spline. 𝛽 is the intercept. The median value of 

temperature for calculating RR was 18.6℃. Daily age distribution of infected cases with 

an illness onset day is also critical for CFR as a confounder, i.e., age and age-specific 

infection fatality risk has an exponential relationship [23]. Because only age distribution 

with reported dates was publicly available, we back-projected the illness onset date of 

cases who were over 70 years and in all age groups from the reported dates of cases to 

calculate the proportion of the daily number of cases over 70 years out of the daily 

number of cases in all age groups. The time-delay between illness onset to reporting is 

Weibull distribution and the parameters were adopted from the previous study [24]. In 

addition, we used the time-series data describing the pressure on medical institutions as 

ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝑡 because whether healthcare system is overloaded or not is a critical factor 

for CFR. 

     We conducted sensitivity analysis corresponding to the length of lag and possible 

meteorological confounders to assess the robustness of the models. As for the lag, the 

maximum lag day of temperature was set to 5 and 6 to examine the sensitivity of the 

effect in DLNM for the analysis of transmissibility. For the severity, the maximum lag 

day of temperature was set to 10 and 12. Regarding meteorological factors as 

confounders, relative humidity, windspeed, and ultraviolet were included for the 
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analysis of transmissibility, while we considered only relative humidity for the analysis 

of severity. 

Results 

The epidemic curve and estimated median value of 𝑅𝑡 with 90% credible intervals 

(CrI) from 15th February 2020 to 28th February 2021 are shown in Figure 1. Analysing 

the impact of temperature on 𝑅𝑡, the overall cumulative exposure-response relationship 

of temperature on 𝑅𝑡 was non-linear, with lower temperature leading to higher RR 

(Figure 2. A). The RR corresponding to temperature at the first percentile (3.3℃) was 

1.3 (95% confidence interval (CI): 1.1-1.7). Figure 2. B shows the three-dimensional 

plot of RR with temperature and lags up to 7 days. We found that the greatest risk of 

cold effects occurs in the day of exposure and risk is increasing in 3-7 days of exposure.  

 

Figure 1. Transmission dynamics from 15th February 2020 to 28th February 2021 in 

Tokyo, Japan. Blue line represents median, blue shading represents 95% credible 

intervals of the estimated effective reproduction number from 15th February 2020 to 28th 

February 2021. Green bars show the observed number of COVID-19 cases with 

confirmed dates in Tokyo. 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 21, 2021. ; https://doi.org/10.1101/2021.06.15.21258529doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.15.21258529
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2. Overall and three-dimensional plots of relative risks with the reference at 

15.3°C. (A) The three-dimensional plot of the association between daily mean 

temperature (°C) and the effective reproduction number over the lags of 7 days. The 

reference value of temperature was median temperature (15.3°C). (B) The estimated 

overall effects of mean temperature (°C) over 7 days on 𝑅𝑡. Blue line shows the mean 

relative risks, and 95% confidence intervals are shown in the gray shadings. 

 

     Figure 3 shows temporal variation of time-delay adjusted CFR and unbiased CFR 

from 25th May 2020 to 28th February 2021. As of 28th February 2021, the time-delay 

adjusted daily CFR and the unbiased CFR were 8.21% (95% CI: 4.50-12.9) and 2.42% 

(95% CrI: 2.41-2.43), respectively. Figure 3 illustrates the temporal deviations from the 

baseline value of CFR, i.e., the unbiased CFR. To examine the potential for temperature 

to contribute to changes in CFR, we estimated overall effect of temperature with the 

reference of 18.6℃ (Figure 4. A). The harmful effect was seen to increase as temperature 

increased from the reference, and moderate cold temperatures were associated with high 

RRs of CFR. The three-dimensional plot of RR with temperature and lags for CFR 

displayed in Figure 4. B, cold temperatures have obvious impact on the day of exposure 

(lag day 0, the illness onset day) and we found a week delayed effect on both high and 
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cold temperatures. 

 

Figure 3. Temporal variation of time-delay adjusted case fatality risks (CFR) with 

unbiased CFR from 25th May 2020 to 28th February 2021 in Tokyo, Japan. The 

mean values of time-delay adjusted daily case fatality risks (CFR) from 25th May 2020 

to 28th February 2021 are shown with a purple line. The shade region represents the 

95% confidence intervals. The blue dot line shows the unbiased case fatality risk as 

2.42% (95% credible interval: 2.41-2.43). If the time-delay adjusted daily CFR gets 

higher or lower, it is caused by random noises or other variables which have causal 

relationships. The unbiased case fatality risk plays a key role as a reference of the daily 

CFR. 

