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ABSTRACT 51 
 52 
Background: Sepsis is a heterogeneous syndrome, and the identification of clinical 53 
subphenotypes is essential. Although organ dysfunction is a defining element of sepsis, 54 
subphenotypes of differential trajectory are not well studied. We sought to identify distinct 55 
Sequential Organ Failure Assessment (SOFA) score trajectory-based subphenotypes in 56 
sepsis.  57 
 58 
Methods: We created 72-hour SOFA score trajectories in patients with sepsis from four 59 
diverse intensive care unit (ICU) cohorts. We then used Dynamic Time Warping (DTW) to 60 
compute heterogeneous SOFA trajectory similarities and hierarchical agglomerative 61 
clustering (HAC) to identify trajectory-based subphenotypes. Patient characteristics were 62 
compared between subphenotypes and a random forest model was developed to predict 63 
subphenotype membership at 6 and 24 hours after being admitted to the ICU. The model was 64 
tested on three validation cohorts. Sensitivity analyses were performed with alternative 65 
clustering methodologies. 66 
 67 
Results: A total of 4678, 3665, 12282, and 4804 unique sepsis patients were included in 68 
development and three validation cohorts, respectively. Four subphenotypes were identified 69 
in the development cohort: Rapidly Worsening (n=612, 13.1%), Delayed Worsening (n=960, 70 
20.5%), Rapidly Improving (n=1932, 41.3%) and Delayed Improving (n=1174, 25.1%).  71 
Baseline characteristics, including the pattern of organ dysfunction varied between 72 
subphenotypes. Rapidly Worsening was defined by a higher comorbidity burden, acidosis, 73 
and visceral organ dysfunction. Rapidly Improving was defined by vasopressor use without 74 
acidosis. Outcomes differed across the subphenotypes, Rapidly Worsening had the highest in-75 
hospital mortality (28.3%, p-value<0.001), despite a lower SOFA (mean: 4.5) at ICU 76 
admission compared to Rapidly Improving (mortality:5.5%, mean SOFA: 5.5). An overall 77 
prediction accuracy of 0.78 (95% CI, [0.77, 0.8]) was obtained at 6 hours after ICU 78 
admission, which increased to 0.87 (95% CI, [0.86, 0.88]) at 24 hours. Similar subphenotypes 79 
were replicated in three validation cohorts. The majority of patients with sepsis have an 80 
improving phenotype with a lower mortality risk, however they make up over 20% of all 81 
deaths due to their larger numbers. 82 
 83 
Conclusions: Four novel, clinically-defined, trajectory-based sepsis subphenotypes were 84 
identified and validated. Identifying trajectory-based subphenotypes has immediate 85 
implications for the powering and predictive enrichment of clinical trials. Understanding the 86 
pathophysiology of these differential trajectories may reveal unanticipated therapeutic targets 87 
and identify more precise populations and endpoints for clinical trials. 88 
 89 
Keywords: sepsis, subphenotype, Sequential Organ Failure Assessment (SOFA) score, 90 
precision medicine, dynamic time warping 91 
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Introduction 101 
Sepsis is defined as a dysregulated immunological response to infection that results in acute 102 
organ dysfunction.1,2 The morbidity and mortality of sepsis remain high despite decades of 103 
research and numerous failed clinical trials.3,4  Recent research has highlighted that sepsis is a 104 
complex and heterogeneous syndrome, which includes a multidimensional array of clinical 105 
and biological features.5  Identifying rigorous sepsis subphenotypes that present with similar 106 
prognostic markers and pathophysiologic features has the potential to improve therapy.6-9 107 
 108 
Recent sepsis subphenotyping studies used static measurements available soon after 109 
admission to the emergency department or intensive care unit (ICU) to characterize 110 
patients.5,10-12  However, due to the stochastic nature of infection and variable presentation to 111 
health care after developing symptoms, static assessments of sepsis subphenotypes may be 112 
incomplete, ignoring the dynamic nature of organ failure in sepsis.13   113 
 114 
More recently, subphenotypes characterized by dynamic patient temperature trajectories have 115 
been identified in sepsis. The differential pattern of temperature change may represent a 116 
varied underlying inflammatory response to infection.1  The trajectory of the Sequential 117 
Organ Failure Assessment (SOFA) score after ICU admission have been used to predict 118 
outcomes and improve prognostic stratification in sepsis.13,14 In a recent study, Sanchez-Pinto 119 
et al.15 leveraged a matrix factorization based approach to identify multiple organ dysfunction 120 
syndrome subphenotypes according to longitudinal pediatric SOFA (pSOFA) scores, but their 121 
approach was focusing on the subphenotypes captured by the “motifs”, or frequent 122 
subsequence patterns, of the SOFA trajectories, which may not characterize the long term 123 
