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Abstract

Radiofrequency ablation is a thermal therapy for moderately-sized cancerous tumors. A target is
killed with high temperatures obtained due to the current passed through one or more electrodes (needles)
inserted into it. The needles’ trajectory must be meticulously planned to prevent interference with dense
organs like bone or puncturing of critical structures like veins. By approximating the thermal lesion to
an ellipse, we predefine several valid needle trajectories and then solve an integer programming model to
identify pairwise valid needle positions, that meet clinical criteria, using a variation of the classic set cover
model. To improve the models’ tractability and scalability, we use row generation-based decomposition
techniques that determines pairwise validity using two different types of cuts. Finally, we analyze target
and organ-at-risk (OAR) damage using several thermal damage models. Our method is tested on 12 liver
targets: three targets each with four different surgical margins. We show promising results that meet
clinical guidelines while obtaining full target coverage.

1 Introduction

Radiofrequency ablation (RFA) is a minimally invasive cancer treatment that destroys cancerous tumours
(targets) by exposing them to very high heat. The heat is delivered through electrodes (called needles) that
are inserted directly into the targets, either percutaneously, laproscopically, or via open surgery. Because
heat is only delivered at the tip of the needle, fewer healthy tissues are exposed and there are fewer side
effects than in radiation therapy, where all tissues along the paths of the beams are exposed. However,
inaccurate placement of the needles is common, resulting in failure to eradicate cancerous tissue or excessive
damage to surrounding healthy tissue, and thus CT image guidance is used to help accurately position
the needles, although at the cost of radiation exposure that may render CT usage—and therefore highly
conformal treatments—unacceptable for some patients. New ultrasound guidance techniques achieve similar
accuracy without radiation, and therefore allow for nuanced treatments to be planned for any patient [1].
While mathematical methods to optimize treatment plans have been successful in radiation therapy treatment
modalities (e.g., Intensity modulated radiation therapy, stereotactic radiosurgery, brachytherapy), there are
few similar attempts for RFA, and most consider only the impact of the needle on the targets, as opposed to
the full needle trajectory, which may render many potential solutions undeliverable (e.g., if the needle must
pass through bone or blood vessels to reach the desired position). We therefore propose a mathematical
optimization approach to design RFA treatments with consideration of needle trajectories.

There are several kinds of ablation needles. For instance, an ablation needle can be clustered, an equipment
with multiple equidistant tines, or it can be umbrella shaped protracted needle. Most commonly used ablation
needle is a single needle or set of single needles called as multiple needles, and is the focus of this work.
Ablation needles are up to 30 cm long, and have conducting and insulating parts (Figure 1). Typically, a
needle is inserted so that the entire conducting part (up to 4 cm long) is within the target. An RFA devices
transmits electricity through the needle which is converted to heat due to frictional resistance. Since, only

1

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 15, 2021. ; https://doi.org/10.1101/2021.06.11.21258244doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2021.06.11.21258244


Conducting part Insulated part

Figure 1: A typical single ablation needle

the conducting portion placed within target is able to transmit heat, the thermal spread is controlled and
localized making RFA a minimally invasive treatment option for moderately-sized superficial tumors.

Inverse treatment planning for RFA identifies the needle’s position and orientation to determine optimal
thermal dose delivery. A 3D box around the liver target is divided in to unit grids called voxels (“volume
pixels”), where each voxel as a target, an organ-at-risk (OAR), or a forbidden path voxel (e.g., a blood
vessel or rib). Algorithms for needle placement and thermal dose delivery that achieve full target damage are
then designed. Needle placements must consider: (1) physician and patient positions as well as its angle of
entry to avoid needle gliding, (2) presence of critical organs along the trajectory, and (3) the intersection of
conducting tines with OAR. Finally, after needle placement, thermal dose delivery must consider appropriate
treatment voltage or power for full target coverage while avoiding unnecessary OAR damage.

