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Randomized controlled trials (RCTs) offer a clear causal interpretation of

treatment effects, but are inefficient in terms of information gain per patient.

Moreover, because they are intended to test cohort-level effects, RCTs rarely

provide information to support precision medicine, which strives to choose

the best treatment for an individual patient. If causal information could be

efficiently extracted from widely available real-world data, the rapidity of

treatment validation could be increased, and its costs reduced. Moreover, in-

ferences could be made across larger, more diverse patient populations. We

created a “virtual trial” by fitting a multilevel Bayesian survival model to

treatment and outcome records self-reported by 451 brain cancer patients.

The model recovers group-level treatment effects comparable to RCTs rep-

resenting over 3200 patients. The model additionally discovers the feature-

treatment interactions needed to make individual-level predictions for preci-
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sion medicine. By learning from heterogeneous real-world data, virtual trials

can generate more causal estimates with fewer patients than RCTs, and they

can do so without artificially limiting the patient population. This demon-

strates the value of virtual trials as a complement to large randomized con-

trolled trials, especially in highly heterogeneous or rare diseases.

Randomized Controlled Trials are inefficient Cancer is a complex family of diseases, with

a high degree of variation in outcomes. The challenge of precision oncology is to predict the

effect of treatments on outcomes, conditional on features unique to a given patient. Randomized

controlled trials (RCTs) are often considered the “gold standard” method for inferring the causal

effect of medical interventions. However, an RCT can only test a handful of hypotheses. Rele-

vant patient features (hereafter generically referred to as biomarkers) potentially number in the

hundreds or thousands, including clinical demographic features, and cancer stage, grade, mor-

phology, histopathology, and genetics. Genetics has led to an explosion of possible biomarkers

that may be relevant for cancer diagnosis, prognosis, or treatment. OncoKB, for example, lists

47 prognostic, 132 diagnostic, and 119 therapeutically relevant genes for cancer (1). The space

of potential treatments is also vast, with hundreds of plausible treatments, and thousands of

possible combinations. The combined space of biomarkers, treatments, and the pairwise inter-

actions between these easily numbers in the thousands of dimensions, and the dimensionality

increases rapidly as new biomarkers and treatments are discovered (2, 3). Indeed, the relevance

of a trial is often reduced during the time required to conduct it, as new information emerges.

The availability of patients to populate RCTs is also a significant limitation on their effi-

ciency. As the targeting of therapies becomes more narrowly focused, the number of patients

matching the inclusion criteria becomes smaller, and factors such as inaccessibility, ineligibil-

ity, patient reluctance, and racial bias end up turning most patients away from clinical trials (4).
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In oncology, this is compounded by the relative over-abundance of trials in common cancers,

and paucity of trials for rare and pediatric cancers. The net effect is that overall clinical trial

participation in cancer is just 8.1% (5), and this figure is lower for minorities, children and the

elderly. Thus, more than 90% of the potential data from which clinically-actionable information

might be learned is not accessed by RCTs.

Finally, it is estimated that as many as 75% of all drugs are prescribed off-label, while for

rare diseases and cancer, off-label usage can reach 90% (6). RCTs often measure a subpopula-

tion which differs significantly from the ultimate recipients of the treatments.

Modeling real world survival data With the emergence of electronic health records and

increased adoption of real world data, it is increasingly possible to collect and analyze data on a

much larger and more diverse population. At the same time, advances in computing power and

analytic tools provide new approaches for causal inference in large clinical datasets.

Precision medicine requires inferential tools that support informed individual treatment de-

cisions. These tools must allow for continuous statistical learning from new data at the individ-

ual level, and from external sources of information. These inference methods must accommo-

date larger and more heterogeneous datasets. Because of the high-dimensional nature of this

data, feature selection techniques are required to identify biomarkers that may be prognostically

or therapeutically relevant, and the inferential process must produce results that are intuitively

interpretable and can be understood by clinicians and explained to patients.

