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The genetic basis of most traits is highly polygenic and dominated by non-coding
alleles. It is widely assumed that such alleles exert small regulatory effects on the
expression of cis-linked genes. However, despite the availability of gene
expression and epigenomic data sets, few variant-to-gene links have emerged. It
is unclear whether these sparse results are due to limitations in available data
and methods, or to deficiencies in the underlying assumed model. To better
distinguish between these possibilities, we identified 220 gene-trait pairs in which
protein-coding variants influence a complex trait or its Mendelian cognate.
Despite the presence of expression quantitative trait loci near most GWAS
associations, by applying a gene-based approach we found limited evidence that
the baseline expression of trait-related genes explains GWAS associations,
whether using colocalization methods (8% of genes implicated), transcription-
wide association (2% of genes implicated), or a combination of regulatory
annotations and distance (4% of genes implicated). These results contradict the
hypothesis that most complex trait-associated variants coincide with homeostatic
eQTLs, suggesting that better models are needed. The field must confront this
deficit, and pursue this “missing regulation.”

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
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Introduction

Modern complex trait genetics has uncovered surprises at every turn, including the
paucity of associations between traits and coding variants of large effect, and the
“mystery of missing heritability,” in which no combination of common and rare variants
can explain a large fraction of trait heritability*. Further work has revealed unexpectedly
high polygenicity for most human traits and very small effect sizes for individual
variants. Bulk enrichment analyses have demonstrated that a large fraction of
heritability resides in regions with gene regulatory potential, predominantly tissue-
specific accessible chromatin and enhancer elements, suggesting that trait-associated
variants influence gene regulation®*. Furthermore, genes in trait-associated loci are
more likely to have genetic variants that affect their expression levels (expression QTLs,
or eQTLs), and the variants with the strongest trait associations are more likely also to
be associated with transcript abundance of at least one proximal gene®. Combined,
these observations have led to the inference that most trait-associated variants are
eQTLs, and their effects arise from altering transcript abundance, rather than protein
sequence. Equivalent sQTL (splice QTL) analyses of exon usage data have revealed a
more modest overlap with trait-associated alleles, suggesting that a fraction of trait-
associated variants influence splicing, and hence the relative abundance of different
transcript isoforms, rather than overall expression levels. The genetic variant causing
expression changes may lie outside the locus and involve a knock-on effect on gene
regulation, with the variant altering transcript abundances for genes elsewhere in the
genome (a trans-eQTL), but the consensus view is that trans-eQTLs are typically
mediated by the variant influencing a gene in the region (a cis-eQTL)®. Thus, a model
has emerged in which most trait-associated variants influence proximal gene regulation.

Here we argue that this unembellished model—in which GWAS peaks are mediated by
the effects on the homeostatic expression in bulk tissues—is the exception rather than
the rule. We highlight challenges of current strategies linking GWAS variants to genes
and call for a reevaluation of the basic model in favor of more complex models possibly
involving context-specificity with respect to cell types, developmental stages, cell states,
or the constanstancy of expression effects.

Our argument begins with several observations that challenge the unembellished
model. One challenge is the difference between spatial distributions of eQTLs, which
are dramatically enriched in close proximity to genes, and GWAS peaks, which are
usually farther away’®. Another is that expression levels mediate a minority of complex
trait heritability’®. Finally, many studies have designed tools for colocalization analysis: a
test of whether GWAS and eQTL associations are due to the same set of variants, not
merely distinct variants in linkage disequilibrium. If the model is correct, most trait
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associations should also be eQTLSs, but across studies, only 5-40% of trait associations
co-localize with eQTLs4,

Despite the doubts raised, the fact that most GWAS peaks do not colocalize with eQTLs
cannot disprove the predominant, unembellished model. In a sense, negative
colocalization results are confusing because their hypothesis is too broad. If we predict
merely that GWAS peaks will colocalize with some genes’ expression, it is not clear
what is meant by a peak’s failure to colocalize with any individual gene’s expression.

Thus, a narrower, more testable hypothesis requires identifying genes we believe a
priori are biologically relevant to the GWAS trait. If these trait-linked genes have nearby
GWAS peaks and eQTLs, failure to colocalize would be a meaningful negative result.
Earlier studies tested all GWAS peaks; when a peak has no colocalization, the model is
inconclusive. But trait-linked genes that fail to colocalize reveal that our method for
detecting non-coding variation is, with current data, incompatible with our model for
understanding it.

