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Abstract

While seasonal variation has a known influence on the transmission of several respiratory

viral infections, its role in SARS-CoV-2 transmission remains unclear. As previous analyses

have not accounted for the implementation of non-pharmaceutical interventions (NPIs) in

the first year of the pandemic, they may yield biased estimates of seasonal effects. Build-

ing on two state-of-the-art observational models and datasets, we adapt a fully Bayesian

method for estimating the association between seasonality and transmission in 143 temper-

ate European regions. We find strong seasonal patterns, consistent with a reduction in the

time-variable Rt of 42.1% (95% CI: 24.7% – 53.4%) from the peak of winter to the peak of

summer. These results imply that the seasonality of SARS-CoV-2 transmission is compara-

ble in magnitude to the most effective individual NPIs but less than the combined effect of

multiple interventions.
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1. Introduction

Since the onset of the COVID-19 pandemic, the role of seasonal variation in SARS-CoV-2

transmission has received significant scientific and political attention [1]. Understanding

seasonal patterns is vital, as it enables more accurate inferences about current trends in

transmission and how they may change over the longer term. For example, a proper under-

standing of seasonality can help policymakers avoid attributing declining incidence over the

summer to population immunity alone, when in fact seasonality may be playing a meaning-

ful role.

While seasonal variation is well-established for many respiratory viral infections [2], and

some studies have suggested associations between temperature, humidity, and COVID-19

incidence [3, 4, 5], other analyses have failed to show a robust role of climate and weather

[6, 7, 8]. A recent review found that the evidence remains inconclusive [9].

A further complication is that temperature, humidity, and UV radiation plausibly affect

transmission and incidence through a range of biological and epidemiological mechanisms

[2, 10]. These include virus stability and viability [11, 12], host susceptibility and immune

response [13, 14], human behaviour [15, 16], and social factors such as holidays and school

calendars [17, 18]. This multitude of plausible causal pathways makes it exceedingly diffi-

cult to disentangle the influence of various seasonal factors, particularly given the extensive

multi-collinearities and interactions between environmental, biological, and behavioural el-

ements [19]; see Appendix A for an overview of the various causal pathways. As Lofgren

and colleagues note in the context of influenza, "the myriad theories accounting for season-

ality (...) suggest that the elegant and predictable periodicity of nonpandemic influenza is

caused by a less-than-straightforward interaction of many different factors," meaning that

"recognition of this complexity, as well as the likelihood that seasonality arises from many

different factors, is essential for continued examination and elucidation of seasonality" [15].
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Given the severe methodological challenge of disentangling these interrelated factors, a

more tractable solution is to approach seasonality holistically with the purpose of under-

standing its overall effects. In this study, we infer a single seasonality parameter, describing

the amplitude of the yearly variation in the time-variable reproduction number, Rt , for one

climate region. While this single parameter does not disentangle the individual effects that

comprise a seasonal profile, it accounts for the overall magnitude of the seasonal effect

on SARS-CoV-2 transmission and thereby provides valuable insights for long-term policy

planning.

Since both COVID-19 incidence and the presence of governmental non-pharmaceutical in-

terventions (NPIs) have waxed and waned in consecutive waves since early 2020, adjusting

for NPI effects is crucial for any effort to infer the influence of seasonality on transmission,

yet previous analyses of environmental drivers have largely not done so [9, 5, 3]. We ac-

complish this by extending two hierarchical Bayesian models of NPI effects from Brauner et

al. [20] and Sharma et al. [21] to include a term representing the multiplicative seasonal

influence on the effective reproduction number.

Employing a common technique in infectious disease modelling [22, 23], we assume the

seasonal variation itself is described by a sinusoidal modulation. We re-analyse data from

existing studies [20, 21] while restricting the scope to European regions in the temperate

climate zone, where we assume the seasonality effect to be comparable both in its environ-

mental and behavioural causal components.