Biomarkers may affect disease prognosis, treatment response, or both. While the Cox pro-

portional hazards (Cox PH) model has been the most widely used for survival analyses in can-

cer, deviations from the proportional hazards assumption are now more frequently observed

in precision oncology trials (7). Further, the “hazard function” reported in the Cox PH model

is ill-suited for patient-level prediction (8) because the proportionality assumption is violated

3

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 7, 2022. ; https://doi.org/10.1101/2021.06.12.21258409doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.12.21258409
http://creativecommons.org/licenses/by-nd/4.0/


when adding mediator variables which can shift baseline hazards rather than just altering the

slope of the hazard function (9). Other issues with the basic Cox PH model are its inability to

use time-dependent covariates as well as the chance for collinearity with high dimensional data,

although recent progress has been made in addressing these issues (10–12).

In contrast, the accelerated failure time (AFT) model evaluates (log) survival time directly

as a linear combination of covariates with an error term, making this model better suited to

individual patient-level survival prediction models. Use of parametric AFT models has been

explored in cancer (13, 14) and these models are able to accommodate larger numbers of co-

variates that affect individual predictions. AFT models may also be less sensitive to omitted

covariates, more accommodating of time-dependent acceleration factors, and more amenable to

causal inference (15, 16).

To have clinical utility, machine learning models that predict individual outcomes from a

large feature and treatment-by-feature interaction space must be easily interpretable by a clini-

cian without specialized statistical expertise. Because AFT models directly measure the effect

of an explanatory variable on (log) survival time, rather than a hazard ratio, the measured effects

of covariates has a more natural interpretation than survival models based on Cox PH, in which

explanations of changes in hazard ratio can be misleading and confusing to patients (17, 18).

Finally, when interpreting models, the Bayesian posterior probability distribution has a more

intuitive interpretation than a confidence interval or p-value, which are based on the probability

that hypothetical, counterfactual data from the null hypothesis would be more extreme than the

observed data (19).

In this work, we present a Bayesian multilevel AFT model of patient outcomes with sparsity-

inducing priors that may be used to learn from historical patient outcomes data to make predic-

tions for the outcomes of new patients under proposed treatments. We apply this model to an

observational dataset of patient-reported outcomes from patients with primary brain tumors.
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This model makes easy-to-interpret estimates of biomarker effects that contribute to predicted

outcomes. We compare the degree of causal bias in the resulting model by comparing predic-

tions of the model to data reported from several large RCTs.

A Bayesian precision oncology model Here we present our time-to-event model for learning

treatment effects in observational data. The event in question may be any well-defined point

in the time course of a disease. In the context of cancer, common endpoints include overall

survival (OS; the time from treatment to death) and progression-free survival (PFS; the time

from treatment to disease progression or death). Disease progression is often indicated by a

growth in the tumor (or some proxy measurement) by some predefined factor.

A natural concern for any observational data model is the robustness of inference in the

presence of unmeasured covariates. To mitigate this concern, we adopt a multilevel accelerated

failure time (AFT) model (15). There are two levels in the model: one for patients, and one

for treatment time interval. Each patient can be associated with one or more treatment time

intervals. In AFT survival models, the effect of a treatment is to stretch or shrink the expected

survival by a constant factor. Such a model may be viewed as a generalized linear model in

which the outcome variable is the log of the survival time.

log(T ) = µ+ σε (1)

In equation 1, exp (µ) is the scale factor for the survival distribution, σ represents the variation

in survival times about the expected survival time, and ε is a standardized distribution of error

terms. Some common parametric choices for the distribution of ε are Logistic, Gumbel, and

Normal, corresponding to Log-Logistic, Weibull, and Log-Normal distributions for the survival

times, however a non-parametric spline-based approach may also be appropriate (16). Here we

chose a Logistic distribution for ε, with standardized probability distribution function (PDF)

f(ε) = exp (−ε) (1 + exp (−ε))−2 . (2)
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We assessed the appropriateness of the Log-Logistic distribution using non-parametric survival

estimates and visual inspection of the relationship between survival time and survival probabil-

ity (20).

To model the effect of patient features and treatments on observed outcomes, we expressed

the scale and variance parameters of equation 1 as linear responses of patient-level predictors

(subscript 1) and treatment-level predictors (subscript 2). The parameters of the survival time

distribution of patient i during treatment time interval j are

µij = αµ + βµ1 ·Xµ1,i + βµ2 ·Xµ2,j + u1,i (3)

and

log σij = ασ + βσ1 ·Xσ1,i + βσ2 ·Xσ2,j (4)

where α{µ,σ} is the scalar intercept, β{µ,σ}1 is the vector of effect sizes for patient-level predic-

tors, β{µ,σ}2 is the vector of effect sizes for treatment-level predictors, X{µ,σ}1,i is the vector

of predictors for the i-th patient, and X{µ,σ}2,j is the vector of predictors for the j-th treatment

time interval. The term u1,i refers to the patient-level random effect size parameter for the i-th

patient, and they are assumed to be drawn from a Normal distribution with a mean of zero and

a standard deviation of σu. A graphical summary of the model using plate notation is shown in

Figure 1.

