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Abstract 

Purpose  
To implement a tool for real time image quality feedback for chest radiographs into the clinical routine and to evaluate the effect 

of the system on the image quality of the acquired radiographs. 

Materials and Methods 
A real time Artificial Intelligence (AI) image quality feedback tool is developed that analyzes chest PA x-rays right after the 

completion of the examination at the x-ray system and provides visual feedback to the system operator with respect to adherence 

to desired standards of collimation, patient rotation and inspiration. In order to track image quality changes over time, results 

were compared to image quality assessment for images, acquired prior to system implementation. 

Results 
Compared to the image quality prior to the installation of the real time image quality feedback solution, it is shown that a relative 

increase of images with optimal image quality with respect to collimation, patient rotation and  inspiration is achieved by 30% 

(p<0.01). A relative improvement of 28% (p<0.01) is observed for the increase of images with optimal collimation, followed by a 

relative increase of 4% (p<0.01) of images with optimal inspiration. Finally, a detailed analysis is presented that shows that the 

average unnecessarily exposed area is reduced by 34% (p<0.01). 

Discussion 
This study shows that it is possible to significantly improve image quality using a real time AI-based image quality feedback tool. 

The developed tool not only provides objective and impartial criticism and helps x-ray operators identify areas for improvement, 

but also gives positive feedback.  

 

 

 

 

 

 

Key Findings 

• A substantial amount of images acquired in the clinical routine does not suffice the international guidelines 

• Continuous AI-based image quality feedback to the x-ray system operator in the clinical routine leads to a significant 
image quality improvement over time 

• Using the developed tool, the overall fraction of images with optimal patient positioning could be improved by 30%, 
followed by a 34% decrease of unnecessarily exposed area. 
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Introduction 

Optimal patient positioning and image quality are of essential character for proper diagnostic image evaluation and 
subsequent clinical decision making (1,2). At the same time, insufficient positioning precision may lead to time-
consuming recalls, missed diagnoses and increased patient dose through retakes.  Moreover, improper positioning 
may lead to drop in referrals (3). Precise patient positioning for imaging requires adequate positioning time and 
operator skill. Simultaneously, during the past years the clinical community has been facing an ever-increasing 
pressure to increase productivity while lowering the total cost (4,5). One of the implications thereof has been a trend 
to accept image quality that just allows image interpretation in the clinical routine (6), especially for such high-volume 
imaging modalities as x-ray. Thus, previous reader-based studies have reported substantial deviation from 
international guidelines (7,8) for chest radiographs  acquired in the clinical routine, revealing that less than 50% (9) 
or even as low as 4% (10) of the images satisfied guideline criteria. Other research highlighted the necessity for 
continuous image quality control (11,12)  in order to ensure proper image quality. The most common finding of the 
past studies revealed that collimation is often not performed according to the international guidelines (13–16) and 
the main challenge is operator skill (17). Since the introduction of Picture Archiving and Communication System 
(PACS) the interaction and communication between radiographers and radiologists have been significantly reduced 
(18), culminating in tele-radiological services. This trend has intensified the high variability of image quality 
perception observed both between radiologists (19) and especially between radiologists and radiographers (20). Thus 
it could be shown that radiologists agreed only in 60% of cases with the necessity to retake a chest posterior anterior 
(PA) x-ray radiograph, that had been previously rejected by the radiographers (21). Consequently, a real time tool for 
automatic and objective image quality control could help standardize, improve and track image quality in the clinical 
routine. 

Recently, a neural-network-based algorithm has been developed that can automatically assess quality of collimation, 
patient rotation and inspiration status on chest PA x-rays (22). Further studies showed that the algorithm yields 
analog evaluation of image quality with regard to the mentioned parameters to expert radiologists for real world 
clinical data acquired at different clinical sites compared to the data used for algorithm training (23,24). It could be 
also shown that while the algorithm accurately determines physical parameters that are used for image quality 
analysis, there is only a moderate inter-reader agreement for assessment of image quality between human readers 
(22,24) which is well in line with previous studies (19–21).  