2. Methods

Published hierarchical Bayesian models of NPI effects [20, 21, 24] typically assume the

time-variable reproduction number Rt to be a product of R0, the “natural” reproduction

rate without mitigations, multiple terms representing the effects of interventions, and noise
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terms modelling growth speed variance, of the form:

Rt ,l = R̃l︸︷︷︸
R0 in

location l

R noise
terms︷︸︸︷
Nt ,l

I∏
i=1

exp
(−αi xi ,t ,l

)
︸ ︷︷ ︸

effect due to active NPIs

(1)

where exp(−αi ) is the estimated effect of intervention i and xi , t , l are indicator variables of

interventions implemented on a given date in a given location. Daily reproduction rates are

then typically connected to observed data on cases or deaths by growth rates, compartmen-

tal epidemiological models, renewal processes, etc. The noise term Nt ,l then varies with the

model, e.g. a log-normal multiplicative factor in Brauner et al. [20] and a random walk-

based multiplicative factor in Sharma et al. [21]. Mechanistically, the noise term can be

intuitively thought of as a random effect that accounts for residual variation not captured

by the NPI effects.

To account for seasonality, we substitute Rt ,l with R ′
t ,l (adjusted for seasonality) and let the

model infer a single seasonality amplitude parameter γ along with its other parameters.

This minimal modification aims to preserve the demonstrated robustness of the original

models [20, 21, 25]. The final seasonality amplitude estimate is then pooled from the two

models, equally sampling from their posterior distributions. Note the seasonal adjustment

to Rt is shared across all locations l and therefore captures common dynamics between

locations not explained by the location specific noise terms or NPIs.

We model seasonality as a sinusoidal multiplicative factor Γ(t ) to R:

Γ(t ) = 1+γ sin

(
2π

t +d0 −dγ)

365
+ π

2

)
, (2)

where γ is the intensity (amplitude) of the seasonal effect, dγ is the day of the year of the

highest seasonal effect on R, and d0 is the first day of the respective dataset. We assume
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a single, common seasonal effect for countries in similar climates and relative proximity

along dimensions such as income, political structure, and culture.

For both models, the time and location-specific Rt ,l is replaced with seasonal R ′
t ,l :

R ′
t ,l = Rt ,l

Γ(t )

Γ(0)
. (3)

Note that we divide Γ(t ) by Γ(0) to have Γ(t )/Γ(0) = 1 at t = 0 and R ′
0,l = R0,l , i.e. the season-

ality multiplier is normalised to 1 at the start of the window of analysis. This means that

the priors over R̃l need not be adjusted in either model. For both models, we assume an

uniform prior γ∼U (−0.95,0.95)1.

The amplitude of the cyclical seasonal variation (γ) can be converted to the reduction in

transmission associated with going from the peak of winter to the peak of summer (i.e.,

peak-to-trough) as Rthrough
0 /Rpeak

0 = (1−γ)/(1+γ). Similarly, the amplitude can be directly

converted to the expected reduction between adjacent seasons such as peak winter to mid-

spring or mid-spring to peak summer (i.e., peak-to-mid).

Our analysis utilises January 1 as the seasonal peak day dγ, as this date is both close to the

center of a stable range of dγ in the sensitivity analysis of Appendix E.2, as well as close

to January 3, the median peak date inferred by a model with variable dγ in Appendix E.1.

Note that while we show January 1 to be a robust choice of dγ, we are not trying to infer

its exact value.

1Sinusoidal seasonality is well-defined only for amplitudes −1 ≤ γ ≤ 1. We restrict it to −0.95 ≤ γ ≤ 0.95 to
improve model stability.
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3. Results

Using two model structures and datasets on non-pharmaceutical interventions covering

72% of the 2020-2021 period in Europe, we estimate the seasonality parameter γ and the

time-variable seasonal multiplier Γ(t ) (Figure 1).
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Figure 1: The inferred seasonal R multiplier Γ(t ) of the combined models estimate, with 50% and 95%
confidence intervals. Gray boxes indicate data range of each dataset.

Our combined estimates from the two models are consistent with a reduction in R of 24.7%

to 53.4% (95% CI) from January 1, the peak of winter to July 1, the peak of summer, with

a median reduction of 42.1% (Figure 2, Figure C.5, Table C.2).