Equation 1, together with a choice of probability distribution, f(ε), defines a likelihood for

a set of survival times. For right-censored survival times, the likelihood is modified such that

f̃(T |θ) = 1− F (T |θ) (5)

where F (T |θ) is the cumulative distribution of survival times, conditional on model parameters

θ.

To regularize the regression fitting process, we defined prior distributions over all of the

model parameters. For the intercept parameters α (as well as slopes for the log variance pa-
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rameters, βσ), we used a zero-centered Normal prior distribution with standard deviation s, a

hyperparameter chosen to be some large but reasonably finite value. Following conventional

practice in Bayesian multilevel modeling (21, 22), we used a Normal distribution over patient-

level effects, u, whose scale σu is drawn from a standard Half-Cauchy distribution. For the

slope parameters βµ, we anticipated a set of sparse effects; i.e., of the large number of predic-

tors and interactions between predictors, we assumed that many of the associated effects would

be below the noise threshold, but some fraction will have significant effects on the survival time.

Thus, we used a regularized horseshoe prior (23) to induce sparsity in the joint distribution of

effect size parameters, βµ. This sparsity-inducing prior allows us to model the full range of

pairwise interaction terms and their effects on survival, without making specific assumptions

about which terms to keep and which to discard.

Causal interpretation Figure 2 shows a graphical causal model interpretation of the model.

As in the previous section, x1 refers to measured patient-level pre-treatment variables, while x2

refers to treatment-level variables. Unmeasured patient-level variables are denoted by u1. Each

of x1, x2, and u1 can affect outcomes y, and x1 and u1 can affect x2. Thus x1 and u represent

confounders for the effect of x2 on y. We would like to estimate the effect of x2 on y in an

interventional scenario, where we force x2 to some value independent of x1 and u1 (visualized

in Figure 2 as the removal of the red arrows).

Pearl’s backdoor criterion (24) specifies when we can compute the interventional effect from

observational data. In this particular case, the set of variables containing x1 and u1 block all

backdoor paths leading from x2 to y. Thus, the interventional distribution is given by

P (y|do(x2)) =
∑
x1,u1

P (y|x2, x1, u1)P (x1, u1) (6)

where the do(x2) function indicates that the value of x2 is set independently of the other vari-
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ables. From the previous section, we have assumed that x1 and u1 are independent and thus

P (x1, u1) = P (x1)P (u1). However, this assumption could be relaxed by introducing models

with multiple patient-level random effects with patient-level predictors as a subset of x1. Re-

gardless, we see that, under assumptions of the graphical model presented here, conditioning a

model for the response of y to x2 on observational data will recover an unbiased estimate of the

interventional effect of x2 on y. Insofar as these assumptions are biased, the resulting casual

estimates may be as well. Calibration against randomized experiments can quantify the degree

of bias in the overall model.

Real world data from a brain cancer registry While most clinical research is led by physician-

scientists, advocacy- and patient-led research initiatives have become more common with ex-

amples reported in the literature (25). Advocacy-led research can provide a critical boost espe-

cially in areas that are understudied. In particular, advocacy-led registries can help establish the

natural history of rare diseases and lay the foundation for development of therapeutics (26, 27).

One of the earliest examples of an advocacy- or foundation-led research registry is the

Musella Foundation for Brain Tumor Research & Information’s Virtual Trial Registry (here-

after referred to as the virtual trial or VT data) (28), which was an advocacy-led initiative begun

by the foundation as an on-line forum in 1992, and converted to a web site in 1993, hosted at the

Foundation’s site: “virtualtrials.org” (formerly “virtualtrials.com”). Predating the widespread

availability of patient resources for this population, the site was developed to provide a clear-

inghouse where patients with primary brain tumors could share details about their diagnosis,

treatments, and health status in order to create a repository of information that could assist

other patients.