Thermal dose delivery must be computed using simultaneous partial differential equations (PDE), Lapla-
cian, the electrostatic equation, and the Pennes’ bioheat transfer equation (BHTE) [2]. BHTE computes
the temperature of a voxel at a given time while Laplacian computes the power absorbed from the source.
Although BHTE accounts for voxel temperature, it does not consider voxel’s length of exposure at given
temperature. This thermal history of a voxel provides insight into cellular damage and is computed using
the non-linear Arrhenius thermal damage model (ATDM) [3–6] that uses input from BHTE to determine
percentage of cellular damage. The computational expense of solving PDEs and non-linearity of thermal
dose models, makes the delivery of inverse plans computationally as well as mathematically challenging.

Previous RFA works are categorized based on their methodology to determine thermal dose. Inexact
methods use unconstrained linear models to determine needle position where the voxels enclosed within a
thermal lesion, with a pre-defined radius, are considered ablated [7–10]. Exact methods [11–14] determine
needle position and orientation by solving a nonlinear optimization model, with fixed treatment times, that
are constrained by BHTE and Laplacian equations. Thus, at every new position and orientation required
recomputation of the PDEs. Incorporating multi-needle ablations and trajectory planning can be difficult
with PDE-constrained systems, though we have previously prposed optimization approaches and solution
methodologies to solve such problems for RFA treatment design [15].

Trajectory planning has been explored in the literature where a list of acceptable trajectories is typically
proposed using heuristics [16–22] and the final selection is performed using computer-assisted visualization
where each path is rated based on a linear combination of several criteria or a Pareto-optimal front [16, 19].
Pareto-optimal fronts have been explored in a set cover formulation [23, 24] while considering the possibility
of needle pull-back, though not needle trajectory; we note that these particular publications borrow from our
earlier RFA set cover formulations [25]. (author?) [12] used convex functions to describe forbidden regions
and developed semi-infinite techniques for single needle trajectory planning. While most works focus on
single needle trajectory planning, heuristics for sequential placement [18] and integer models for simultaneous
placement [21, 22] of multiple needles have been explored. Sequential techniques use integer models to first
identify a minimum number of trajectories required for target coverage followed by a minimum number of
ablations required on those trajectories, resulting in inherently suboptimal solutions [21, 22]. Path length,
angle of entry, and proximity to critical structures are used to determine acceptable trajectories.

Previously, we approached the RFA inverse planning problem in two stages [15]. In the first stage,
referred to as needle orientation optimization (NOO), geometric shape approximations are used to compute
the needle’s position and orientation for single, multiple, or clustered needles. In the second stage, called as
thermal dose optimization (TDO), NOO solution is used to compute the Laplacian equation with constant
electrical conductivity to determine the specific absorption rate for each voxel. The results from Laplacian
are used to compute the BHTE which in turn determines the cellular damage using ATDM. Using this
information we determine thermal damage incurred using various damage models: threshold temperature,
Arrhenius damage index, and percentage of cellular damage. Using the same framework, we now incorporate
trajectory planning for multiple needle placement in the NOO stage.
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A set of valid ellipses corresponding to valid needle trajectories and ablation centers are determined
through heuristics. Then, a variation of the classic set cover-based integer model is used to identify a union
of ellipses that given full target coverage and minimal OAR coverage. This variation allows for selection of
multiple ellipses that satisfy clinical needle placement criteria for each needle pair, called as pairwise validity.
Although set cover has been proposed for needle placement as previously discussed, consideration of pairwise
validity, as well as our cut-based optimization approach, is novel.

To improve the tractability, we use row generation-based decomposition techniques, where the reduced
master problem ensures full target coverage and the feasibility check subproblem ensures pairwise validities.
For pairwise validity, we generate and compare two types of cuts: pairwise no-good and group cuts. Finally,
we perform TDO to determine target and OAR thermal damage. Thus, a treatment plan, where needle
trajectories, number of needles with their centers and orientations, and source voltage for 100% target kill, is
determined. This approach provides the flexibility to use needles with heterogeneous tip lengths along with
non-parallel needle placement.

2 Trajectory planning

Coverage of a voxel by an ellipse can be determined given a needle position and its vendor-specified thermal
lesion radius. We predefine all ellipses that cover target voxels, and ellipses produced due to invalid trajectories
are rejected. A trajectory can be invalid due to its intersection with critical structures like bone or vessels,
due to physician discomfort (e.g., a physician will avoid inserting needle from below a supine patient), or due
to an insertion angle that may cause the needle to slide.