trends encoded in those trajectories well. However, whether the trajectory of multisystem 124 
organ failure is associated with distinct phenotypic patterns in sepsis remains largely 125 
unexplored. Identifying distinct subphenotypes of organ dysfunction trajectory in sepsis can 126 
refine our understanding of the natural history of sepsis in the ICU in response to standard of 127 
care treatment and define patterns of disease that may benefit from novel therapeutic 128 
strategies.16  129 
 130 
The objective of this study was to develop and evaluate sepsis subphenotypes. The first goal 131 
was to determine whether distinct SOFA score trajectory-based subphenotypes in patients 132 
with sepsis can be identified through the electronic health record. The second goal was to 133 
understand whether those different subphenotypes are associated with the patterns of 134 
biomarkers and clinical outcomes. The third goal was to determine whether the identified 135 
subphenotypes can be predicted by using patient baseline characteristics and early-stage 136 
clinical features. 137 
 138 
Methods 139 
Overview 140 
We did a cohort study on datasets that contained granular patient level data from a total of 141 
221 hospitals in the United States, whose overall workflow is illustrated in Figure 1. Our goal 142 
was to derive sepsis subphenotypes of patients in ICU according to their SOFA organ 143 
dysfunction trajectories using dynamic time warping (DTW)17 and hierarchical agglomerative 144 
clustering (HAC)18. We then characterized these subphenotypes using comprehensive patient 145 
information including demographics, comorbidities, use of mechanical ventilation, type of 146 
ICU unit, admission source, organ source of sepsis, and examined their associated clinical 147 
outcomes as well as clinical biomarkers. We further built multiple random forest models to 148 
predict the derived subphenotypes from different time points’ patient clinical characteristics. 149 
To ensure replicability, the same analysis pipeline was conducted in three validation cohorts. 150 
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 151 
Definition of sepsis and study population 152 
The development cohort (Medical Information Mart for Intensive Care III database: MIMIC-153 
III) was from Beth Israel Deaconess Medical Center (BIDMC) with admissions dating from 154 
2001-2012. which has 673 licensed beds, including 493 medical/surgical beds, 77 critical 155 
care beds, and 62 OB/GYN beds.19  The first validation cohort was from Northwestern 156 
Medicine Enterprise Data Warehouse (NMEDW) , which is a network of eleven hospitals 157 
located in northern Illinois with 2,554 beds in total, with ICU admissions dating from 2012-158 
2019.20  The second validation cohort was from the eICU collaborative research database, 159 
which combined multi-center data from patients who were admitted to one of 335 units at 160 
208 hospitals located throughout the US between 2014 and 2015.21  The third validation 161 
cohort was from Weill Cornell Critical carE Database for Advanced Research (CEDAR) with 162 
ICU admissions dating from 2001-2020, which was built on NewYork-Presbyterian/Weill 163 
Cornell Medical Center (NYP/WCMC), including 862 beds in total.22  The inclusion-164 
exclusion cascade for the patients are shown in Supplemental Figure S1, where Sepsis-3 165 
criteria are defined as in Singer et al.2 166 
 167 
SOFA score computation and model descriptions 168 
The SOFA score was derived from six organ-specific subscores including respiration, 169 
coagulation, liver, cardiovascular, CNS, renal16, which was obtained every 6 hours within the 170 
first 72 hours of ICU admission. For each 6-hour period, the worst variable value was used to 171 
compute the SOFA subscores. To obtain the urine output during 6 hours, we divided daily 172 
urine output by 4. The lowest GCS for each 6 hour period was used irrespective of sedation. 173 
Missing values (Supplemental Table S14) were imputed using last observation carried 174 
forward (LOCF) and next observation carried backward (NOCB).23 If there was no any value 175 
during the first 72 hours, we used 0 to fill. 176 
 177 
After the SOFA scores were derived, each patient is represented as a vector of 12 SOFA 178 
scores from the first 6 hours to the last 6 hours across the 72 hours period after ICU 179 
admission. Then, DTW and HAC were used to derive subphenotypes.17  In particular, DTW 180 
was used to evaluate the similarities between pairwise patient SOFA trajectories 181 
(Supplemental Figure S19 and S20). This method can capture the differences among the 182 
evolution heterogeneity in terms of the temporal curves, which can assess similarity between 183 
patients robustly. HAC was then used to perform clustering among patients based on the 184 
similarities obtained from DTW. Multiple clustering indices (Supplemental Appendix 7) 185 
were calculated to determine the optimal numbers of subphenotypes.  186 