With this distinction in mind, we created a set of trait-associated genes capable of
supporting or contradicting the model of non-coding GWAS associations acting as
eQTLs. For this purpose the selection of genes becomes extremely important. Because
the model attempts to explain the genetic relationship between traits and gene
expression, true positives cannot be selected based on measurements of genetic
association to traits (GWAS) or expression (eQTL mapping). With this restriction, one
source of true positives is to identify genes that are both in loci associated with a
complex trait and are also known to harbor coding mutations tied to a related Mendelian
trait or the same complex trait. Using a model not based on expression, Mendelian
genes are enriched in common-variant heritability for cognate complex traits™. The
genes and their coding variants may be detected in familial studies of cognate
Mendelian disorders, or by aggregation in a burden test on the same complex
phenotypes as GWAS?*®

For genes whose coding variants can cause detectable phenotypic change, the strong
expectation is that a variant of small effect influences the gene identified by its rare
coding variants. As an example, APOE and LDLR are both low-density lipoprotein
receptor genes'’*®. Coding variants in APOE and LDLR can lead to the Mendelian
disorder familial hypercholesterolemia®*®. Even in the absence of a Mendelian coding
variant, experiments in animal models have found that the overexpression of these
genes reduces cholesterol levels®2?, GWAS on human subjects have found significant
associations near APOE and LDLR, so it seems reasonable to suspect that any
noncoding effects in these loci may be mediated by these genes. This general
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relationship between Mendelian and complex traits is supported by several lines of
evidence summarized in Supplementary Note 1.

Results

To test the model that trait-associated variants influence baseline gene expression, we
assembled a list of such putatively causative genes. We selected seven polygenic
common traits with available large-scale GWAS data, each of which also has an
extreme form in which coding variants of large effect alter one or more genes with well-
characterized biology (Table 1). Our selection included four common diseases: type I
diabetes?, where early onset familial forms are caused by rare coding mutations
(insulin-independent MODY; neonatal diabetes; maternally inherited diabetes and
deafness; familial partial lipodystrophy); ulcerative colitis and Crohn disease? %, which
have Mendelian pediatric forms characterized by severity of presentation; and breast
cancer®, where germline coding mutations (e.g., BRCA1) or somatic tissue (e.g.,
PIK3CA) are sufficient for disease. We also chose three quantitative traits: low and high
density lipoprotein levels (LDL and HDL); and height.

In well-powered GWAS, even relatively rare large-effect coding alleles (mutations in
BRCA1 which cause breast cancer, for instance) may be detectable as an association
to common variants, which could make the effect of a coding variant appear to be
regulatory instead. To account for this possibility, we computed association statistics in
each GWAS locus conditional on coding variants. We applied a direct conditional test to
datasets with available individual-level genotype data (height, LDL, HDL); for those
studies without available genotype data, we computed conditional associations from
summary statistics using COJO?*?® (Methods). With both methods, the resulting GWAS
associations should reflect only non-coding variants.

After controlling for coding variation, we examined whether these genes are more likely
than chance to be in close proximity to variants associated with the polygenic form of
each trait. In agreement with existing literature®®, we observe a significant enrichment
for all traits in our combined Mendelian and Backman et al. gene sets (Supp. Fig. 1).

Of our 220 genes, 147 (67%) fell within 1 Mb of a GWAS locus for the cognate complex
trait, over three times as many as the 43 predicted by a random null model (95%
confidence interval: 31.5-54.5). Our window of 1 Mb represents roughly the upper
bound for distances identified between enhancer-promoter pairs, but most pairs are
closer®, so we would expect enrichment to increase as the window around genes
decreases; this proves to be the case. At a distance of 100 kb, we find 104 putatively
causative genes (47%), though the null model predicts only 11 (95% CI 4.5-17.0), a
order-of-magnitude enrichment (Supp. Fig. 1). Given their known causal roles in the
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severe forms of each phenotype, these results suggest that the 147 genes near GWAS
signals are likely to be the targets of trait-associated non-coding variants. For example,
we see a significant GWAS association between breast cancer risk and variants in the

estrogen receptor (ESR1) locus even after controlling for coding variation; the baseline
expression model would thus predict that non-coding risk alleles alter ESR1 expression
to drive breast cancer risk.