 

Figure 4. Overall and three-dimensional plots of relative risks with the reference at 

18.6°C. (A) The three-dimensional plot of the association between daily mean 

temperature (°C) and time-delay adjusted case fatality risks (CFR) over the lags of 14 

days. The reference value of temperature was median temperature (18.6°C). (B) The 

estimated overall effects of mean temperature (°C) over 14 days on CFR.  Blue line 

shows the mean relative risks, and 95% confidence intervals are shown in 
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the gray shadings.  

 

Similar results were obtained in sensitivity analysis under different lags and 

adjustment of several meteorological variables (Supplementary Figure S4-S9) for both 

of the transmissibility and severity analysis. We assessed the impact on the overall 

effects and delayed effect and successfully checked the robustness of the primary 

analysis. 

Discussion 

The present study was the first to comprehensively quantify the association between 

temperature and the epidemiological dynamics of COVID-19 in Tokyo using the 

effective reproduction number and time-delay adjusted daily CFR. Though the 

widespread epidemiology of COVID-19 is characterized by the substantial 

transmissibility and severity which are measured by reproduction number and CFR, 

there is no study to explore the contribution of temperature using both the rigorous 

epidemiological measurements appropriately to our best knowledge.  

     𝑅𝑡 rose explicitly at low temperatures; for example, RR of 3.3℃ (1st percentile of 

temperatures, defined as extreme cold temperature) was estimated as 1.3 (95% CI: 1.1-

1.5) in the 0-1 days lag from an infected date (Supplementary Table S1), with median of 
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all the temperatures (15.3℃) as reference temperature. This indicates that the cold 

effects appear in short lags and overall effect is more plausible in low temperature 

(Figure 2 A). 

The exposure-response relationships of population mobilities and meteorological 

factors with 𝑅𝑡 are consistent with previous works [17, 24, 25]. For example, the 

residual and workplace mobility change were not slightly related to the fluctuation of 

𝑅𝑡 while the recreation mobility change was significant. This relationship in Tokyo 

were reported in the previous study [17]. The exposure-response outcome of solar 

radiation indicated a significant negative correlation while that of wind speed shows a 

significant positive correlation (Supplementary Table S1), and similar relationships have 

been reported elsewhere [24, 25].  

As for the severity, we found that low temperatures had a strong association with 

high CFR in the short lag periods. For example, RR of 2.3℃ (1st percentile of 

temperatures, defined as extreme cold temperature) and 5.8℃ (10th percentile of 

temperatures, defined as extreme cold temperature) were 2.0 (95% CI: 1.2-3.5) and 2.8 

(95% CI: 1.7-4.7), respectively, in the 0-2 day lag periods from illness onset dates 

(Supplementary Table S3), with median of all the temperatures (18.6℃) as reference 

temperature. While cold effects appear in the short lag period and showed a slight 
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gradual decline, extreme high temperatures were associated with higher CFR from few 

days after the illness onset, and those effects were stably maintained for two weeks 

(Supplementary Table S3).  

Plausible mechanisms explaining the association between temperature and high 

CFR of COVID-19 remain undetermined. Even though many studies have postulated 

seasonal variations and the impact of temperature in transmissibility of infectious 

diseases, little is known about the association of temperature and severity of contagious 

disease. Since the common infectious respiratory diseases such as influenza virus, 

circulate in the cold season, the impact of high temperature on severity is yet to be 

explored. As a previous study on the impact of heat effect showed, extreme high 

temperature dampens physiological responses when the body temperature exceeds its 

normal range [16]. This phenomenon might have contributed to the result observed in 

the current study. For high CFR of moderate temperature, one of the possible 

explanations is the difference in human movement which can affect the exposure level 

with ambient temperature; however, further investigation is needed. 

     There are several limitations to be noted. First, the assumption for 

epidemiological time-delays (e.g., generation time and incubation period, etc.) was 

imposed not to be contracted by meteorological factors or interventions. Second, we did 
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not take into consideration the uncertainty of variables in the regression models, which 

were derived from the mathematical models. Third, age-specific CFR was not estimated 

in the present study due to scarce data. However, we attempted to make the best use of 

the data with back-projected incidence on illness onset dates and controlled the 

estimated incidence as a confounder in the regression model. Forth, since we used 

Tokyo data and other geographical locations were not analyzed, the results may vary 

under different climates. Thus, future studies in multiple locations with our proposed 

approach are needed. Fifth, the change of ascertainment rate and other confounders 

(e.g., comorbidity) were not considered in the regression model for CFR. However, we 

used the empirical data for severity from 25th May 2020 when the state of emergency 

was lifted, i.e., the end of the first wave of the epidemic in Tokyo in order to avoid 

higher ascertainment bias and overestimation of CFR. 