Clinically, needles are inserted sequentially, but are not necessarily removed sequentially. Thus, needle
paths cannot cross. Further, even if each needle is removed before the next needle is inserted, it is undesirable
to place a needle center in ablated tissue as the ablated tissue will prevent the heat from transferring to
non-ablated cells due to thermal equilibrium, and therefore needle paths still cannot cross even in a fully
sequential insertion process. Additionally, vendor specifications recommend a minimum distance between
the needle centers to achieve a target thermal lesion, which is obtained clinically using a separator which
enforces parallel needle placement (which we consider to be a single clustered needle scenario), preventing the
treatment flexibility that could be gained in a multiple needle scenario; however, this minimum distance can
be enforced through constraints in an optimization approach to needle placement. Finally, clinical studies
indicate poor ablation for large inter-needle angles [26, 27]. We therefore develop pairwise needle orientation
constraints to ensure that (1) the conducting portion of the needles do not intersect, (2) the distance between
two needle centers is ≥ ω, and (3) the angle between two needles’ major axes is ≤ α. By ensuring that each
pair of needles satisfies these rules, all needles satisfy the rules.

The IP approaches presented here (Section 2.2) require creation of all the valid trajectories (i.e., ellipses)
a priori, which can have significant overhead, especially when high accuracy in needle placement is desirable.
However, ellipse creation (Section 2.1) is an embarrassingly parallel problem and runtimes can be significantly
improved. Further, the trajectory planning models assume a vendor-specified lesion volume for each ellipse
or needle, although, in practice, thermal doses will vary from this estimation due to several factors including
local tissue properties and interactions. Additionally, a target or OAR voxel may be covered multiple times
due to overlapping ellipses but the actual dose at a voxel is not additive. Therefore, during the TDO stage
(Section 3), we disregard the assumption on lesion sizes and compute true thermal distributions.

2.1 Ellipse definition

Recall that a single needle can be defined as an ellipse with the ellipse center at the center of the needle’s
conducting tip and the ellipse size and shape (including the principal axis, which is the needle itself) deter-
mined by vendor-provided ablation specifications. To generate a set of candidate ellipses, we consider every
non-boundary target voxel to be a potential ellipse center, and for each center, the set of all valid ellipse
orientations (principal axis vectors) are potential orientations. Orientations are obtained by enumerating all
position vectors between the target’s geometric center voxel and the boundary voxels:

θ =
g − v

||g − v||22
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Algorithm 1 Define ellipse set

Require: T ← Set of target voxels; H ← Set of OAR voxels; F ← Set of forbidden voxels; Θ ← Set of
orientations; C ← Set of valid centers; r ← Ellipse radii; λ← Needle tip length

1: Υ← ∅
2: for (c, θ) ∈ C ×Θ do
3: W ← linetrace(c, θ, λ) {N}eedle-voxel intersection set
4: if |W ∩ F| = ∅ and |W ∩H| = ∅ then
5: e← (c, θ, r)
6: Υ← Υ ∪ e
7: end if
8: end for
9: return Υ

where v is the 3D co-ordinate of a target voxel and g is the target centroid given by

g =
1

|T |
∑
i∈T

vi

A valid orientation adheres to user-specified rules, e.g., entry from the top of the patient and non-oblique entry
at the patient surface; while valid orientations at an ellipse center are those that do not cause intersection
between the needle conducting tip and forbidden voxels (OARs, bones, and veins). Since this process results
in an extremely large number of ellipses, for computational tractability, we sample the full set of candidate
ellipses by only considering every pth ellipse center and only n orientations. The n orientations are selected
uniformly from the orientations that create angles in the range [30◦, 150◦] with the patient surface (where
90◦ is orthogonal to the patient surface), since larger insertion angles correspond to easier clinical delivery.
Both p and n are user-provided. Based on experimentation for tractability, we use n = 20 and

p = min
{

1,
⌊
|T̄ |/m̄/|Θ|

⌋}
where m̄ is the user-provided maximum number of ellipses desired, |T̄ | is the cardinality of all the valid
centers, and |Θ| = n, where Θ is the set of all orientations. Algorithm 1 shows the steps to define ellipsoids
with valid trajectories.