This registry is an exploratory and descriptive cohort of 761 primary brain tumor patients

who self-reported details of their disease and treatments, including treatment outcomes in the
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form of both tumor scan summaries and Karnofsky performance status (KPS), a standard func-

tional measure for primary brain tumors that is used clinically to stratify patient prognosis and

determine appropriate management in glioblastoma multiforme (29). Patients provided data

voluntarily through the VT web site, and many participants copied details from their medical

records into the registry web page.

A common challenge faced by registry studies is the completeness and quality of the data

collected. While self-report information can be subject to various biases (30), the VT study data

was subject to an evaluation in which a pathologist and neurosurgeon independently evaluated

patient-reported data against medical charts for a randomly selected sample, which demon-

strated significant agreement between patient and physician reported data in this registry (28).

We defined a cohort for the present analysis that included patients with a primary brain

tumor diagnosis, including glioblastoma, (GBM), anaplastic astrocytoma (AA), diffuse intrinsic

pontine glioma (DIPG), and oligodendroglioma (both high and low grades) who reported at least

one tumor scan summary, and at least one treatment. Patients were treated between 1980 and

2017 with over 200 different therapies, including cytotoxic chemotherapies, radiation therapy,

surgery (partial and/or complete resections), anti-angiogenesis agents, immunotherapy agents,

and a small number of targeted therapies. The resulting cohort included data for 451 patients.

To define treatment time intervals, we identified tumor scan summaries in which disease

progression (or KPS < 10 as a proxy for death) was identified to have occurred. Disease

progression was self-assessed by the patient, though in many cases the text of the radiologist’s

impression was available for review. Many patients (∼ 40%) had more than one treatment time

interval identified, as they were treated again after experiencing disease progression. “Survival”

time was defined as the time between the first treatment within a treatment time interval and

disease progression.

We chose patient-level predictors for the survival timescale, µ, to be tumor type, tumor
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grade, and age at diagnosis. We chose treatment-level predictors for µ to be the resectabil-

ity of the tumor (partial/complete/unable), patient function (in KPS) at the start of treatment,

time since diagnosis, and binary indicators for 35 different treatments. Several of these treat-

ments represent categories of treatment (e.g., “temozolomide” is an instance of a “chemother-

apy agent”), which were then coded as additional treatments (e.g., “treated with temozolomide”

implies “treated with chemotherapy agent”). We normalized treatment names and resolved

treatment categories against the National Cancer Institute thesaurus (31).

Chemotherapy agents included carmustine (delivered both intravenous and implanted on

the tumor), carboplatin, cisplatin, etoposide, hydroxyurea, irinotecan, lomustine (CCNU), pro-

carbazine, temozolomide (TMZ), vincristine. Anti-angiogenesis agents included bevacizumab,

genistein, and thalidomide. Immunotherapy agents included Poly ICLC and several varieties

of vaccines. Targeted therapies included erlotinib, imatinib, and tamoxifen. Forms of radiation

therapy (RT) included radiosurgery (both fractionated and single dose), intensity-modulated

radiation therapy (IMRT), proton beam radiation therapy (PBRT), stereotactic radiosurgery

(SRS), conformal radiation therapy, and internal radiation therapy (brachytherapy). Other, un-

classified treatments that were considered included celecoxib, dexamethasone, polysaccharide

K (PSK), Optune, and valproic acid.

For patient/treatment-level predictors for the variability in survival times, σ, we restricted

the predictors to be the patient biomarkers, namely tumor type/grade, age, resectability, KPS,

and time since diagnosis. For the treatment-level predictors for µ, we additionally included

pairwise interaction terms between all predictors that had any overlap. To mitigate the effect of

multicollinearity, we dropped interaction terms that were entirely or mostly predictive of one of

the original terms (e.g., we would have dropped the radiotherapy+dexamethasone interaction

term if every instance of dexamethasone treatment co-occurred with radiation therapy).
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Fitting the model We implemented our Bayesian multilevel survival model in the probabilis-

tic programming language, Stan (32), and fit it to the VT data, using the No-U-Turn Markov

Chain Monte Carlo (MCMC) sampler (33) to draw samples from the posterior probability dis-

tribution. Figure 3 shows a selected number of resulting effect size estimates. Several known

clinical insights can be found in these inferred values. Comparing the effect of different condi-

tions, we see that glioblastoma (GBM) is associated with a factor of∼ 0.5 decrease in expected

survival, compared to anaplastic astrocytoma (AA,∼ 1) and oligodendroglioma (∼ 1.5). Treat-

ment that occur within three months of diagnosis (indicated as “newly diagnosed”) are associ-

ated with a factor of > 2 longer time to progression, compared to treatment that occurs later,

possibly when the patient has experienced recurrence or previous treatment failure.