We next looked for evidence that the trait-associated variants were also altering the
expression of our 147 genes in relevant tissues. Controlling for the number of tests we
conducted, 134 of these genes had an eQTL in at least one relevant tissue at a false
discovery rate of Q < 0.05 (Methods). If these variants act through changes in gene
expression, phenotypic associations should be driven by the same variants as eQTLs in
relevant tissue types. We therefore looked for co-localization between our GWAS
signals and eQTLs in relevant tissues (Table 2) drawn from the GTEx Project, using
three well-documented methods: coloc™*, JLIM*?, and eCAVIAR. We found support for
the colocalization of trait and eQTL association for only 7 genes out of 147 (4.8%) for
coloc; 10/147 (6.8%) for JLIM; and 8/147 (5.4%) for eCAVIAR. Accounting for overlap,
this represents only 18/220 putatively causative genes (8.2%) or 18/147 (12.2%)
putatively causative genes near GWAS peaks, even without full multiple-hypothesis
testing correction (Methods), which is not obviously better than random chance. We
note that prior estimates of the fraction of GWAS associations colocalizing with eQTLs
(25%-40%"21431) do not directly evaluate the ability to find causative genes. By
contrast, our estimate of the number of putatively causative genes that colocalize with
eQTLs tests the consistency of our knowledge, models, and data.

A potential weakness of our approach is the restriction of our search to pre-defined
tissues. We believe this is necessary in order to avoid the disadvantages of testing each
gene-trait pair in each tissue—either a large number of false positives, or a severe
multiple-testing correction that may lead to false negatives. However, restricting to the
set of tissues with a known biological role and available expression data almost
certainly leaves out tissues with relevance in certain contexts. Some of the tissues we
do use have smaller sample sizes, limiting their power to detect eQTLs with smaller
effects.

To address potential shortcomings from the available sample of tissue contexts, we
incorporated the Multivariate Adaptive Shrinkage Method (MASH)3*?. MASH is a
Bayesian method that takes genetic association summary statistics measured across a
variety of conditions and, by determining patterns of similarity across conditions,
updates the summary statistics of each individual condition. In our case, if an eQTL is
difficult to find in a tissue of interest, incorporating information from other tissues may
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help us detect it. Unlike meta-analysis, this method generates summary statistics that
still correspond to a specific tissue.

We ran MASH on every locus used in our earlier analysis, using data from all non-brain
GTEXx tissues (Methods). Rerunning coloc with these modified statistics increased the
number of GWAS-eQTL colocations from 389 to 489. However the 100 new
colocations identified only four additional putatively causative genes (Supp. Fig. 2).
These results indicate that tissue type selection was not the limiting factor in our
analysis.

Transcriptome-wide association studies (TWAS)**¢ are another class of methods
applied to identify causative genes under GWAS peaks using gene expression. TWAS
measures genetic correlation between traits and is not designed to avoid correlations
caused by LD, which gives it higher power in the case of allelic heterogeneity or poorly
typed causative variants®’. However, while sensitive, TWAS analyses typically yield
expansive result sets that include many false positives and are sensitive to the number
of tissue types®. Results from the FUSION implementation of TWAS®* across all
tissues identified our putatively causative genes as likely tied to the GWAS peak in
66/220 loci (30%). However, only 4/220 (1.8%) genes were identified by FUSION when
we restricted the analysis to relevant tissues.

Given the paucity of expression-mediated GWAS peaks, we asked whether GWAS
variants indeed reside in regulatory sites. Taking the 128 genes in the Mendelian subset
of putatively causative genes, we fine-mapped each nearby GWAS association using
the SuSiE algorithm®. For 37 of these genes, we identified at least one high-confidence
fine-mapped SNP (PIP>0.7) within 100kb of the transcription start site. We tested
whether these fine-mapped SNPs fall within regulatory DNA marked by chromatin
accessibility®®, a narrowly mapped active histone modification feature (H3K27ac,
H3K4mel, or H3K4me3*), or characterized as an “enhancer” by ChromHMM*4
(Methods). As many as 32/37 (86%) genes identified this way have a fine-mapped SNP
within a regulatory feature across all the tissue types examined, or 25/37 (68%) when
restricting to phenotype-relevant tissues (Fig. 3; Supp. Table 1, Supp. Table 2).
Despite strong evidence that these GWAS associations are due to regulatory effects,
only 5/25 loci (20%) demonstrably correspond to expression effects in our eQTL
analysis.