For each ellipse e = (c,θ, r), its target and OAR coverage is determined by translating and rotating the
target and OAR voxels around the center c and orientation θ. A voxel v ∈ T ∪ H is covered by an ellipse
with radii r centered at the origin and parallel to the coordinate axes if

v2
x

r2
x

+
v2
y

r2
y

+
v2
z

r2
z

≤ 1

Finally, we create an incidence matrix E of size |T |× |Υ| to determine if target voxel v ∈ T is covered by
ellipse ei ∈ Υ, and the cost fi of selecting ellipse ei the total OAR voxels it covers.

2.2 Integer model

Let F and Υ be the set of forbidden structures and predefined valid ellipses, respectively. The goal is to
cover each target voxel at least once, with at least k and at most k̄ ellipses or sets, while adhering to pairwise
validity constraints. This formulation is a variation of the classic set cover problem (SCP) model, and is
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given by

minimize
z

m∑
i=1

fizi (RFA-SCP)

subject to Ez ≥ 1 (1)

Bz ≤ d (2)

k ≤
m∑
i=1

zi ≤ k̄ (3)

zi ∈ {0, 1} ∀i = 1, . . . ,m

where m = |Υ| is the number of predefined ellipses, zi indicates if ellipse ei is chosen, E is a |T |×|Υ| incidence
matrix that indicates if target voxel j ∈ T is covered by ellipse ei, each row of matrix B identifies one or
more invalid ellipse pairs, and fi is the cost of ellipse ei defined by its total OAR voxel coverage. Thus, the
objective function determines the total cost of selected sets (ellipses), thereby minimizing OAR coverage.
Constraint 1 ensures that each target voxel is covered at least once by the union of selected ellipses. Due to
localized nature of RFA treatment, coverage of every single voxels is essential as needle placements can fail
to cover either internal or boundary target voxels due to insufficient heat deposition. Constraint 2 eliminates
selection of invalid ellipse pairs and Constraint 3 bounds the minimum and maximum number of ellipses or
ablations.

The pairwise validity matrix, B, consists of either pairwise no-good or group cuts. A no-good cut is an
inequality that enforces at least one binary variable to change its value. For an ellipse pair (ei, ep), a pairwise
no-good cut is given by

zi + zp ≤ 1 + bip i 6= p

where bip ∈ {0, 1} indicates if ellipses ei and ep are pairwise valid. If ellipse pair (ei, ep) is invalid, then
bip = 0, which enforces selection of either ei or ep but not both. Thus, each pairwise cut is a no-good cut
that eliminates a single ellipse pair and if all the ellipse pairs were invalid, indicating either a single ablation
or an infeasible multiple needle solution, it would generate m!/2!(m− 2)! constraints. For m ≈ 4, 000, there
are up to 3,000,000 no-good cuts (Case 3M).

To reduce the number of pairwise validity constraints and improve tractability, we propose a variation to
pairwise cuts where for each ellipse ei, we generate a single group cut of the form

βizi +
∑

p∈Bi,i6=p

zp ≤ βi

where Bi is the set of ellipses that form invalid pairs with ellipse ei and |Bi| = βi. If βi = m− 1, then ellipse
ei does not form a valid pair with any other ellipses. Thus, unlike pairwise cuts, each group cut eliminates βi
ellipse pairs. Further, at most m cuts are required to eliminate all invalid ellipse pairs, significantly improving
tractability over pairwise no-good cuts.

The model RFA-SCP requires a priori creation of the target coverage (E) and pairwise validity (B)
matrices, potentially resulting in a memory intensive model that may not scale to large targets. To improve
computational runtime as well as to overcome memory limitations, we design a decomposition technique
based on row generation. We first solve the model RFA-SCP with only a subset of constraints, called the
reduced master problem (RMP). Violated constraints, obtained through a feasibility check (FC), are added
to the RMP which is then resolved. The process is continued until all constraints are satisfied. We explore
a row generation approach on target coverage as well as on pairwise validity.
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2.2.1 Target coverage row generation