Modelling seasonality alongside non-pharmaceutical interventions allows us to gain a sense

of the epidemiological importance of environmental factors. We find that the transition

from winter to summer is associated with a reduction in transmission that is comparable

to or greater than the effects of individual interventions, but less than the total effect of

combined interventions (Figure 3).
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Peak-to-trough seasonal R reduction

Combined

Seasonal Brauner et al.
(temperate Europe)

Seasonal Sharma et al.

Figure 2: Posterior distributions of the R reduction on July 1 relative to January 1 with median, 50% and
95% confidence intervals.
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Reduction in R

Seasonality peak-to-through
(Jan 1 to July 1) reduction

Combined effect of all NPIs

Gatherings limited to
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Gatherings limited to
100 people or less

Gatherings limited to
10 people or less

Some businesses closed

Most nonessential
businesses closed

Schools and universities
closed

Additional benefit of
stay-at-home order

Figure 3: Comparison of the inferred peak-to-trough R reduction effect of seasonality (combined from
both models) to the NPI reductions inferred by Brauner et al. [20], with 50% and 95% CIs. The seasonal
effect is lower than the combined NPI effect but higher than or comparable to the individual NPI effects.
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Figure 3 compares our seasonality estimates to the original effect estimates from Brauner

et al., as their robustness is well-established [25, 20]. Although these estimates are based

on analysis that included countries outside temperate Europe, we find that restricting our

analysis to temperate regions has little effect on the inferred total effect of NPIs and thus

should not invalidate the comparison (Appendix E.4).

Incorporating seasonality into models of NPI effectiveness may also improve their estimates

by explaining residual variation in the inferred reproduction rate. A key advance in the

model proposed by Sharma et al. was the incorporation of a stochastic random walk pro-

cess on the basic reproduction number to flexibly account for trends in transmission due to

unobserved factors [21]. We find that including the seasonality term reduces the magni-

tude and asymmetry of the random walk considerably, thereby reducing the internal model

variation (Appendix D). Specifically, we find that the mean square displacement (MSD) of

the random walk in log-space is 0.131 for the non-seasonal model and 0.072 for the sea-

sonal model. These results suggest a considerable amount of the residual variation can be

explained by a common seasonality profile.

Estimates of seasonality and NPI effects are sensitive to modelling choices [20, 25, 21]. It

is therefore vital to include a sensitivity analyses of free parameters and inputs to ensure

consistent results. Relying on the demonstrated robustness of the original models, we focus

primarily on the parameter that we introduce in the form of peak seasonality day. We find

that the inferred mean peak-to-trough reduction in R varies by less than 5% across all the

analysed peak seasonality dates in December and January (Appendix E.2). Although the

seasonality magnitude is somewhat sensitive to setting the winter peak to different dates in

February, these dates are considerably later in the year than the median peak date inferred

in our sensitivity analysis, January 3 (see Appendix E.1, Figure E.9).

Since the seasonality term we introduce is directly related to Rt ,l through Equation (3), we

also examine the sensitivity of our results the mean initial R0 prior. We find that our results
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are robust to univariate variation in this parameter, with the seasonal Sharma et al. model

being the most sensitive (Appendix E.3).

4. Discussion

The clear seasonal patterns of other respiratory viruses give us strong prior reasons to expect

seasonal variation in SARS-CoV-2 transmission [2], and the strong associations we observe

in temperate Europe match this expectation. While reductions in reproduction rates and

case numbers are not directly comparable, another recent analysis by Chen et al. [5] infers

a 64% reduction in cases from one season to the next based on a cross-sectional regression

at a single point in time, similarly suggesting a significant role of environmental factors.

The general magnitude of our results is also in line with previous assumptions about the

reduction of SARS-CoV-2 R0 between winter and summer peaks, which range from 10%

to 40% depending on the degree of seasonal forcing [1]. Moreover, recent analyses have

suggested a role of environmental factors in the B.1.1.7 lineage transmission intensity and

that such factors may differentially affect the transmission of different variants of concern

[4].