 187 
Subphenotype reproducibility and prediction 188 
To ensure the robustness of the derived subphenotypes, we re-derived them with group-based 189 
trajectory modeling (GBTM), which is one type of latent class analysis (LCA) that assigns 190 
each patient a probability of belonging to each particular subphenotype on the basis of 191 
maximum likelihood estimation.24   192 
 193 
We trained a random forest model to predict the derived subphenotypes from the baseline 194 
patient clinical collected characteristics at successive time points after ICU admission, with 195 
the goal of examining whether the trajectory subphenotypes could be predicted early. 196 
Candidate predictors included demographics, comorbidities, SOFA subscores, lab tests, and 197 
vital signs. Predictor contributions were evaluated with the Shapley additive explanations 198 
(SHAP) strategy.25 199 
 200 
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Statistical Analysis 201 
Data were analyzed using tslearn package 0.3.1 and scikit-learn package 0.22.2 with Python 202 
3.7. Survival analysis to 28 days was performed using Kaplan-Meier curves. Statistical 203 
significance was set at p < 0.05, and all tests were 2-tailed. The detailed descriptions about 204 
statistical testing are shown in Supplemental Appendix 2. 205 
 206 
Results 207 
Cohort characteristics 208 
Our development cohort MIMIC-III had 4,678 sepsis patients with the median age 65.9 years 209 
(Interquartile Range (IQR) [53.7-77.9]), which included 2,625 male (56.1%) and 3,367 white 210 
(71.9%) patients. The overall in-hospital mortality rate was 10.9%, and the median ICU 211 
length-of-stay was 2.8 days (IQR [1.6-5.6]). There were 1,893 patients (40.5%) treated with 212 
mechanical ventilation during the first three days. The mean baseline SOFA score obtained 213 
from the first 6 hours after ICU admission was 4.96 (Standard Deviation (SD): 2.8). Most of 214 
the patients (2,611, 55.8%) were in the medical intensive care unit (MICU). The overall 215 
demographic distributions of the validation cohorts from NMEDW(n=3,665) and eICU21 216 
(n=12,282) are similar to the development cohort. Patients in validation cohort CEDAR 217 
(n=4,804) were older (median age 77 years (IQR [66.0-88.0]) compared to development 218 
cohort. The overall in-hospital mortality rates of patients in NMEDW, eICU, and CEDAR 219 
were 14.0%, 10.5%, and 199%, respectively. The median length-of-stay were 3.8 days (IQR 220 
[1.9-7.9]), 2.8 days (IQR [1.7-5.1]), 4.4 days (IQR [2.7-7.9]). There were 1,524 (41.6%), 221 
5,772 (47.0%) and 2,263 (47.1%) patients that needed mechanical ventilation in the first three 222 
days. The mean baseline SOFA scores were 5.68 (SD:2.8), 5.9 (SD:3.1), and 6.4 (SD:3.1) in 223 
validation cohorts. 224 
 225 
Comparisons between Survivors and Nonsurvivors 226 
In the development cohort, nonsurvivors were older than survivors, with a median age of 71.5 227 
years (IQR, [59.9-80.9]) compared with 65.2 years for survivors (IQR, [53.2-77.4], p-value < 228 
0.001). Nonsurvivors had higher comorbidity burden with a median Elixhauser index score 26 229 
7.0 (IQR [2.0-12.0]). Median ICU length-of-stay for nonsurvivors was 3.95 days (IQR [1.9-230 
7.7]), and the rate of mechanical ventilation during the first three days was 59.8%. 231 
Nonsurvivors had higher baseline SOFA scores, with a mean value 7.1 (SD: 3.7). More 232 
nonsurvivors were admitted in MICU (Supplemental Table S1). Similar statistics in 233 
validation cohorts are shown in Supplemental Tables S2, S3, and S4. 234 
 235 
SOFA trajectory and the derived subphenotypes  236 
Based on the pairwise patients’ SOFA trajectory similarity matrix obtained from DTW, we 237 
generated clustermaps with HAC (Supplemental Figure S2), where four distinct clusters were 238 
identified as subphenotypes. The number of clusters was determined according to multiple 239 
clustering indexes (Supplemental Appendix 6 and Table S5).  240 
 241 
The overall trajectory and prevalence of each subphenotype across four cohorts are shown in 242 
Figure 2 and 3. Specifically, in the development cohort, the Rapidly Worsening 243 
subphenotype (n=612, 13.1%) was characterized by continuously increased SOFA scores 244 
from a mean (SD) of 4.5 (2.8) at admission to more than 7 at 72 hours. This subphenotype 245 
had the fewest patients. The Delayed Worsening subphenotype (n=960, 20.5%) was 246 
characterized by decreased SOFA scores within the first 48 hours from a mean (SD) of 5.2 247 
(2.7) at baseline to 3.7 (2.8), followed by an increase over the last 24 hours. The Rapidly 248 
Improving subphenotype (n=1,932, 41.3%) was characterized by a consistent continuous 249 
improvement in SOFA scores from a mean (SD) of 5.54 (2.9) at baseline to less than 3. This 250 
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was the most common subphenotype and it had the highest SOFA score at baseline. The 251 