In order to more directly compare our regulatory feature analysis to our eQTL analysis,
we measured “activity-by-distance”—a simplification of the “activity-by-contact”
method**“** (Methods; Fig. 2). Taking each locus’s feature with the highest ABD score,
we implicate 5/37 (14%) of our Mendelian subset of genes. This reinforces our
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observation that, even when a GWAS association and trait-relevant gene are proximal,
they are difficult to link, whether using eQTLs or chromatin data.

Discussion

Overall, our results are consistent with the idea that complex traits are governed by non-
coding genetic variants whose effects on phenotype are mediated by their contribution
to the regulation of nearby genes. However, these results are inconsistent with the
model that a common mechanism of this mediation is the effect on baseline expression
within tissues. The enrichment of our putatively causative genes—selected based on
existing biological knowledge—near GWAS peaks supports their role in complex traits.
Additionally, the enrichment of fine-mapped GWAS variants in accessible chromatin
regions and regulatory features lends support to the model of GWAS associations being
produced by eQTLs. However, the inability of varied statistical methods to actually link
GWAS associations and expression contradicts the idea that the causative GWAS
variants are homeostatic, bulk-tissue eQTLs of the sort found in broad expression-data
collection projects.

Many explanations have been suggested for the limited success of expression methods
to explain the mechanisms of GWAS variants. Undirected, broad approaches—
including most GWAS-eQTL linking studies—are designed to be largely independent of
a priori biological knowledge and hypotheses. This unconstrained focus is ideal for
discovery, but, though it delivers the largest number of positive findings, it is ill-suited to
provide an explanation for negative results—when you don’t know what you were
looking for, it's hard to explain why you didn’t find it. By testing only loci for which there
Is a strongly suspected contributing gene, we are better able to distinguish which factors
prevent us from identifying it using expression.

As a result, we conclude that a number of explanations often considered when
evaluating expression-based variant-to-gene methods are not applicable in the context
we examined. These include non-expression-mediated mechanisms, lack of statistical
power for GWAS, the absence of eQTLs for relevant genes, and underpowered
methods for linking expression to GWAS (Table 3).

Instead, we believe the “missing regulation” will be found primarily through examining
more nuanced models of gene expression. Solving the mystery will require not only
identifying the eQTLs behind GWAS peaks, but also explaining the phenotypic
irrelevance of our “red herring eQTLs": eQTLs for putatively causative genes that fall
near GWAS peaks but do not colocalize with them. Some proposed models involve
expression that depends on context—whether cell type, cell state, environment, or
developmental stage. Others depend on heterogeneity of expression or the variance of
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expression across relatively short time scales. These various models may depend on or
be augmented by thresholding or buffering—processes causing a change in gene
expression to have a non-linear effect on phenotype. A summary of these models can
be found in Table 4.

The implications of our results are both conceptual and practical. The inability of current
models to identify the expression effects of known trait-associated genes, and to explain
the non-effects of their identified eQTLs, calls for new models of the role of gene
regulation in complex traits. One long-standing goal of GWAS has been to discover
genes contributing to complex traits®, but low rates of positive findings for expression-
based variant-to-gene methods have constrained this possibility*?**. Among other
challenges, this has limited the benefit of GWAS and expression data for disease-gene
mapping and drug discovery*“>. Another practical question raised is the value of
different large-scale datasets. Compared to genotypes, expression data are relatively
difficult to collect. If the most relevant models are shown to depend on effects not
observable in bulk-tissue, homeostatic eQTL mapping, the field may need to consider
prioritizing other forms of expression data.

The introduction to this manuscript includes two examples of suspect genes: APOE and
LDLR. Both genes harbor coding variants causing Mendelian hypercholesterolemia.
Both have non-coding variants that GWAS have tied to LDL levels. Both have eQTLs in
trait-relevant tissues. For APOE, these points cohere into an explanation: the LDL-
association is an eQTL for the lipid-binding gene. But for LDLR—and for most genes—
the association, the mechanism, and the gene cannot be tied together. In the field of
complex-trait genetics—both basic and translational—solving this regulatory mystery
may prove to be a critical step.
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Figure 1. Putatively causative genes identified by each method category.

The leftmost column in each half of the plot displays the entire group of putatively
causative genes for our Mendelian set of genes and our Backman et al. set of genes
respectively, as well as noting how many are unique to each set or shared between the
two sets. The second column in each half indicates how many genes from each set
have a nearby GWAS peak, or have both a nearby GWAS peak and an eQTL. The
remaining columns indicate how many genes were identified through colocalization,
TWAS, or chromatin methods, while noting how many of these genes are unique vs.
shared between the Mendelian and Backman sets.
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Figure 2. Chromatin-based causative gene identification.