To highlight the clinical necessity, the developed Artificial Intelligence (AI) algorithm was tested as an analysis tool 
for more than 3000 chest radiographs per site acquired in the clinical routine in four different institutions, located in 
Europe and the US (23,24). In these unpublished data the percentage of images with suboptimal parameters 
determined by the algorithms for chest x-rays was significantly higher than 50%, which correlates well with previous 
reports (9,10). 

Hence, the goal of the current 
study was to demonstrate the 
feasibility of implementing the 
developed AI-based tool for real 
time objective and 
comprehensible feedback to the 
radiographer after each image 
acquisition into the clinical 
routine. The study hypothesis 
was that through the continuous 
feedback received by the 
radiographers the overall image 
quality would significantly 
improve. 

Figure 1: Percentage of chest PA x-rays with patient positioning imprecisions 
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Materials and Methods 

During this study only images acquired during the normal clinical routine were analyzed post-acquisition with respect 
to image quality. The study was IRB approved by the local ethics committee. 

The algorithmic evaluation of collimation, patient rotation and inspiration status is based on the pretrained neuronal 
network (22) that detects the lung, the ribs, the clavicles and the backbone. Subsequently the algorithm calculates 
the minimal distance between the lung and the image border for all four directions separately. In order to assess the 
precision of the collimation, the calculated distances are compared to the respective thresholds for minimal and 
maximal clinically desirable collimation, which were determined based on expert radiologist input prior to the study 
(23,24). Patient rotation is evaluated based on the asymmetry of the clavicles with respect to the center of the 
backbone, and the number of ribs that are covered by the lung are used a figure of merit for estimation of inspiration 
status. The thresholds that were used for the respective parameter to distinguish between precise and imprecise 
positioning in the study are summarized in Table 1. An x-ray of the chest was considered as optimal only if all three 
analyzed parameters – collimation, patient rotation and inspiration are within the pre-defined thresholds.  

Parameter Value 

Minimal clinically desirable distance between the lung and the image 
boundary for all four image directions 

10 mm 

Maximal clinically desirable distance between the lung and the image 
boundary for the up, left and right directions 

50 mm 

Maximal clinically desirable distance between the lung and the image 
boundary for the abdomen direction 

75 mm 

Number of ribs required for proper inspiration / number of ribs only if 
one side of the lung present 

17 / 9 ribs 

Asymmetry score for rotation to the right/left 
 

-0.5/ 0.4 

Table 1: Thresholds used to distinguish between precise and imprecise patient positioning (25). 

The described AI algorithm was implemented into the clinical routine using the IT infrastructure sketched out in 

Figure 2. An x-ray radiography system DigitalDiagnost 3.1 (Philips Medical Systems DMC, Germany) was configured 

to send the acquired x-ray radiograph to PACS for reading purposes as this is done in the normal clinical routine while 
a copy of the image was sent to the server with the installed AI image quality evaluation algorithm in parallel. The 
result of the image quality analysis was then displayed to the user on a tablet PC, located at the acquisition console 

of the x-ray system (Figure 3). The complete solution, consisting of the AI algorithm and the IT infrastructure is 

referred to as Smart Assistant. 

Figure 2: IT infrastructure used for the real time AI feedback. An image acquired in the clinical routine is sent according to the 
standard of care for diagnostic reporting to PACS. A copy of the image is generated and sent to a separate server with the AI 

software. The result of image quality analysis is displayed on a tablet PC, located at the x-ray system console. 
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Based on the result of the algorithmic analysis, the image 
quality parameters below the image are highlighted in 
green on the tablet PC, if the image quality is considered 
to be optimal. In case the collimation is too wide, the 
unnecessarily exposed area is marked with a red overlay. 
In case of collimation that is too narrow, the 

corresponding side(s) are marked by a red bar (Figure 3 

(a)-(d)). 

The developed Smart Assistant prototype was evaluated 
in the clinical study that was performed as follows: the 
retrospective image quality analysis was performed 
before the system was implemented and the active 
clinical phase started after implementation of the system. 
For the retrospective analysis, chest PA radiographs 
acquired in the clinical routine prior to the initiation of the 
clinical study were retrieved from PACS and analyzed 
using the developed image quality algorithm. For the 
retrospective analysis and the active phase, 2774 images 
acquired during 12 months of clinical routine and 1973 
images imaged during 11 months, respectively, were 
analyzed. Based on previous studies (22–24), no 
additional validation of the algorithmic performance was 
performed. Only images acquired with the same x-ray 
system as later used for the active phase were considered 
for the retrospective analysis. The results of the 
retrospective positioning quality analysis were 
documented for later comparison with data obtained 
during the active phase. 