     Despite such limitations, we believe that the present study has provided 

comprehensive and useful insights on the association between temperature and the 

characteristics of COVID-19. Higher transmissibility is likely to be seen at low 

temperatures, while higher severity is likely to present at high and moderately low 

temperatures. Our findings have important implications to public health responses, as 

exposure to cold and hot temperatures under a surge of COVID-19 may have the 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 21, 2021. ; https://doi.org/10.1101/2021.06.15.21258529doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.15.21258529
http://creativecommons.org/licenses/by-nc-nd/4.0/


paramount impact on the dynamics and reduction of the burden. We also successfully 

provided a framework to explore the impact of meteorological factors on the 

transmission potential and virulence of directly transmitted diseases. Our proposed 

approach will be applicable for future studies on the relationships between 

meteorological factors and contagious diseases.  

References 

1.  Lofgren E, Fefferman NH, Naumov YN, Gorski J, Naumova EN. Influenza Seasonality: Underlying 

Causes and Modeling Theories. Journal of Virology. 2007 Jun 1;81(11):5429–36.  

2.  Polozov I v, Bezrukov L, Gawrisch K, Zimmerberg J. Progressive ordering with decreasing 

temperature of the phospholipids of influenza virus. Nature chemical biology [Internet]. 2008 

Apr;4(4):248—255. Available from: https://doi.org/10.1038/nchembio.77 

3.  Kudo E, Song E, Yockey LJ, Rakib T, Wong PW, Homer RJ, et al. Low ambient humidity impairs 

barrier function and innate resistance against influenza infection. Proceedings of the National 

Academy of Sciences of the United States of America. 2019 May 28;166(22):10905–10.  

4.  Lowen AC, Mubareka S, Steel J, Palese P. Influenza Virus Transmission Is Dependent on Relative 

Humidity and Temperature. Baric RS, editor. PLoS Pathogens [Internet]. 2007 Oct 19 [cited 2021 May 

13];3(10):e151. Available from: https://dx.plos.org/10.1371/journal.ppat.0030151 

5.  Weinstein RA, Bridges CB, Kuehnert MJ, Hall CB. Transmission of Influenza: Implications for 

Control in Health Care Settings. Clinical Infectious Diseases [Internet]. 2003 Oct 15;37(8):1094–101. 

Available from: https://doi.org/10.1086/378292 

6.  Wu Y, Jing W, Liu J, Ma Q, Yuan J, Wang Y, et al. Effects of temperature and humidity on the daily 

new cases and new deaths of COVID-19 in 166 countries. The Science of the total environment 

[Internet]. 2020/04/28. 2020 Aug 10;729:139051. Available from: 

https://pubmed.ncbi.nlm.nih.gov/32361460 

7.  Yuan J, Wu Y, Jing W, Liu J, Du M, Wang Y, et al. Non-linear correlation between daily new cases of 

COVID-19 and meteorological factors in 127 countries. Environmental research [Internet]. 

2020/12/03. 2021 Feb;193:110521. Available from: https://pubmed.ncbi.nlm.nih.gov/33279492 

8.  Islam N, Bukhari Q, Jameel Y, Shabnam S, Erzurumluoglu AM, Siddique MA, et al. COVID-19 and 

climatic factors: A global analysis. Environmental Research [Internet]. 2021;193:110355. Available 

from: https://www.sciencedirect.com/science/article/pii/S0013935120312524 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 21, 2021. ; https://doi.org/10.1101/2021.06.15.21258529doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.15.21258529
http://creativecommons.org/licenses/by-nc-nd/4.0/


9.  Morozova O, Cohen T, Crawford FW. Risk ratios for contagious outcomes. Journal of the Royal 

Society, Interface [Internet]. 2018/01/17. 2018 Jan;15(138):20170696. Available from: 

https://pubmed.ncbi.nlm.nih.gov/29343627 

10.  Imai C, Armstrong B, Chalabi Z, Mangtani P, Hashizume M. Time series regression model for 

infectious disease and weather. Environmental Research [Internet]. 2015;142:319–27. Available from: 

https://www.sciencedirect.com/science/article/pii/S0013935115300128 

11.  COVID-19 Community Mobility Reports [Internet]. [cited 2021 May 19]. Available from: 

https://www.google.com/covid19/mobility/?hl=en 

12.  Abbott S, Hellewell J, Thompson RN, Sherratt K, Gibbs HP, Bosse NI, et al. Estimating the time-

varying reproduction number of SARS-CoV-2 using national and subnational case counts. Wellcome 

Open Research [Internet]. 2020 Jun 1;5:112. Available from: 

https://wellcomeopenresearch.org/articles/5-112/v1 

13.  Ganyani T, Kremer C, Chen D, Torneri A, Faes C, Wallinga J, et al. Estimating the generation interval 

for coronavirus disease (COVID-19) based on symptom onset data, March 2020. Eurosurveillance. 