Delayed Improving subphenotype (n=1,174, 25.1%) was characterized by an increase and 252 
then a gradual decrease in SOFA score over 72 hours. It had the lowest SOFA score at 253 
baseline with mean (SD) 4.0 (2.4). Similar trajectory trends were obtained in all three 254 
validation cohorts (Figure 2 and 3, Supplemental Appendix 3). Individual SOFA subscore 255 
trajectories for each subphenotype are provided in Supplemental Figures S3, S4, S10, and 256 
S14. 257 
 258 
Patient characteristics comparisons across subphenotypes  259 
Patient characteristics differed across subphenotypes (Table 1, Figure 4, Figure 5, and 260 
Supplemental Table S6). Specifically, Rapidly Worsening patients had the highest rates of 261 
mechanical ventilation (46.41%), the highest median Elixhauser comorbidity burden value of 262 
5 (IQR [0-10]) but the lowest baseline SOFA score compared to the other subphenotypes. 263 
They had the highest mortality rate (Figure 4(A) 28.3%, p-value<0.001) and a longer length 264 
of stay (Table 1, 2.9 days, p-value<0.001). Rapidly Improving patients had the lowest rate of 265 
mortality (Figure 4(A) 5.5%) and mechanical ventilation (37.9%), and the shortest length-of-266 
stay (2.4 days). It had the highest proportion of patients meeting criteria for septic shock 267 
(15.5%, p-value=0.002). Delayed Improving and Delayed Worsening patients had lower rates 268 
of mortality (10.7%, 10.6%) and mechanical ventilation (42.5%, 39.3%) than the Rapidly 269 
Worsening subphenotype. The median age of the four subphenotypes were similar in the 270 
development cohort. Male patients were more common in all subphenotypes. Chord diagrams 271 
(Figure 5) showed the differences of subphenotypes in terms of abnormal clinical biomarkers. 272 
The Rapidly Worsening group was more likely to have patients with abnormal cardiovascular 273 
biomarkers (bicarbonate, troponin T or I, lactate) and hematologic (such as hemoglobin, INR, 274 
platelet, glucose, RDW). Patients in this subphenotype had a higher chronic comorbidity 275 
burden and had abnormal SOFA subscores including respiration, coagulation and liver. The 276 
Rapidly Improving patients were more likely to have abnormal inflammatory lab values 277 
(temperature, WBC, bands, CRP, albumin, lymphocyte percent) and abnormal 278 
cardiovascular, CNS and renal SOFA subscores. There was a lower chronic comorbidity 279 
burden in this subphenotype. Delayed Worsening group had more abnormal hematologic and 280 
respiration, coagulation, CNS, and SOFA renal subscores. Abnormal respiration, coagulation, 281 
cardiovascular SOFA subscores were strongly associated with Delayed Improving. The 282 
characteristics on validation cohorts are provided in Supplemental Appendix 4 and Tables S7, 283 
S8, S9, S10, S11, and S12. The associations between all comorbidities and subphenotypes 284 
were investigated and shown in Supplemental Tables S16, S17, S18, and S19. Multiple 285 
comorbidities such as congestive heart failure, renal failure, liver disease, cancer showed the 286 
differences among subphenotypes. 287 
 288 
Subphenotype reproducibility and prediction  289 
Sensitivity analysis with another clustering approach GBTM confirmed the four 290 
subphenotypes with the data from development cohort (Supplemental Figure S8). Patients’ 291 
memberships of the four subphenotypes re-derived by GBTM were highly consistent with 292 
those obtained from HAC (Supplemental Figure S9), and thus we did not find substantial 293 
changes in clinical characteristics of those subphenotypes derived from the sensitivity 294 
analysis (Supplemental Table S13). 295 
 296 
We trained random forest models for predicting subphenotypes according to early-stage 297 
patient characteristics. Overall, with the first 6 hours after ICU admission, the models 298 
obtained the accuracy of 0.78 (95% Confidence Interval [CI] [0.77, 0.8]) in development 299 
cohort and 0.79 (95% CI [0.78, 0.8]), 0.81 (95% CI [0.8, 0.84]), and 0.82 (95% CI [0.81, 300 
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0.84]) in NMEDW, eICU, and CEDAR validation cohorts respectively. Predictor 301 
contributions on four cohorts are shown in Figure 6 and Supplemental Figures S5, S11, and 302 
S15, which demonstrated different patterns when predicting different subphenotypes. For 303 
example, creatinine, bicarbonate, RDW, and BUN contributes more for predicting the 304 
Rapidly Improving group, while platelet, INR, AST and lactate contributed more to the 305 
prediction of the Rapidly Worsening group. The prediction performance at successive time 306 
points are shown in Supplemental Figure S18. The accuracy increased to 0.87 (95% CI [0.86, 307 
0.88]) in development cohort and 0.86 (95% CI [0.85, 0.88]), 0.86 (95% CI [0.85, 0.87]), and 308 
0.84 (95% CI [0.83, 0.85]) in NMEDW, eICU, and CEDAR validation cohorts at the 24 309 
hours after ICU admission, respectively. 310 
 311 
Table 1. Patient Characteristics among Subphenotypes in the Development Cohort 312 