During the active phase of the study, Smart Assistant for 
real time AI-based image quality feedback was installed in 
the clinical routine and provided feedback to the x-ray 
system operators after each image acquisition. The 
workflow consisted of the following steps: a chest 
radiograph is acquired and the radiographer finalizes 
image acquisition on the x-ray modality and sends the 
image to PACS. A copy of the image is simultaneously sent 
to a server on which the AI image quality evaluation 

package is installed (see Figure 2). The image is analyzed 

and the feedback is presented to the radiographer on the 
tablet PC. In case the algorithm determined image quality 
to be optimal the radiographer receives a respective 
feedback and there is no further need for the user to 
interact with the tablet PC. In case, however, one or more 
of the parameters are found to be outside the predefined 
optimal range, the parameter is marked in red, and the 
operator has to interact with the tablet PC  to acknowledge 
the feedback and to select a reason from a pre-defined list 
what he or she believes to be the root cause of the 
imprecision. The list consists of 6 possible pre-selected 
reasons, for example: “bariatric patient”, “language 
barrier”, etc. The result of each image quality analysis is 

Figure 3: Sample of visual feedback displayed on the tablet PC 
for: optimal image quality (a); image with collimation that is 
too wide in the abdomen region (b); image with a subotimal 

patient rotation and too wide collimation (c); image with 
insufficient inspiration, patient misrotation and too wide 

collimation (d). Right: a photograph of the workstation and 
the corrsponding tablet PC (e). 
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saved in a log-file that is used to track the image quality statistics. No image retakes were performed by the 
radiographers based on the feedback of the AI-algorithm and the process for retakes relied on the standard clinical 
routine. In cases, when a retake of the x-ray was considered, a radiologist took a decision after inspecting the image. 
The team performing image acquisition for the retrospective and the active phase consisted of 15 radiographers with 
varying experience in chest radiography imaging.  

Based on the documented output of the algorithmic analysis, the imaged area outside the maximum clinically 
desirable collimation thresholds and the area cut off with respect to the minimum clinically desirable collimation 
thresholds was calculated for each image.  The two areas will be referred to as unnecessarily exposed and cut-off 
areas in the following. In particular, the calculation of the areas was based on the result of the algorithmic assessment 
for the minimum distance between the lung and the image border. Subtraction of the maximum/minimum clinically 
desirable threshold from the derived value provided a distance that has been overexposed/cut-off for each of the 

four image sides. Multiplication of the corresponding distances resulted in the aforementioned areas. Figure 4 (a) 

shows an exemplary image, where the minimal and maximum clinically desirable collimation thresholds are marked 
with the dotted and the dashed lines, respectively. In the shown case, the unnecessarily exposed area is marked with 
a red overlay. The cut-off area was calculated as the area between the image border and the minimal clinically 

meaningful collimation threshold. Figure 4 (b) shows a cut-off image, where the cut-off area is highlighted in red.  

Image quality parameters obtained for the retrospective and the active phases were valuated using Excel 2016 
(Microsoft, USA). The parameters for the percentage of images were compared using a Pearson’s chi-squared Test. 
The unnecessarily exposed and cut-off areas were compared using the Mann-Whitney test. All results were 
considered to be statistically significant if p<0.05.  

 

Results 

The developed AI-based image quality feedback could be implemented without any problems into the clinical 
workflow. The time delay between completing an image at the x-ray system and the visual feedback is on the tablet 
PC was measured to be approx. 10 seconds. This time includes the time required by the system for the image export 
process, the traffic time to the server, the time for the image quality analysis (less than 1 second per image) and the 
transmission of the feedback to the tablet. There were no complications for the clinical routine workflow related to 
the use of the tool. 