The RMP when performing row generation on target coverage is given by:

minimize
z

m∑
i=1

fizi (RMP-E)

subject to Ẽz ≥ 1 Ẽ ⊂ E

Bz ≤ d

k ≤
m∑
i=1

zi ≤ k̄

zi ∈ {0, 1} ∀i = 1, . . . ,m

For the first iteration, we consider only boundary target voxels (i.e., Ẽ = T ′), obtained by the grassfire
algorithm. We hope that by covering the boundary of the target, we also cover the target interior. However,
it is possible that the union of selected ellipses does not cover a subset of central target voxels. Using the
RMP-E solution ẑ, we perform a feasibility check to ensure that all target voxels are indeed covered:

minimize 0 (FC-E)

subject to Êẑ ≥ 1

Each violated inequality (Êẑ < 1) indicates an uncovered target voxel and all such violations are added to

the matrix Ẽ in model RMP-E, which is resolved. The process is continued until FC-E returns no cuts,
at which point full target coverage is achieved. If group cuts are used to determine the pairwise validity
matrix, then B ∈ Rm×m. Further, the boundary of the target can be up to 50% of the entire target, which
significantly decreases the number of the constraints, making the model less memory intensive and therefore
more tractable. However, this approach requires the time consuming a priori creation of the pairwise validity
matrix.

2.2.2 Pairwise validity row generation

The RMP is given by:

minimize
z

m∑
i=1

fizi (RMP-B)

subject to Ez ≥ 1

B̃z ≤ d̃ B̃ ⊂ B

k ≤
m∑
i=1

zi ≤ k̄

zi ∈ {0, 1} ∀i = 1, . . . ,m

where B̃ ⊂ B and B̃ = ∅ for the first iteration. The selected ellipses, ẑ, are passed to the feasibility check
subproblem:

minimize 0 (FC-B)

subject to B̂ẑ ≤ d̂

where B̂ = B \ B̃. The FC-B is solved algorithmically to identify invalid pairs instead of simply indicating
the presence of invalid pairs, eliminating a priori creation of B. Pairwise cuts (Algorithm 2) or group cuts
(Algorithm 3) are generated using a set of rules and cuts are passed to the RMP-B.

To account for clinical practices, we solve model RFA-SCP with unbounded k̄ or bounded by a small
finite number to account for patient discomfort since a high number of ablations is not desired. If a fixed set
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Algorithm 2 Create pairwise no-good cuts

Require: Υ̂← Set of selected ellipses; R ← Set of rules
1: B̂← ∅
2: for (ei, ep) ∈ Υ̂× Υ̂ do
3: V ← checkValidity(R, ei, ep)
4: if V = 0 then
5: B̂← B̂ ∪ {zi + zp}
6: end if
7: end for
8: d̂← 1
9: return B̂, d̂

Algorithm 3 Create group cuts

Require: Υ̂← Set of selected ellipses; Υ← Set of predefined ellipses; R ← Set of rules
1: B̂,Bi ← ∅ ∀i = 1, . . . , |Υ̂|
2: for (ei, ep) ∈ Υ̂×Υ do
3: V ← checkValidity(R, ei, ep)
4: if V = 0 then
5: Bi ← Bi ∪ ep
6: end if
7: end for
8: B̂←

⋃|Υ̂|
i=1{βizi +

∑
p∈Bi,i6=p zp | βi = |Bi| and βi ≥ 1}

9: d̂←
⋃|Υ̂|

i=1{βi | βi = |Bi| and βi ≥ 1}
10: return B̂, d̂

Algorithm 4 checkValidity: Pairwise validity check

Require: ei, ep ← Pair of ellipses; R ← Set of rules
1: V = 1
2: for r ∈ R do
3: if (ei, ep) does not satisfy r then
4: V = 0
5: break
6: end if
7: end for
8: return V
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of k needles must be used, then we set k̄ = k = k. Depending on the maximum ellipse coverage, the value of
k is selected as follows:

k =

{
1 if max

[∑
j∈T Eji

]
≥ |T |

2 otherwise

3 Thermal dose optimization

Up on identification of needle positions and orientations, we compute thermal dose thereby lifting the ge-
ometric assumption on the shape of thermal lesion made in NOO. Thermal dose is determined by solving
BHTE and ATDM. In a 3D system, BHTE is given by [2, 28]