Characteristics Total 
(N=4,678) 

DI 
(N=1,174) 

RI 
(N=1,932) 

DW 
(N=960) 

RW 
(N=612) 

P-
value† 

Age, median (IQR) 65.9 [53.7-77.9] 67.25 [54.8-79.2] 65.3 [53.3-77.2] 66.9 [53.9-78.3] 64.5 [52.5-76.7] 0.204 

Sex, No. (%)       

   Male 2625 (56.1) 594 (50.6) 1100 (56.9) 548 (57.1) 383 (62.6) 0.081 
   Female 2053 (43.9) 580 (49.4) 832 (43.1) 412 (42.9) 229 (37.4)  

Race, No. (%)      0.207 

   WHITE 3367 (71.9) 870 (74.1) 1398 (72.4) 670 (69.8) 429 (70.1)  

   BLACK 424 (9.1) 92 (7.8) 189 (9.8) 101(10.5) 42 (6.9)  

   OTHER 887 (18.9) 212 (18.1) 345 (17.9) 189 (19.7) 141(23.0)  

Elixhauser index, median 
(IQR) 

4.0 [0.0-9.0] 4.0 [0.0-9.0] 4.0 [0.0-9.0] 4.0 [0.0-9.0] 5.0 [0.0-10.0] 0.015 

Length stay, median (IQR) 2.8 [1.6-5.6] 2.9 [1.8-6.2] 2.4 [1.5-4.8] 2.9 [1.7-5.3] 2.9 [1.6-6.7] < 
0.001 

Mechanical ventilation at 
admission, No. (%) 

1893 (40.5) 499 (42.5) 733 (37.9) 377 (39.3) 284 (46.4) < 
0.001 

Baseline SOFA, mean (SD) 4.96 (2.8) 4.0 (2.4) 5.5 (2.9)  5.2 (2.7)  4.5 (2.8)  < 
0.001 

ICU unit at admission, No. 
(%) 

     0.037 

   SICU 771 (16.5) 185 (15.8) 341 (17.7) 135 (14.1) 110 (17.9)  

   CCU 443 (9.5) 117 (9.9) 167 (8.6) 94 (9.8) 65 (10.6)  

   TSICU 593 (12.7) 173 (14.7) 226 (11.7) 119 (12.4) 75 (12.3)  

   MICU 2611 (55.8) 634 (54.0) 1087 (56.3) 569 (59.3) 321 (52.5)  

   CSRU 260 (5.6) 65 (5.5) 111 (5.8) 43 (4.5) 41 (6.7)  

Admission location, No. (%)      0.196 

   Transfer from other hospital 810 (17.3) 213 (18.1) 304 (15.7) 165 (17.2) 128 (20.9)  

   Emergency room  1497 (32.0) 355 (30.2) 628 (32.5) 328 (34.2) 186 (30.4)  

   Clinic referral 1985 (42.4) 493 (41.9) 847 (43.8) 396 (41.3) 249 (40.7)  

   Transfer from ward 4 (0.1) 2 (0.2) 1 (0.1) 1 (0.1) 0 (0.0)  

   Physician referral 367 (7.9) 106 (9.0) 145 (7.5) 69 (7.2) 47 (7.7)  

   Transfer from skilled 
nursing facility 

15 (0.3) 5 (0.4) 7 (0.4) 1 (0.1) 2 (0.3)  

Infection item, No. (%)        

   Central nervous system 56 (1.2) 10 (0.9) 27 (1.4) 8 (0.8) 11 (1.8) 0.189 

   Intra-abdominal 880 (18.8) 230 (19.6) 363 (18.8) 172 (17.9) 115 (18.8) 0.808 

   Pneumonia 1257 (26.9) 328 (27.9) 494 (25.6) 262 (27.3) 173 (28.3) 0.385 

   Septicemia bacteremia 1587 (33.9) 359 (30.6) 717 (37.1) 300 (31.3) 211 (34.5) < 
0.001 
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Definition of abbreviations: IQR--interquartile range; SD--standard deviation; SOFA--Sequential Organ Failure 313 
Assessment; SICU-- Surgical ICU; CCU-- Coronary Care Unit; TSICU--Thoracic Surgery ICU; MICU--314 
Medical ICU; CSRU--Cardiac Surgery ICU. †p-value calculated by Chi-square test/Fisher’s exact test, or 315 
student’s t-test/Mann-Whitney test where appropriate. DI: Delayed Improving. RI: Rapidly Improving. DW: 316 
Delayed Worsening. RW: Rapidly Worsening. Infection items were defined based on ICD-9 code (see 317 
Supplemental Table S15). 318 
 319 
Discussion 320 
We reported four sepsis subphenotypes based on dynamic organ dysfunction trajectories 321 
using a data-driven methodology. DTW was used to calculate patients’ SOFA trajectory 322 
similarities because of its capability of capturing heterogeneous evolution among the 323 
temporal sequences robustly, based on which HAC was leveraged to identify patient groups 324 
with similar trajectories. The subphenotypes identified were Rapidly Worsening, Delayed 325 
Worsening, Rapidly Improving, and Delayed Improving. Patients in the Rapidly Worsening 326 
subphenotype had progressive organ dysfunction with the ongoing ICU stay. The two 327 
Delayed groups had unstable organ dysfunction over the study period and the Rapidly 328 
Improving group had the highest admission organ dysfunction but quickly improved. 329 
Outcomes followed SOFA trajectory across each subphenotype were irrespective of 330 
traditional baseline SOFA score and septic shock categories.  331 
 332 
A major strength of this analysis is that we have identified time-dependent progression 333 
patterns that may be related to the differential response of specific organ dysfunction to 334 
standard of care interventions. For example, the Rapidly Improving group had cardiovascular 335 
and respiratory failure at admission that resolved over 72 hours. The Rapidly Worsening 336 
groups developed multisystem organ failure including visceral organ dysfunction, specifically 337 
liver failure in addition to cardiovascular and respiratory failure. These differential patterns 338 
suggest varying time-dependent, treatment responsive organ dysfunction pathophysiology in 339 
sepsis. The cardiovascular and respiratory subscores are driven by the vasopressor dose and 340 
PaO2/FiO2 respectively, which may respond to therapeutic interventions such as 341 
corticosteroids, volume resuscitation, and the application of PEEP or therapeutic suctioning.27  342 
However, as demonstrated by our analysis, sepsis-related renal and liver failure may be less 343 
modifiable with our current therapeutic strategies over the past twenty years.28,29  Our study 344 
highlights that patterns of organ dysfunction in patients with sepsis are Rapidly Improving, 345 
Rapidly Worsening and Delayed. Each of these patterns may be due to a different 346 
pathophysiology and benefit from different treatments in the future. However, these findings 347 
have immediate implications for those designing clinical trial endpoints such as change in 348 
SOFA subscore.30  Moreover, enrolling patients with a Rapidly Improving phenotype into a 349 
trial evaluating a therapeutic agent to reduce the duration of organ dysfunction will unlikely 350 
reveal a difference.  351 
 352 
It deserves noting that our Rapidly Improving patients had better outcomes across all patients 353 
studied, but still represented 21%, 36%, 21%, and 24% of all deaths in our development and 354 
validation cohorts (NMEDW, eICU, and CEDAR cohorts) respectively, despite an overall 355 
5%, 10%, 5%, and 9% in-hospital mortality. This low mortality rate but high numbers of 356 
absolute deaths highlights that further research is needed to understand the cause of death in 357 
patients with rapidly improving organ dysfunction in sepsis.31  The Rapidly Worsening 358 
subphenotype was less common compared to rapidly improving and may represent patients 359 
with our classical understanding of septic shock.32  More recent evidence suggests that the 360 