It is important to note that our results are not inconsistent with widespread outbreaks in

warmer regions, nor do they imply that temperate regions cannot face surges in transmis-

sions during summer periods [8]. Despite moderate seasonal forcing, the time-variable

reproduction number can remain well above 1, as was in fact the case in parts of Europe

during the studied period and is clearly still the case in several warmer regions across the

world.

Moreover, this study utilised variation in environmental and behavioural factors across time

while holding the climate zone constant, and the observed results may not directly translate

to comparisons across regions holding the season constant. In other words, the relationship

between cooler periods and transmission within the temperate zone does not necessarily
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imply an exactly similar association between regional climate and transmission rates at any

given point in time. This is because latitude is correlated with a wide range of epidemio-

logical, demographic, and societal factors, each of which may affect transmission.

One major limitation of our analysis is that it relies on data from only one period of season-

ality. We present the inferred seasonality estimates as the best estimate given the available

data. Moreover, since our analysis focused exclusively on European regions in the temper-

ate climate zone, the findings may not generalise to other climates, particularly as we have

not identified the relative contributions of different causal mechanisms. Other respiratory

infections show less seasonality in tropical regions relative to temperate regions as well

as seasonal patterns with different peak timings, for example, during the monsoon season

[2, 26]. Further research can shed light on the extent to which this is the case for SARS-

CoV-2, and on the interaction between seasonality and latitude within climate regions.

More generally, this observational study demands caution when drawing conclusions about

causality. Our analysis did not attempt to disentangle the various plausible causal path-

ways through which seasonality may affect transmission, and both environmental and be-

havioural factors can vary over the years. For example, behavioural patterns throughout the

first year of the pandemic were likely exceptional, and while some behavioural changes are

closely tied to modelled NPIs and thus do not bias our analysis, other relevant behavioural

aspects may differ in subsequent years. Consequently, a granular focus on specific factors

such as temperature, humidity, and behaviour is required for short-term prediction to in-

form policy.

Notwithstanding these limitations, the parsimonious seasonality form may be adequate to

understand variations over time and aid long-term policy planning. Even without disen-

tangling the underlying factors, incorporating seasonality can augment modelling efforts to

more reliable anticipate changes in transmission patterns, particularly when adjusting for

important factors such as non-pharmaceutical interventions.
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For such forward-looking analyses of SARS-CoV-2 seasonality, it should be noted that our

inferred seasonal associations do not include two factors that play significant roles in the

seasonality of other respiratory viruses. First, we treat school closures, including for holi-

days, as NPIs in our model due to the role of closing educational institutions in the epidemic

responses of many countries. This means that any effects of closing schools are attributed to

the school NPI, rather than to seasonality. This is noteworthy considering that school calen-

dars are considered an important driver of seasonality for other respiratory viruses [17, 27].

Consequently, the full extent of seasonality would likely be greater if it is construed to in-

clude school calendars. Second, the seasonal variation of some respiratory viruses, such as

influenza, owes to a combination of both the direct seasonal forcing from biological and

behavioural factors as well as the indirect influence of waning population immunity [28].

Given what is known about the robustness of acquired immunity within the first year of

SARS-CoV-2 infection [29], the patterns we observe likely owe almost entirely to seasonal

forcing. Going forward, the long-term seasonality of SARS-CoV-2 will depend in part on

developments in population immunity as well as on the emergence of variants.

5. Conclusion

Failing to account for seasonality may lead to grave policy errors or Panglossian outlooks.

For instance, a reduction in transmission over the summer may be misinterpreted as the

result of herd immunity [30], and so lead to inadequate preparation for a resurgence dur-

ing the colder months. Overestimating the role of environmental factors may be equally

perilous if policymakers anticipate a greater reduction due to seasonality than will actually

occur.
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Appendix A. Causal pathways for SARS-CoV-2 seasonality

Appendix A.1. Diagram of potential causal pathways

A complex web of environmental, biological, and behavioural factors contribute to the sea-

sonality of respiratory viruses. Recent reviews by Moriyama et al. [2] and Tamerius et

al. [31] provide discussions of the role that each of these factors play, with a particular

focus on influenza. Figure A.4 illustrates some of the factors and potential causal pathways.
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Appendix A.2. Existing evidence on causal pathways

For each of these pathways, theory and evidence have been presented in support of a causal

relationship. However, extensive multi-collinearities and interactions complicate any effort

to tease apart the exact contributions of different factors, particularly when considering

population-level transmission dynamics where experimental approaches are intractable.