ρ`c`
∂T

∂t
= K

(
∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2

)
− cbρbω(T − Ta) +Qm +Qp (BHTE)

where ρ` and ρb are the densities of tissue and blood (kg/m3), respectively; c` and cb are the specific heats
of the tisue and blood (J/kg-K), respectively; K is the thermal conductivity of the tissue (W/m-K); ω is the
blood perfusion coefficient, i.e., blood flow rate/unit mass tissue (1/s); T and Ta are the temperatures of tissue
and arterial blood (K), respectively; Qp is the power absorbed per unit volume of the tissue (W/m3); and
Qm is metabolic heating, which is usually considered negligible [29]. The heat source, Qp, is approximated
by [13, 14]

Qp = σ`||∇Φ||22 (SAR)

where Φ and σ` are the electric potential and tissue electrical conductivity, respectively. Assuming a constant
electrical conductivity, the electric potential is given by the Laplacian [30] as follows:

∂2Φ

∂x2
+
∂2Φ

∂y2
+
∂2Φ

∂z2
= 0 (Laplacian)

The needle is positioned so that the center of its conducting part is placed at the ellipse enter obtained from
NOO and a ray tracing algorithm is used to compute the needle-voxel intersection set [31]. For Laplacian,
the initial conditions (voltage) are set to 0 for all voxels except the needle-voxel intersection set, whose initial
conditions are set to the input voltage of the needle. Both BHTE and Laplacian are solved using a finite
difference scheme with Dirichlet boundary conditions.

ATDM [3–6] considers thermal history of a voxel, i.e., how long a voxel is exposed to a given temperature,
and computes cumulative thermal damage over a period of time. ATDM is a dimensionless number Ωjs

computed for every voxel j as follows:

Ωj (t) =

∫ t

0

A exp

(
−EA

RT (t)

)
dt (ATDM)

where A is the frequency factor, EA is the activation energy, and R is the universal gas constant. T (t) is
the average tissue absolute temperature (i.e., temperature in Kelvin) in the time interval [0, t] obtained from
BHTE. Physically, Ωj is described as [32]

Ωj = ln

{
C0

Ct

}
=

original concentration of undamaged molecules

undamaged molecules at time t

Thus, if Ct ∈ [0, 1] and C0 = 1, then percentage of damaged molecules at time t is

D = 1− exp(−Ωjs)

because exp(−Ωjs) = Ct = undamaged molecules at time t. We describe these percentage damage models
as D63 for p = 63% tissue damage, D70 for p = 70% tissue damage, etc. A value of p = 0.63 or 63% is
associated with irreversible thermal damage and corresponds to Ωj = 1.

We define a set of needle configurations as a combination of single needle lengths (λ ∈ Λ) and source
voltage (φ ∈ V). The set of damage models is given by: d ∈ D = {BHTE, ATDM, D63, D70, D80, D95}.
For each needle configuration, (φ, λ), we first compute the BHTE for fixed treatment time using inputs from
Laplacian and then compute the ATDM followed by the percentage damage models. Finally, we determine
the minimum treatment voltage and treatment times for a full target coverage [15].
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Table 1: Description of case studies

Case ID Volume (mm3) Target voxels (|T |)
1N 898 898
1S 3063 3063
1M 5138 5138
1L 13003 13003

2N 4657 4657
2S 10595 10595
2M 15595 15595
2L 32225 32225

3N 13481 13481
3S 24895 24895
3M 33881 33881
3L 61771 61772

Table 2: Total ellipses generated

Case ID
Tip length (λ mm)

7 10 20 30 40

1N 396 169 - - -
1S 831 437 37 - -
1M 1182 775 72 - -
1L 1572 1246 228 4 -

2N 1599 986 254 7 -
2S 2211 1478 440 61 -
2M 2606 2037 783 128 -
2L 2696 2270 1147 339 33

3N 2780 1927 979 356 22
3S 3649 2735 1236 442 76
3M 3740 3001 1577 642 168
3L 4430 3712 2271 953 291

4 Results

We perform experiments on three clinical liver cases (Robarts Research Institute, Western University) to
which we add surgical margins of 0 mm (N), 3 mm (S), 5 mm (M), and 10 mm (L) around the target to
ensure microscopic tumor particle coverage (Table 1). Computations are conducted on AMD OpteronTM4332
HE CPU with 3 GHz using MATLAB R2015b (Mathworks, Inc.).