   Skin soft tissue 276 (5.9) 60 (5.1) 140 (7.3) 42 (4.4) 34 (5.6) 0.008 

   Urinary tract 1044 (22.3) 276 (23.5) 439 (22.7) 228 (23.8) 101 (16.5) 0.003 

Septic shock, No. (%) 635 (13.6) 148 (12.6) 299 (15.5) 101 (10.5) 87 (14.2) 0.002 
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pathophysiology of early, progressive organ dysfunction in our Rapidly Worsening patients 361 
may be due to over exuberant activation of necroinflammatory cell death pathways in 362 
multiple organs, highlighting the need for novel treatment strategies.33-35  The Delayed 363 
Worsening and Improving subphenotypes, had intermediate outcomes across our cohorts, and 364 
more nuanced differences in clinical characteristics. These trajectories may be influenced by 365 
non-resolving inflammation or immune paralysis.36,37  Further understanding of the biology 366 
underlying these subphenotypes will be critical to develop the next generation of treatments 367 
for sepsis in all its forms. 368 
 369 
The potential for distinct pathophysiologic etiologies for the differential trajectories is 370 
supported by the differential patterns of organ dysfunction, infectious source, vital signs, 371 
inflammatory, hematologic, and cardiovascular variables at admission to the ICU. As shown 372 
in Figure 5, and Supplemental Figures S6, S7, S12, S13, S16, and S17, there were different 373 
variables associated with different groups over the course of the study. For example, those 374 
patients of Rapidly Improving were more likely to have more abnormal inflammatory 375 
markers (such as WBC, bands, albumin, temperature, lymphocyte) and more abnormal values 376 
on cardiovascular, and CNS subscores. They were also more likely to have urosepsis. There 377 
was a lower comorbidity score in patients with this subphenotype, which suggests that sepsis 378 
outcomes may be more dependent on underlying illness. The Rapidly Worsening patients had 379 
more comorbidities and distinct derangements in clinical variables associated with metabolic 380 
acidosis and hypoperfusion, e.g. a low bicarbonate and higher lactate, and disseminated 381 
intravascular coagulation, e.g. low platelets and a higher INR and respiratory failure. Both of 382 
the Delayed subphenotypes had less specific variables associated with group membership, 383 
including inflammatory, hepatic, hematologic and pulmonary associated with Delayed 384 
Improvement and hematologic, cardiovascular and renal variables associated with Delayed 385 
Worsening. These differences may be related to secular trends in therapeutics and differing 386 
case mixes in each cohort.  387 
 388 
We built multivariable prediction models for the identified trajectory subphenotypes from 389 
patient baseline characteristics and early-stage clinical features. Several interesting findings 390 
were obtained. (1) A high comorbidity score tended to predict the subphenotypes of Rapidly 391 
Worsening because patients with high comorbidity burden were more likely to present worse 392 
organ dysfunction in ICU; (2) The roles of lab tests and vital signs were different on 393 
prediction. For example, low Platelets had a positive impact on the Rapidly Worsening 394 
prediction and high Platelets had a positive impact on the Rapidly Improving prediction. 395 
These prediction models may enhance the clinical utility of the identified subphenotypes in 396 
practice, as they can be predicted with the EHR information captured within the early hours 397 
of ICU admission, especially for Rapid Improving and Rapid Worsening subphenotypes, 398 
which has important clinical implications as discussed above. Our model can be implemented 399 
within the EHR system as a risk calculator for subphenotype assignments. 400 
 401 
Our manuscript complements and adds to other recent study of sepsis subphenotypes. For 402 
example, Seymour et al. and Knox et al. each identified four subphenotypes that were 403 
associated with organ dysfunction patterns and clinical outcomes in patients with sepsis using 404 
a panel of baseline clinical variables.5,10   There is some overlap in our high risk groups, 405 
notably both include liver injury and shock. However, our work demonstrates that the 406 
difference in outcome in this group is due to progressive non-resolving organ dysfunction 407 
that calls for novel treatments. Prior work by Ferreira et al and Sakr et al used changes in the 408 
SOFA score after ICU admission to improve prognostic stratification in sepsis, but did not 409 
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use these changes to establish subphenotypes. Bhavani et al. used longitudinal temperature 410 
trajectories to identify four sepsis subphenotypes, with significant variability in inflammatory 411 
markers and outcomes, highlighting the potential for novel immune signatures to be 412 
uncovered through trajectory analysis.1 Differential organ dysfunction trajectory may be 413 