As Lipsitch and Viboud succinctly put it: "Unfortunately, this potpourri of possible mechanisms

places us in a kind of Popperian purgatory, in which data in support of every hypothesis exist,

yet none of the hypotheses has been subjected to tests that are rigorous enough to reject it" [19].

Table A.1 presents a (non-comprehensive) selection of evidence relating to some of the

important causal pathways for viral seasonality.

Upstream factors
Causal factor Reference
Environmental factors
Temperature [32, 33]
Absolute humidity [10, 34]
Relative humidity [12, 35]
Ultraviolet radiation [36, 37]

Downstream factors
Causal factor Reference
Host susceptibility
Impaired innate antiviral immunity [13, 14]
Impaired mucociliary clearance [13, 38]
Vitamin D status [39, 40, 41]
Viral replication conflict [42, 42, 43]

Viral factors
Viral survival and viability [44, 45]

Human behavior
Indoor ventilation [46, 47]
Contact rates and duration [16, 48]
School and work calendars [17, 18, 27]

Table A.1: Selected evidence on factors driving respiratory virus seasonality.
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Appendix B. Datasets and implementation

Our Brauner et al. seasonal model implementation is based on the Brauner et al. code-

base [20] and can be obtained at https://github.com/gavento/covid_seasonal_Brauner

together with the datasets used. We restrict the dataset of Brauner et al. [20] to the follow-

ing 29 regions (out of 41 total):

Albania, Andorra, Austria, Belgium, Bosnia and Herzegovina, Bulgaria, Croatia, Czech Repub-

lic, Denmark, Estonia, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania,

Malta, Netherlands, Poland, Portugal, Romania, Serbia, Slovakia, Slovenia, Spain, Switzer-

land, United Kingdom.

Our Sharma et al. seasonal model implementation is based on the Sharma et al. code-

base [21] and can be obtained at https://github.com/gavento/covid_seasonal_Sharma/.

We use the Sharma et al. dataset without any modifications and with the same preprocess-

ing, in particular, we also exclude datapoints with non-negligible novel SARS-CoV-2 strain

prevalence.
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Appendix C. Detailed results

Seasonal amplitude γ

Model Median 50% CI 95% CI
Seasonal Sharma et al. 0.275 0.248 – 0.300 0.200 – 0.348
Seasonal Brauner et al. 0.254 0.209 – 0.297 0.118 – 0.383
Combined 0.267 0.231 – 0.299 0.141 – 0.365

Peak-to-trough R reduction [%]
Model Median 50% CI 95% CI
Seasonal Sharma et al. 43.1 39.7 – 46.2 33.3 – 51.6
Seasonal Brauner et al. 40.5 34.6 – 45.8 21.1 – 55.4
Combined 42.1 37.5 – 46.1 24.7 – 53.4

Table C.2: Inferred median values and confidence intervals of the seasonal amplitude γ and the peak-to-
trough seasonality R reduction for temperate Europe countries.

0.0 0.1 0.2 0.3 0.4 0.5
Seasonality amplitude γ

Combined

Seasonal Brauner et al.
(temperate Europe)

Seasonal Sharma et al.

Figure C.5: Posterior distributions the seasonal amplitude factor γ with 50% and 95% confidence inter-
vals.

Appendix D. Random walk noise comparison

The Sharma et al. model contains a random walk process on log Nt ,l , the logarithm of a

multiplicative factor in Rt ,l , in order to account for continuous slow changes of Rt through

unobserved external factors such as unobserved NPIs or environmental transmission fac-

tors [21].
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Figure D.6: Inferred Nt ,l for non-seasonal (left) and seasonal (right) models. Blue lines are median Nt ,l
for each region, black bands indicate median, 50% CI and 95% CI.