Causal validation The model presented in the prior sections contains various causal assump-

tions, summarized in the graphical diagram in Figure 2. Verifying that all of these assump-

tions hold is infeasible in practice, and so to assess the degree of causal bias in the observa-

tional model, we compared our model’s estimated treatment effects with those found in RCTs.

The model development and analyses were completed before any RCTs were considered for

comparison, and the results of these RCTs were not known at the time of model develop-

ment. We queried ClinicalTrials.gov for RCTs matching the VT patient population

(at least one of glioblastoma, anaplastic astrocytoma, diffuse intrinsic pontine glioma, or oligo-

dendroglioma), and with at least two treatment arms represented in the registry. These queries

resulted in a list of seven comparison RCTs (described in Table 1) (34–40). In total, there were

over 3200 participants across these seven clinical trials.

For each RCT, we used the model as fitted with the VT data to make predictions for the

median time-to-progression experienced by participants within each treatment arm. It should

be noted that the predicted endpoint will, by construction, differ from an endpoint of PFS from
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a randomized trial, as the definition of a starting time is different between the VT and an RCT.

We marginalized the predicted survival times over both the posterior probability distribution

and a uniformly random distribution of predictors, with particular entries fixed to be consistent

with the inclusion/exclusion criteria of the trial and the specific treatment arm. Figure 4 shows

the resulting ratios in median survival between treatment arms, both observed PFS endpoints

from the RCT and the VT prediction. For all but one of the seven comparison trials (namely the

PCV vs TMZ trial described by (35)), the VT model reproduces the direction of the observed

ratio of PFS between treatment arms, and five of the seven comparisons show that the mean VT

estimated log PFS ratio lies within the 95% confidence interval of the corresponding trials.

Resolving the PCV vs TMZ discrepancy The most notable difference between the model-

predicted treatment effects and those from RCTs was found for the PCV vs TMZ comparison.

One key difference between the patient population in this study and our registry was that the

PCV vs TMZ study was restricted to chemotherapy-naive recurrent glioma patients. In con-

trast, patients in our registry who had recurrent high grade glioma generally received upfront

chemotherapy, following standard of care. Brada and colleagues (35) concluded that there was

no difference between PCV and TMZ for high grade glioma on the PFS and OS endpoints, but

with the simpler dosing schedule and favorable tolerability, use of TMZ eclipsed PCV for this

population in the years that followed. However, PCV has many advocates and the literature has

evolved with several new biomarkers that were not available in the Brada trial or in our registry.

In a 2018 review, Hafazalla et al. (41) summarized the situation as follows, “the data suggest

that for patients harboring a tumor with an unfavorable natural history, such as those with intact

1p/19q and wild-type IDH1, TMZ and RT may be the best option. Conversely, the data suggest

that patients with biologically favorable LGG are likely to derive the most significant benefit

from RT and adjuvant PCV. A prospective trial directly comparing PCV and TMZ in patients
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with high-risk low-grade glioma is needed.” Indeed, several large RCTs are underway that are

expected to produce results in late 2025 (see, e.g. NCT00887146). Our results may thus be

interpreted as a reason to continue investigating the ideal population or sub-population.

Predicted outcomes for new patients In addition to summarizing population-level treatment

effects, we can use the model to estimate survival distributions for individual patients, condi-

tioned on their features and proposed treatment. These estimated survival distributions can then

be used to help inform patient treatment decisions. To demonstrated this task, we generated

synthetic patient cases using various patient features from the Musella VT dataset. We then

proposed a set of plausible treatments (including single agents and combinations). For each pa-

tient and each proposed treatment, we sampled first from the posterior probability distribution

over the model parameters and then from the survival likelihood as conditioned on those model

parameters. By repeating this sampling procedure for a large number of iterations, we built up

a distribution of individual survival time predictions that can be compared to other patients and

other treatments. Figure 5 shows the mean and standard deviation of these predictions for three

sample patients across a set of proposed treatments. While there is a large overlap in the cred-

ible intervals for treatment effects, the order of the mean treatment effects differ from patient

to patient. For instance, for a low-grade oligodendroglioma patient, radiation is preferred over

the combination of bevacizumab and lomustine, while this order is reversed for a glioblastoma

patient with low performance status.