We consider five needle tip lengths (mm), Λ = {7, 10, 20, 30, 40}. For each of the 12 cases, we generate
ellipses for each tip length, resulting in a maximum of 60 runs (12 cases × 5 needle tips). We control the
number of ellipses generated with an upper bound. Therefore, while the maximum number of ellipses gener-
ated is |C| × |Θ|, the actual number of ellipses generated is less due to elimination of invalid ellipses (Table
2). We note that certain combinations, e.g., Case 1N and λ ≥ 20 mm or Case 2N and λ ≥ 40 mm, do not
produce any valid ellipses because the needle tip length is longer than the target size resulting in intersection
with the OAR voxels. Thus, although in general increasing numbers of ellipses increases runtime, the actual
runtime is affected by preprocessing to reject invalid ellipses and paths (Figure 2(a)).

The maximum number of pairwise no-good cuts and group cuts that can be generated is m!/(2×(m−2)!)
and m, respectively. For our cases, the number of no-good cuts is up to 3,000,000, while only up to 4,500
group cuts are generated. As expected, the number of cuts generated and computation time required for
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Figure 2: Ellipse and cut generation computational performance

pairwise cuts is significantly larger than for group cuts (Figure 2), and we therefore only present computational
performance of RFA-SCP using group cuts (Figure 3). These cuts significantly improve the number of solvable
instances compared to the full RFA-SCP model.

Total ablations and model feasibility depend primarily on the definition of ellipse sets (Table 3). When
k̄ =∞, the solution provides a lower bound (`) on the minimum ablations required for full target coverage.
When k ablations are desired, the models may be infeasible due to no pairwise valid needle positions or
incomplete target coverage. For instance, for Case 1N, ` = 1 ablations are required for λ ≥ 7 and for
k = 2 > `, the model is infeasible due to intersecting needle placements. For Case 2S, ` = 4 ablations are
required for λ = 10 and hence when k ∈ {1, 2} < `, the model becomes infeasible due to insufficient target
coverage.

The row generation on the target coverage (RMP-E + FC-E) performs 67% faster then RFA-SCP on more
than 60% of our cases (Figure 4(a)); while, as seen in Figure 4(b), the model RFA-SCP outperforms row
generation on pairwise validity matrix (RMP-B + FC-B). The runtime of the model is influenced by the target
size as well as number of ablations desired. RMP-B + FC-B performs poorly because the RMP is resolved
at each iteration with new cuts when more than a single ablation is required. However, RMP-E + FC-E
outperforms RFA-SCP and RMP-B + FC-B because of up to 90% reduction in target coverage constraints
(E), and in a multi-needle ablation scenario, the possibility of invalid needle placements is higher than the
failure to cover internal target voxels due to a large number of needle combinations. Finally, although using
k̄ = ∞ does not require a priori knowledge of the number of ablations, faster runtimes (up to < 50 min)
can be achieved by bounding k̄, especially to detect infeasible or undesirable solutions (e.g., large number of
ablations), with row generation on target coverage outperforming the full model (Figure 5).

After obtaining needle trajectories (examples shown in Figure 6), we then determine the thermal dose
distribution by TDO. We compute the BHTE, ATDM, and percentage damage for each target and needle
length combination against 12 voltage values from 2.5 to 30 V in increments of 2.5V. The simulation time is
20 minutes and dt = 0.5 s. The average runtimes for Case 1 appear in Figure 7. Larger needle length causes
higher lesion volumes (Figure 8), consequently higher target (Figure 9) and OAR damage volumes (Figure
10). While BHTE damage target coverage occurs at lower voltage values, ATDM and percentage damage
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Figure 3: Computation times of RFA-SCP with row generation using group cuts and k̄ =∞

Table 3: Total ablations with k̄ =∞ (RMP-B)