To show the effect of modelling seasonality on the inferred random walk noise, we compare

Nt ,l for the two models in Figure D.6. While the random walk trajectories are comparable in

width, the median trajectory of the non-seasonal model follows an increasing trend. Note

that the random walk multiplier is modelled as a symmetrical random walk in log-space.

Also note that the Sharma et al. model allows only weekly changes in Nt ,l .

To quantify the improvement, we compute the mean squared deviation (MSD) of log Nl ,t ,

i.e. the random-walk multiplier in log-space, across the sampled random walks. We find

this MSD to be 0.131 for the non-seasonal model, and 0.072 for the seasonal model, a 45%

decrease. Note that here we compute MSD as

MSD(log Nl ,t ) = 1

LN T

L∑
l=0

N∑
i=0

T∑
t=0

(
log N (i )

l ,t − log N (i )
l ,0

)2
,

where N (i )
l ,t is the i -th sample of Nl ,t .

We compare R̃t ,l for the two models – the reproduction factor derived from region-specific

R0 by the random walk process and by seasonality effect (in the seasonal model) but before
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Figure D.7: Inferred R̃t ,l for non-seasonal (left) and seasonal (right) models. Blue lines are median
R̃t ,l for each region, black bands indicate median, 50% CI and 95% CI. Red dashed line shows cosine
seasonality with the inferred amplitude γ≈ 0.267 applied to median inferred R0.

applying transmission reduction of the active NPIs:

R̃t ,l = R̃l Nt ,l R̃seasonal
t ,l = R̃l Nt ,l

Γ(t )

Γ(0)
,

where Nt ,l is the random walk noise.

Figure D.7 illustrates how the inferred R̃t ,l are comparable for the non-seasonal and sea-

sonal model. However, the non-seasonal model random walk is of a larger overall amplitude

and has an asymmetric trend compared to the seasonal model, as shown on Figure D.6. We

interpret this as an indirect evidence towards seasonality improving the quality of model fit

on Sharma et al. data.

Note that the noise terms used in Brauner et al. are of different type and the model does

not contain a comparable random walk noise term.
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Appendix E. Sensitivity analysis

Appendix E.1. Inferring the peak seasonality day

To examine the fitness of our seasonality peak estimation, we place a prior of N (Jan 1,452)

on dγ instead of a fixed date. Figure E.8 shows the distribution of the seasonality multiplier

cosine curves Γ(t ) inferred with prior on dγ. Figure E.9 shows both the inferred seasonality

peak day dγ and the seasonality amplitude γ.

Note that the estimated dγ are shown as a model validation, illustrating the range of season-

ality peak the models and data are consistent with – we do not claim the models and data

can infer the peak with accuracy. Note that the inferred γ in the model inferring the sea-

sonality peak is virtually unchanged relative to a fixed seasonal peak day model (Figure E.9

bottom).
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Figure E.8: Distribution of Γ(t ) for the combination of Sharma et al. and Brauner et al. seasonal models
with a prior on dγ, with median and 50% and 95% CIs. The underlying Γ(t ) curves are parameterized by
the joint posterior distributions on γ and dγ. The dashed red line is the median Γ(t ) inferred with fixed
dγ = Jan 1 for comparison.
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Figure E.9: Inferred peak seasonality day dγ (top) and γ posterior comparison in models with the peak
day fixed vs with a variable peak day with N (Jan 1,452) prior (bottom).
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Appendix E.2. Sensitivity to peak seasonality day

We test model sensitivity to the choice of peak seasonality day dγ for dγ ∈ {Dec 4, Dec 18,

Jan 1, Jan 15, Jan 29, Feb 12, Feb 26}. We observe that the inferred combined effect of

the NPIs and the inferred seasonality are stable for dγ in December and January with the

exception of the combined NPI effect in Brauner et al. Note that Sharma et al. is particularly

robust in this range.