2020;25(17).  

14.  Gasparrini A, Armstrong B, Kenward MG. Distributed lag non-linear models. Statistics in Medicine 

[Internet]. 2010 Sep 20;29(21):2224–34. Available from: https://doi.org/10.1002/sim.3940 

15.  Gasparrini A. Distributed Lag Linear and Non-Linear Models in R: The Package dlnm. Journal of 

statistical software [Internet]. 2011 Jul;43(8):1–20. Available from: 

https://pubmed.ncbi.nlm.nih.gov/22003319 

16.  Gasparrini A, Guo Y, Hashizume M, Lavigne E, Zanobetti A, Schwartz J, et al. Mortality risk 

attributable to high and low ambient temperature: a multicountry observational study. The Lancet 

[Internet]. 2015;386(9991):369–75. Available from: 

https://www.sciencedirect.com/science/article/pii/S0140673614621140 

17.  Nagata S, Nakaya T, Adachi Y, Inamori T, Nakamura K, Arima D, et al. Mobility Change and COVID-

19 in Japan: Mobile Data Analysis of Locations of Infection. Journal of Epidemiology. 2021;  

18.  Nishiura H, Klinkenberg D, Roberts M, Heesterbeek JAP. Early epidemiological assessment of the 

virulence of emerging infectious diseases: A case study of an influenza pandemic. PLoS ONE. 2009 

Aug 31;4(8).  

19.  Becker NG, Watson LF, Carlin JB. A method of non-parametric back-projection and its application to 

aids data. Statistics in Medicine [Internet]. 1991;10(10):1527–42. Available from: 

https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.4780101005 

20.  Jung S, Endo A, Kinoshita R, Nishiura H. Projecting a second wave of COVID-19 in Japan with 

variable interventions in high-risk settings. Royal Society Open Science. 2021 Mar;8(3).  

21.  Tsuzuki S, Lee H, Miura F, Chan YH, Jung SM, Akhmetzhanov AR, et al. Dynamics of the pneumonic 

plague epidemic in Madagascar, August to October 2017. Eurosurveillance. 2017 Nov 16;22(46).  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 21, 2021. ; https://doi.org/10.1101/2021.06.15.21258529doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.15.21258529
http://creativecommons.org/licenses/by-nc-nd/4.0/


22.  Linton N, Kobayashi T, Yang Y, Hayashi K, Akhmetzhanov A, Jung S, et al. Incubation Period and 

Other Epidemiological Characteristics of 2019 Novel Coronavirus Infections with Right Truncation: 

A Statistical Analysis of Publicly Available Case Data. Journal of Clinical Medicine. 2020 Feb 

17;9(2):538.  

23.  Levin AT, Hanage WP, Owusu-Boaitey N, Cochran KB, Walsh SP, Meyerowitz-Katz G. Assessing the 

age specificity of infection fatality rates for COVID-19: systematic review, meta-analysis, and public 

policy implications. Vol. 35, European Journal of Epidemiology. Springer Science and Business Media 

B.V.; 2020. p. 1123–38.  

24.  Coşkun H, Yıldırım N, Gündüz S. The spread of COVID-19 virus through population density and 

wind in Turkey cities. The Science of the total environment [Internet]. 2020/08/11. 2021 Jan 

10;751:141663. Available from: https://pubmed.ncbi.nlm.nih.gov/32866831 

25.  Carleton T, Cornetet J, Huybers P, Meng KC, Proctor J. Global evidence for ultraviolet radiation 

decreasing COVID-19 growth rates. Proceedings of the National Academy of Sciences [Internet]. 

2021 Jan 5;118(1):e2012370118. Available from: 

http://www.pnas.org/content/118/1/e2012370118.abstract 

  

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 21, 2021. ; https://doi.org/10.1101/2021.06.15.21258529doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.15.21258529
http://creativecommons.org/licenses/by-nc-nd/4.0/


 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 21, 2021. ; https://doi.org/10.1101/2021.06.15.21258529doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.15.21258529
http://creativecommons.org/licenses/by-nc-nd/4.0/


 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 21, 2021. ; https://doi.org/10.1101/2021.06.15.21258529doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.15.21258529
http://creativecommons.org/licenses/by-nc-nd/4.0/


 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 21, 2021. ; https://doi.org/10.1101/2021.06.15.21258529doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.15.21258529
http://creativecommons.org/licenses/by-nc-nd/4.0/


 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 21, 2021. ; https://doi.org/10.1101/2021.06.15.21258529doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.15.21258529
http://creativecommons.org/licenses/by-nc-nd/4.0/