Discussion Randomized clinical trials with narrow inclusion criteria are necessary to satisfy

the hypothesis testing requirement of an independent and identically distributed population;

but as the inclusion criteria become more narrow, finding large enough populations to make

meaningful inferences becomes more difficult. This limitation both slows the accrual rate of

clinical trials and excludes many cancer patients from trials, thus slowing the pace of knowl-
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edge generation. Slow enrollment leads to higher trial costs. This paradigm had resulted in a

greater emphasis on measures of treatment effect rather than clinically-actionable information

on patient features that moderate or mediate treatment effects. A consequence of this is that

large numbers of cancer patients lose out on the opportunity and potential benefits of clinical

research (42).

The speed and cost of oncology drug development could be reduced by strategies that allow

for more inclusive approaches to patient enrollment and inference across a larger and more

diverse patient population. This could be accomplished by a greater reliance on real-world data,

which would reduce the burden that clinical research places on busy clinicians–another factor

limiting enrollment into clinical trials.

The model we present provides a tool for extracting clinically meaningful information from

heterogeneous real-world data. For example, in glioma, where there is a diversity of clinical

practice, the model can help identify the ideal therapy for an individual considering a vari-

ety of biomarkers. Indeed our motivation was to explore whether a single machine-learning

model could recover the effects of known clinical biomarkers and treatment effects from a

medium-sized, non-randomized sample. We believe that the data presented shows the method

promising for use is precision oncology, where the number of biomarkers, treatments, and treat-

ment/biomarker interactions may lead to a decades-long search for the optimal regimen for

specific subtypes. This is important for identifying the optimal use of approved therapies ef-

ficiently from registries of clinical practice that are less costly than large, global RCTs. For

example NCT00887146, is expected to take 16 years and require 271 global sites to answer the

PCV versus TMZ use question.

A natural concern for using models trained on observational data to drive clinical decision

making is the potential for biases in the estimated treatment effects. Indeed, a recent com-

parison of observational studies with oncology RCTs by Soni et al. (43) found agreement that
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was only marginally better than the agreement from random chance. However, this analy-

sis was restricted to studies with overall survival endpoints, which the authors noted are less

reliable than intermediate endpoints such as PFS or time to treatment failure. Furthermore,

larger meta-analyses of comparisons between observational studies and RCTs across a diverse

range of clinical domains have found little difference, on average between the two experiment

types (44). In the specific setting of oncology, Petito et al. (45) applied a targeted trial ap-

proach to observational data from SEER/Medicare, one of the data sources used by Soni et al.

The authors’ SEER/Medicare-derived estimates were in good agreement with the two targeted

RCTs. However, as Petito and colleagues noted, the agreement was dependent on their proper

accounting for censoring and confounding (via inverse probability weighting). Clearly there are

challenges in the design of non-randomized experiments, but we believe that our results realize

the efficiency benefits of observational studies, without substantial bias with respect to RCTs.

Conclusion We have demonstrated that it is possible to learn features and feature-by-treatment

interactions from heterogeneous real-world cancer data, and that effect size measures from this

approach generally recapitulate treatment effects sizes from randomized clinical trials, without

requiring a carefully selected population, and with more information learned from a smaller

overall dataset. This model also facilitates individual-level forecasts that incorporate large clin-

ical feature sets and provides easily interpretable measurements of parameters, both require-

ments for clinically useful precision oncology tools. This is an important step towards maxi-

mizing information gain from clinical medicine and better integrating clinical research into the

practice of medicine.
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Status of Data and Availability

The dataset used in this work was assembled by The Musella Foundation for Brain Tumor

Research (virtualtrials.org). Patients enrolling in The Foundation’s observational Brain Tumor

Virtual Trial Study, or their advocates, voluntarily submitted information about themselves and

their treatments and test results to The Foundation. Patients were specifically consented for

the collection of this data, and agreed that the data could be released in aggregate analyses,

such as the present one. This consent was approved by The Musella Foundation’s oversight

board. The Foundation is seeking an IRB exemption to release the de-identified disaggregated

data used in the present research. If The Foundation obtains that exemption, it will make the

de-identified disaggregated data publicly available. Until such time as the de-identified dis-

aggregated data is publicly released, it can be obtained through case-by-case IRB approval.