-25% 0% 25% 50% 75% 100%
Reduction in R

Combined effect of all NPIs

Seasonality amplitude γ (in percent)
(i.e. mid-to-trough R reduction)

Seasonality peak-to-through
R reduction

Brauner et al. seasonal model sensitivity to peak seasonality day

Peak: 04 Dec
Peak: 18 Dec
Peak: 01 Jan
Peak: 15 Jan
Peak: 29 Jan
Peak: 12 Feb
Peak: 26 Feb

Figure E.10: Sensitivity of Brauner et al. seasonal model to the choice of dγ.
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Sharma et al. seasonal model sensitivity to peak seasonality day

Peak: 26 Feb
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Peak: 01 Jan
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Peak: 04 Dec

Figure E.11: Sensitivity of Sharma et al. seasonal model to the choice of dγ.
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Appendix E.3. Sensitivity to initial R0 prior

We test our model sensitivity to the choice of the mean of the initial R̃l prior (i.e. location-

specific R0 on the first day of the dataset). We analyse the R̃l prior mean in ranges similar

to the sensitivity analyses in Sharma et al. [21] and Brauner et al. [20].

-25% 0% 25% 50% 75% 100%
Reduction in R

Combined effect of all NPIs

Seasonality amplitude γ (in percent)
(i.e. mid-to-trough R reduction)

Seasonality peak-to-through
R reduction

Brauner et al. seasonal model sensitivity to inital R0

Initial R0 = 2.90
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Initial R0 = 3.50
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Figure E.12: Sensitivity of Brauner et al. seasonal model to the initial R0 prior mean.
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Figure E.13: Sensitivity of Sharma et al. seasonal model to the initial R0 prior mean.
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This analysis is motivated by the seasonal amplitude parameter γ being closely connected

with R̃l via Equations (1) and (3). Mis-specifying the initial R̃l could be compensated for

by the model e.g. by a different amplitude γ and therefore also the slope of Γ(t ) in the

seasonality multiplier sine curve.

In Figures E.12 and E.13 we observe the inferred combined effect of the NPIs and the

inferred seasonality to be mostly stable in the Brauner et al model. However, in the Sharma

et al. seasonal model the inferred seasonality amplitude and peak-to-trough reduction are

mildly sensitive to the R̃l prior. (Note that both those parameters are very closely tied

together.)

Note that both original models also exhibit some sensitivity of the effect of NPIs to R0 prior

mean; see Figure S11 in Supplementary material of Brauner et al. [20] and Figure S13 in

Supplement of Sharma et al. [21] (v1).

Appendix E.4. Inferred NPI effects in various models

We compare the inferred total NPI effect in different models and data subsets to verify its

stability: seasonal vs non-seasonal (original) models, and the original full dataset vs the

dataset restricted to temperate Europe countries ("TE" in plot for Brauner et al. model).

We observe that restricting the dataset regions in Brauner et al. model has very little effect

on the inferred combined NPI effect.

Switching to a seasonal model produces a small decrease (resp. increase) in combined NPI

effect in Brauner et al. (resp. Sharma et al.) model. While this may be coincidental, this

effect is consistent with a hypothesis that a part of the seasonality-related change in R0 (i.e.

the proposed spring decrease of R0 in Brauner et al., fall increase in Sharma et al.) is in

part attributed to NPI activations in both models. Recall that Brauner et al. only considers

NPI activations in their model, and Sharma et al. dataset is dominated by NPI activations

30

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 13, 2021. ; https://doi.org/10.1101/2021.06.10.21258647doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.10.21258647
http://creativecommons.org/licenses/by/4.0/


-25% 0% 25% 50% 75% 100%
Reduction in R

Combined effect of all NPIs
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Brauner original (all)
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Figure E.14: Inferred NPI effects on Brauner et al. dataset across several models. Runs marked with "TE"
are restricted to temperate Europe countries, runs marked with "all" are ran on the original Brauner et
al. dataset.

compared to deactivations. However note that both models do contain noise terms for

growth rate and other mechanisms to model small or slow changes in R due to unobserved

factors, so the extent of this effect remains unclear.
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