related to the immune response but may also be explained by differences in preexisting 414 
frailty, effective source control, resuscitation and processes of care.  415 
 416 
This study has several limitations. First, our sepsis subphenotypes were identified based on 417 
the data-driven method, which may not be directly related to underlying differences in 418 
biology. Integration of biological data may help refine our understanding of differential 419 
disease progression and the potential for therapeutics to alter the course. Second, although we 420 
used many separate hospitals in validation, all of them are located in the United States, which 421 
may limit generalizability to other locations of care. Moreover, these observational cohorts 422 
may not directly reflect sepsis clinical trial populations but are representative of academic 423 
and community hospitals across the United States. Third, we did not evaluate the effect of 424 
specific randomized interventions on SOFA score trajectory. Fourth, this identified sepsis 425 
subphenotypes only focused on patients admitted to an ICU, which is subject to differences in 426 
ICU admission practices across institutions. Last but not the least, we did not investigate the 427 
association between care processes and the subphenotypes, which would be an important 428 
topic in future research. 429 
 430 
Conclusion 431 
We discovered four sepsis subphenotypes with different natural histories following admission 432 
to the ICU. Our results suggest that these subphenotypes represent a differential host 433 
pathogen response in the setting of current standard of care therapy. Understanding 434 
differential trajectory has implications for the design and predictive enrichment of therapeutic 435 
clinical trials.38  Further understanding of the underlying biology of subphenotypes may 436 
reveal insights into sepsis pathophysiology and improve the personalization of sepsis 437 
management.  438 
 439 
Abbreviations: ICU: Intensive Care Unit; DTW: Dynamic Time Warping;  HAC: Hierarchical 440 
Agglomerative Clustering; SOFA: Sequential Organ Failure Assessment; GBTM: Group-Based 441 
Trajectory Modeling; LCA: Latent Class Analysis; EHR: Electronic Health Record; MIMIC-III: 442 
Medical Information Mart for Intensive Care III database; BIDMC: Beth Israel Deaconess Medical 443 
Center; NMEDW: Northwestern Medicine Enterprise Data Warehouse; CEDAR: Critical carE 444 
Database for Advanced Research; NYP/WCMC: NewYork-Presbyterian/Weill Cornell Medical 445 
Center; CNS: Central Nervous System; LOCF: Last Observation Carried Forward; NOCB: Next 446 
Observation Carried Backward; SHAP: Shapley Additive Explanations; MICU: Medical Intensive 447 
Care Unit; SD: Standard Deviation; WBC: White Blood Cell Count; RDW: Red Blood Cell 448 
Distribution Width; CRP: C-reactive protein; CI: Confidence Interval; AST: Aspartate 449 
Aminotransferase. 450 
 451 
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Figure Title and Legend: 607 
Figure 1. Workflow of study. (A) The MIMIC-III dataset was used as development cohort 608 
and NMEDW, eICU, and CEDAR datasets were used as validation cohorts. Electronic health 609 
records including lab tests, vital signs, and medication were extracted to compute the SOFA 610 
score every 6 hours during 72 hours after admission to ICU. (B) Each patient was represented 611 
as a 72-hour SOFA score trajectory. Dynamic Time Warping (DTW) was used to compute 612 
heterogeneous SOFA trajectory similarities and HAC was applied to identify subphenotypes 613 
based on trajectory similarities. (C) To re-derive subphenotypes in three validation cohorts and 614 
consider sensitivity analysis to clustering method, specifically, use another method (Group-615 
Based Trajectory Modeling, GBTM) to generate subphenoytpes. Statistical analysis were 616 
performed among subphenotypes in terms of demographic factors, lab tests and vital signs. (D) 617 
The predictive model of subphenotypes at successive time points (hours 6, 24, 36, 48, 60) after 618 
ICU admission was constructed based on a random forest classifier by using patients’ clinical 619 
data including lab tests, vital signs, and SOFA subscores.  620 
 621 
Figure 2. Sequential Organ Failure Assessment (SOFA) trajectories of the identified 622 
subphenotypes in development and three validation cohorts. DI: Delayed Improving; RI: 623 
Rapidly Improving; DW: Delayed Worsening; RW: Rapidly Worsening. 624 
 625 
Figure 3. The prevalence of each subphenotype in development (MIMIC-III) and other 626 
three validation cohorts (NMEDW, eICU, CEDAR). DI: Delayed Improving; RI: Rapidly 627 
Improving; DW: Delayed Worsening; RW: Rapidly Worsening. 628 
 629 
Figure 4. Survival analysis in terms of the identified subphenotypes in development and 630 
three validation cohorts. DI: Delayed Improving; RI: Rapidly Improving; DW: Delayed 631 
Worsening; RW: Rapidly Worsening. The (A), (B), (C), and (D) show the survival analysis 632 