Individuals wishing to obtain the de-identified disaggregated data should contact either the cor-

responding author (Asher Wasserman: awasserman@xcures.com), or the Musella Foundation

(musella@virtualtrials.org).
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Trial ID Publication Npt Condition Arm A Arm B

NCT01149109 (40) 141 Newly diagnosed
glioblastoma

temozolomide,
lomustine

temozolomide

NCT01290939 (39) 437 Progressive
glioblastoma

lomustine,
bevacizumab

lomustine

NCT00182819 (38) 477 Low-grade
glioma

temozolomide radiotherapy

NCT00884741 (37) 978 Newly diagnosed
glioblastoma

temozolomide,
radiotherapy,
bevacizumab

temozolomide,
radiotherapy

NCT00943826 (36) 921 Newly diagnosed
glioblastoma

temozolomide,
radiotherapy,
bevacizumab

temozolomide,
radiotherapy

NCT00052455 (35) 447 Recurrent high-
grade glioma

procarbazine,
lomustine,
vincristine

temozolomide

NCT00002569 (34) 289 Newly diagnosed
high-grade oligo-
dendroglioma or
oligoastrocytoma

procarbazine,
lomustine,
vincristine,
radiotherapy

radiotherapy

Table 1: List of randomized controlled trials for comparison with the results of the virtual trial.
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Figure 1: Graphical model representation using plate notation for the Bayesian multilevel
model. Open ellipse nodes show latent parameters, filled ellipse nodes show observed outcome
data, filled boxes show observed covariates, and open boxes show deterministically computed
quantities. The outer plate (indexed by i) shows patient-level variables, including predictors for
the expected survival time (xµ1), predictors for the variance (xσ1), and patient-level random ef-
fects (u1). The inner plate (indexed by ji) shows treatment-level variables, including predictors
for expected survival (xµ2) and predictors for the variance (xσ2).
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x1 u1

y

x2

Figure 2: Graphical causal model relating measured pre-treatment variables (x1), unmeasured
pre-treatment variables (u1), treatment variables (x2), and treatment outcomes (y). x1 and u1
are assumed to be unaffected by the choice of treatment, but they may have an effect on both
the choice of treatment and the treatment outcome, and thus represent confounders on the effect
of x2 on y. Removing the dashed arrows leading into x2 would yield the interventional causal
graph associated to forcing x2 to some particular value.
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(a) Parameters for the scale parameter µ (b) Parameters for the shape parameter, σ

Figure 3: Posterior mean and standard deviations for effect size parameters in the model as
fitted to the Musella VT data. The left panel shows a subset of the effect sizes for µ, transformed
with an exponential so as to represent the effect on the acceleration factor of the survival time.
The right panel shows the effect sizes for log σ, which quantifies the degree of variance about
expected survival times. We see that often (but not always), patient features that predict shorter
survival times also predict lower variance in these worse outcomes.
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Figure 4: Comparison of simulations from the virtual trial (VT) model to results from a set
of randomized controlled trials (RCTs). The x-axis shows the logarithm of the ratio of me-
dian progression-free survival (PFS) times between treatment arms. The y-axis shows different
RCTs, with progression-free survival (PFS) results from the trial in orange squares, and the
simulated result from the VT model in green circles. Treatments have been abbreviated as fol-
lows: lomustine is “ccnu”, temozolomide is “tmz”, bevacizumab is “bev”, radiation therapy is
“rt”, and procarbazine-lomustine-vincristine is “pcv”. The 95% confidence interval for the log
ratio of RCT survival times was approximated using linear error propagation, while the 95%
credible interval for the log ratio of the VT simulations was calculated by marginalizing over
the posterior probability distribution and random realizations of the patient sample.
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Figure 5: Posterior predictive survival distributions conditions on various patient features. Each
row shows a different synthetic patient case with the features listed on the y-axis. The effect
of different treatments on survival for each patient are shown as the various colored errorbars.
While the credible intervals largely overlap with one another, the order of the mean treatment
effects across different treatment combinations vary from patient to patient.
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