 

Figure 4: Examples of an image with a collimation that is too wide (a), where the unnecessarily exposed area is marked with a 
red overlay. The minimal and maximal clinically desirable collimation thresholds are marked with dotted and dashed lines, 

respectively. On image (b) the area marked with red, corresponds to the cut-off area. 
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 Retrospective 
Analysis 

Active Phase p value Relative 
Change 

% of optimal images 
 

31.4 % (872) 40.8 % (802) < 0.01 30 % 

% of images with 
Optimal collimation  

 

34.1 % (947) 43.5 % (859) < 0.01 28 % 

% of Images with 
Optimal Inspiration 

 

94.6 % (2623) 98 % (1934) < 0.01 4 % 

% of Images with 
Optimal Rotation 

 

93.8 % (2601) 94.8 % (1870) 0.14 -  

Table 2: Summary of the image quality analysis performed before (retrospective) and after installation (active phase) of the AI 
solution. The numbers in parenthesis represent the number of images in the corresponding group. 

Compared to the retrospective baseline analysis, a clear improvement in image quality parameters was observed 
during the active phase. The fraction of images with overall optimal positioning showed a significant improvement 
of 30% during the active phase of the study relative to the retrospective analysis. This improvement was largely 
driven by a 28% increase in the fraction of images with optimal collimation, followed by a 4% increase of the fraction 
of images with optimal inspiration. A positive trend, but no statistically significant improvement was observed for 
the fraction of images with (sub)optimal rotation of the patient. The detailed results of the image quality analysis are 
summarized in Table 2. The relative change presented in the last column represents the improvement divided by the 
value obtained for the retrospective analysis. 

A time-resolved evaluation of the image quality revealed a steady improvement of the parameters, as is 

demonstrated in Figure 5 for collimation. While there are time periods that show expected oscillating image quality 

performance (blue line), the linear trendline fitted to the data (red dashed line) shows a steady improvement over 
time with no stagnation perceptible. Consequently, it could be hypothesized that image quality parameters could 
improve even further if the trial period was longer. 

A detailed analysis of the collimation issues for the four individual sides of the image revealed, as can be seen in 

Figure 6 that during the active phase a significant improvement was achieved for both under and over collimation 

for the top side and for the too-
wide collimation on the bottom 
side. This result seems to be 
reasonable, given the fact that 
these are the sides that are most 
challenging for the radiographers. 
A further statistically significant 
change observed was a reduction 
of images collimated too widely 
on the left side, which seems to be 
rather surprising at the first. 
However, in the given 
examination room, the 
radiographer typically stands on 
the right side, which can be an 
explanation for this unexpected 
result. 

 

Figure 5: Time-resolved fraction of images with suboptimal patient positioning over the 
time period of the active phase 
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Collimation imprecisions result in unnecessarily exposed as well as cut-off areas. Both parameters were calculated 
for all images separately and it was observed that the average unnecessarily exposed area, i.e. the area outside the 
maximum clinically desirable collimation threshold could be reduced during the active phase by 34% (see Table 3) 
compared to the retrospective analysis.  At the same time, a positive trend, but no significant change, could be 
observed for the cut-off area, i.e. the area that is lacking to achieve the minimum clinically desirable collimation.   

 Retrospective 
Analysis 

Active Phase p value Relative 
Change 

Average Unnecessarily Exposed Area 
 

31.0 cm2 20.1 cm2 < 0.01 34 % 

Average Cut-Off Area 
 

9.7 cm2 9.5 cm2 0.41 -  

Table 3: Comparison of the unnecessarily exposed and cut-off areas for the retrospective analysis and the active phase. 

Thus, the presented results clearly demonstrate that the image quality significantly improved during the active phase 
of the AI-based image quality feedback after the tool was implemented into the clinical workflow. Especially, the too-
wide collimation was significantly reduced, while also a positive trend was seen for the too-narrow collimation. 

 

Discussion 

In this study, we have implemented a system for a fully automated real time AI-based image quality feedback for PA 
chest radiographs into the clinical routine workflow. The majority of the approx. 10 second delay time between the 
finalization of the study at the x-ray system and the feedback is related to the time the x-ray system needs for the 
image export process and the traffic time, as the image analysis itself takes less than 1 second. The delay time was 
estimated during the normal clinical routine, however, it is pointed out that it is influenced by the network load and 
the number of images in the examination. In the future, an optimization of the IT infrastructure, such as prioritization 
of the traffic to the AI server or direct connection of the server to the x-ray system could be key in order to further 
reduce the time delay and make the workflow even smoother. 