Case ID
Tip length λ mm

7 10 20 30 40

1N 1 1 - - -
1S inf 2 1 - -
1M inf 3 1 - -
1L inf inf 1 1 -

2N 4 3 1 1 -
2S inf 4 1 1 -
2M inf 7 1 1 -
2L inf inf 2 1 1

3N inf 6 2 1 1
3S inf 9 2 1 1
3M mem 0 3 2 2
3L mem 0 4 2 2
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Figure 4: Computation times of row generation approaches v. full RFA-SCP model
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Figure 5: Computation times with bounded k̄
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(a) Case 1N, λ = 7 mm (b) Case 2S, λ = 10 mm

Figure 6: Needle placement for single and multiple needle ablation using trajectory planning
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Figure 7: Average BHTE runtimes

models require higher voltage values (Figure 9).

5 Discussion

We extend our two-stage RFA planning framework for single, clustered, and multiple needle placement
by incorporating trajectory planning [15] and for the first time present a full RFA planning framework
that incorporates trajectory planing as well as thermal dose computations. In our previous work, we used
mathematically rigorous convex optimization models for single and clustered needle placement. For multiple
needle placement we used K-means to identify clusters, where each cluster corresponds to a single ablation
needle, and used convex models to identify needle position and orientation for each cluster. Thus, the needle
position corresponded to the geometric centroid of the target (or cluster) and the orientation to the their
shape. In this work, we use IP models, solved to global optimality, to identify best needle positions for single
or multiple needle placement. Thus, needle positions and orientations are discretized and therefore do not
correspond to targets’ geometric centroid or shape. We are still able to attain full target coverage albeit at
higher source voltage. Further, trajectory planning disregards large needle types for smaller target unlike
our previous work where all needle lengths were explored for a target. Thus, our trajectory planning model
provides a realistic advantage to our previous models.
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Figure 8: Lesion volumes (Case 1N)
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Figure 9: Percent target coverage (Case 1N)
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Figure 10: Percent OAR coverage (Case 1N)
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Most RFA treatment planning systems that incorporate trajectory planning focus on single needle place-
ment [12, 16, 17, 19], sequential integer programming techniques for multiple needle placement that result
in suboptimal solutions [21, 22], and do not incorporate thermal dose computations. Existing simultaneous
optimization models for RFA do not incorporate trajectory planning [11, 14] and are restricted to either single
or clustered needle placement while k-means approach is used for multiple needle placement. Due to non-
linearity of these ablation models, only a locally optimal solution is viable. Further, due to a PDE-constrained
system, the models are restricted to ablation modality. Finally, unlike radiation planning systems there is a
lack of standard based on either conformity or OAR-sparing to quantify treatment plans in ablation.

This work assumes an ablation radii for each individual needle inserted and approximates it to an ellipse.
However, vendor specifications provide ablation radii for multiple needles where needles are placed parallely
and operated simultaneously on a porcine liver. The shape of lesion is unclear when multiple needles are
placed non-parallely due to lack of clinical experiments. Thus, the NOO stage may incorrectly estimate the
ablation radius and consequently the target coverage. The target coverage can be determined by thermal
dose simulations as well as by enforcing minimum number of ablations based on clinical experience. The
algorithm for ellipse predefinition presented in this work can be enhanced by incorporating other criteria
like path length as well as by visual representation of the needles. Similarly, the objective function of our
SCP models can be modified to include a weighted sum using criteria like unablated target, path length,
proximity to critical structures like veins, and total ablations. Finally, we recommend the use of commercial
PDE solvers to enhance the quality of treatment.

6 Conclusion

We have presented a comprehensive framework to develop RFA treatment plans for liver cancer. For the
first time we have incorporated trajectory planning as well as thermal dose simulations that considers critical
structures before simultaneous multiple needle placement. Further, we propose a novel IP approach that
uses row generation techniques, tractable to large cases, for needle placement. We also present algorithms
for predefining needle paths that consider physical as well as clinical criteria. We solve these models using
varying inputs and show promising results that achieve full target coverage. Before clinical applicability we
propose testing the methodology with actual risk structures and thereby implementing better algorithm for
ellipse predefinition.
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