results in development and three validation cohorts, respectively. 633 
 634 
Figure 5. Chord diagrams showing abnormal variables by subphenotype in development 635 
cohort. a: abnormal biomarkers vs. all subphenotypes; I: abnormal biomarkers vs. DI; II: 636 
abnormal biomarkers vs. RI; III: abnormal biomarkers vs. DW; IV: abnormal biomarkers vs. 637 
RW; b: abnormal subscores vs. all subphenotypes; V: abnormal subscores vs. DI; VI: abnormal 638 
subscores vs. RI; VII: abnormal subscores vs. DW; VIII: abnormal subscores vs. RW. DI: 639 
Delayed Improving; RI: Rapidly Improving; DW: Delayed Worsening; RW: Rapidly 640 
Worsening. 641 
 642 
Figure 6. SHAP value-based predictor contribution to the subphenotype prediction of 643 
the predictive model in development cohort. Features’ importance is ranked based on 644 
SHAP values. In this figure, each point represented a single observation. The horizontal 645 
location showed whether the effect of that value was associated with a positive (a SHAP 646 
value greater than 0) or negative (a SHAP value less than 0) impact on prediction. Color 647 
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observation. For example, in RW, a low Platelets value had a positive impact on the RW 649 
subphenotype prediction; the “low” came from the blue color, and the “positive” impact was 650 
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Figure 1. Workflow of study. (A) The MIMIC-III dataset was used as development cohort and 
NMEDW, eICU, and CEDAR datasets were used as validation cohorts. Electronic health records 
including lab tests, vital signs, and medication were extracted to compute the SOFA score every 6 
hours during 72 hours after admission to ICU. (B) Each patient was represented as a 72-hour SOFA 
score trajectory. Dynamic Time Warping (DTW) was used to compute heterogeneous SOFA 
trajectory similarities and HAC was applied to identify subphenotypes based on trajectory 
similarities. (C) To re-derive subphenotypes in three validation cohorts and consider sensitivity 
analysis to clustering method, specifically, use another method (Group-Based Trajectory Modeling, 
GBTM) to generate subphenoytpes. Statistical analysis were performed among subphenotypes in 
terms of demographic factors, lab tests and vital signs. (D) The predictive model of subphenotypes 
at successive time points (hours 6, 24, 36, 48, 60) after ICU admission was constructed based on 
a random forest classifier by using patients’ clinical data including lab tests, vital signs, and SOFA 
subscores.    
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Figure 2. Sequential Organ Failure Assessment (SOFA) trajectories of the identified 
subphenotypes in development and three validation cohorts. DI: Delayed Improving; RI: 
Rapidly Improving; DW: Delayed Worsening; RW: Rapidly Worsening. 
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Figure 3. The prevalence of each subphenotype in development (MIMIC-III) and other 
three validation cohorts (NMEDW, eICU, CEDAR). DI: Delayed Improving; RI: Rapidly 
Improving; DW: Delayed Worsening; RW: Rapidly Worsening. 
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Figure 4. Survival analysis in terms of the identified subphenotypes in development and 
three validation cohorts. DI: Delayed Improving; RI: Rapidly Improving; DW: Delayed 
Worsening; RW: Rapidly Worsening. The (A), (B), (C), and (D) show the survival analysis 
results in development and three validation cohorts, respectively. 
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Figure 5. Chord diagrams showing abnormal variables by subphenotype in development 
cohort. a: abnormal biomarkers vs. all subphenotypes; I: abnormal biomarkers vs. DI; II: abnormal 
biomarkers vs. RI; III: abnormal biomarkers vs. DW; IV: abnormal biomarkers vs. RW; b: 
abnormal subscores vs. all subphenotypes; V: abnormal subscores vs. DI; VI: abnormal subscores 
vs. RI; VII: abnormal subscores vs. DW; VIII: abnormal subscores vs. RW. DI: Delayed 
Improving; RI: Rapidly Improving; DW: Delayed Worsening; RW: Rapidly Worsening. 
 
 



DI RI

DW RW



Figure 6. SHAP value-based predictor contribution to the subphenotype prediction of the 
predictive model in development cohort. Features’ importance is ranked based on SHAP values. 
In this figure, each point represented a single observation. The horizontal location showed whether 
the effect of that value was associated with a positive (a SHAP value greater than 0) or negative 
(a SHAP value less than 0) impact on prediction. Color showed whether the original value of that 
variable was high (in red) or low (in blue) for that observation. For example, in RW, a low Platelets 
value had a positive impact on the RW subphenotype prediction; the “low” came from the blue 
color, and the “positive” impact was shown on the horizontal axis. DI: Delayed Improving; RI: 
Rapidly Improving; DW: Delayed Worsening; RW: Rapidly Worsening.  
 
 