The key finding of the study is that the developed tool helps to improve image quality in the clinical routine. The 
greatest impact of the tool was observed in the reduction of the rate of images that displayed a collimation that was 
to wide, an issue that has been identified as a significant deviation from clinical guidelines by previous studies (13–
16). This improvement associated with a significant reduction of the average unnecessarily exposed area during 
image acquisition. Thus, the achieved improvements help to reduce patient dose, but they will also contribute to 
reduce scattered radiation (26–29). The optimal collimation in left-right direction also suggests proper centering of 
the patient in front of the automatic exposure chambers. At the same time, a positive trend, but no statistical 

Figure 6: Percentage of images with the collimation issues broken up for the four different sides of the image for the 
retrospective analysis and the active phase. Statistically significant changes with p<0,05 are marked with *. 
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improvement for the average cut-off area could be observed. There are several reasons why there was no statistical 
improvement for the cut-off area. First, the average cut-off area is very small in the first place. The threshold for 
minimum collimation for all four image directions was set at 10 mm for the study. If one now considers that the 
average collimation opening is approx. 30 cm (corresponding to the size of an adult thorax), then the average cut-off 
area of 9,5 cm2 corresponds to a collimation deviation of 3,2 mm in one direction. Therefore, on average the whole 
of the lung is present on the image and only the distance between the lung and the image border is smaller than the 
pre-determined threshold. As a further outcome of the study, a reduction of images with suboptimal inspiration was 
observed. Evaluation of chest x-rays with suboptimal inspiration often complicates diagnosis, as the reader has no 
indication whether improper inspiration is related to a clinical condition or imprecise image acquisition. Therefore, a 
reduction of images with insufficient inspiration may improve the diagnostic process and therefore also has positive 
impact on patient outcome.  

Image quality is directly linked to the efficiency of the clinical workflow (1,3). As a consequence, there is a high 
probability that costs will decrease through usage of the developed tool. Optimal image quality increases the 
confidence during clinical image reading (30), prevents recalls and reduces the probability for a follow-up imaging 
(31). Only few studies in the past have sought to quantitatively analyze the relationship between image quality and 
workflow efficiency. Siegel at al. (30) have reported that an increase of 16% in reading time was required by 
radiologists for x-ray chest radiographs with suboptimal image quality, while another study suggested that the effect 
of suboptimal image presentation strongly depends on the reader experience (32).  

An aspect that should not be overlooked is that the developed tool introduces a possibility for the radiographers to 
objectively track their performance and help them to identify areas for personal improvement. Positive feedback 
received for optimal patient positioning can be a great motivational aspect, as has been pointed out by previous 
studies (33). 

One of the limitations of the described study is that the results were obtained during the onset of the Covid-19 
pandemic, which implied that no additional training/workshops could be provided to the technologists during the 
active phase. It can be hypothesized that additional guidance on patient positioning for issues identified with the 
developed tool from experienced quality managers would improve the results even further. Additionally, the 
improvement over time did not show any signs of curve flattening so that a further improvement can be expected if 
the tool was used for a longer period of time.  

A further limitation of the present study is that it does not take into account the additional clinical information, such 
as intentionally wide collimation e.g. for catheter imaging. Achievable image quality depends further on the patient 
population imaged in this study and their ability to cooperate with the technologist. This should be considered when 
discussing the obtained absolute image quality statistics. In order to account for this and to make image quality 
changes generalizable, the chosen time periods for the retrospective and the active phase were of comparable length 
and the number of images for the two phases was also similar.   

In summary, the presented study shows that AI-based real time image quality feedback can be used in the clinical 
routine to significantly improve image quality.  The developed tool holds high potential for transferring the method 
to further anatomies.  

Summary 

The impact of the developed AI-based real time image quality feedback tool was evaluated in the clinical routine, 
showing that the real time, standardized, objective image quality feedback for the x-ray system operator leads to a 
significant increase of image quality over time. 
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