Following the fine-mapping of GWAS variants, three parallel methods were used. The
first identified fine-mapped variants falling within regions annotated as enhancers by
ChromHMM. The second identified variants within histone modification features, and
evaluated their relevance using an ABD score that combined the strength of the feature
(i.e., the strength of the acetylation or methylation peak) with its genomic distance to the
gene of interest (Methods). The third repeated both of these—checking for fine-mapped
variants within a region and calculating the ABD score—for DNase | hypersensitivity
sites.
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Figure 3. Genes identified as associated with a complex trait by each method.

Columns “Mend” and “Backman” indicate whether a gene is from the Mendelian set of
putatively causative genes, the Backman et al. set, or both. Subsequent columns
indicate whether a gene was identified as a hit using each of our methods: JLIM, coloc,

eCaviar, TWAS, and chromatin analysis.
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Phenotype Genes

LDL APOB*#
APOC2*
APOE?*
LDLR®®
LPL51,52
PCSK9%®

HDL ABCA1%¢
APOA1%
CETP®®

LI Pc59—61
LIPG®
PLTP®
SCARB1%¢

Height ANTXR1°6¢7
ATR68,69
BLM70,71
CDC67
CDT172,73
CENPJ™
COL1A1"™
COL1A2™®""
COM P78,79
CREBBP?®-#2
DNA2%
EP300%%
Evc86,87
EVC2%7#
FBN1%-%2
FGFR3%%
FKBP10°-%
GHR99—102
KRA8103—105
N BN106,107

N | PBLlOS,lOQ
ORCl72,73,110
ORCA472"
ORC6L™11
PCNT112—114
PLOD2115—117
PTPN111-120
RAD21121—123
RAF1124,125
RECQL4126—128
R|T1129—131
ROR2132—134
SLC26A21%137
SMAD4138—140
SRCAP141,142
WRN143—145

Crohn disease ATG16L1%6
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CARD9™
IL10™®
ILlORA149,150
ILlORBlSl,lSZ
|L23R15?r155
IRG M156—158
NOD2159,160
PRDM1'!
PTPN22'6
RNF186

Ulcerative colitis ATG16L.11%63
CARD9*7
|L23R155,164
IRGM?5®
PRDM1%!
PTPN221?
RNF18616516¢

Type |l diabetes ABCC8"
BLK168
CEL169,170
EIF2AK3'172
GATA4'™
GATA6175,176
GCK'”
GLIS3Y®

H N F1A179,180

H N FlBlSl,lBZ
HN F4A183,184
IER3IP1151¢7
INSe
KCNJ11e99
KLF11™
LMNA?®?
NEUROD1?
NEUROG3'%1%
PAx4197—199
PDXlZOO—ZOZ
PPARG203,204
PTF1A™®
RFX6206,207
SLC19A2%0-210
SLC2A271212
WF81213_215
ZFP57216'217

Breast cancer (selected using MutPanning?'®) AKT1
ARID1A
ATM
BRCAl
BRCA2
CBFB
CDH1
CDKN1B
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CHEK2
CTCF
ERBB2
ESR1
FGFR2
FOXA1
GATA3
GPS2
HS6ST1
KMT2C
KRAS
LRRC37A3
MAP2K4
MAP3K1
NCOR1
NF1
NUP93
PALB2
PIK3SCA
PTEN
RB1
RUNX1
SF3B1
STK11
TBX3
TPS3
ZFP36L1

Table 1. Putatively causative Mendelian genes.

Each gene includes reference(s) to the known biological role of its coding variants, as
established in familial studies, in vitro experiments, and/or animal models. Genes from
Backman et al. are not included here, but can be found in Figure 3.

Mendelian trait GWAS trait Tissues examined
Breast cancer Breast cancer Breast mammary tissue
Crohn disease Crohn disease Small intestine terminal ileum
Colon Sigmoid
Colon Transverse
Ulcerative colitis Ulcerative colitis Small intestine terminal ileum
Colon Sigmoid
Colon Transverse
Dyslipidemia HDL Liver
Hyperlipidemia Adipose (subcutaneous)
Tangier’s disease Whole blood
Dyslipidemia LDL Liver
Hyperlipidemia Adipose (subcutaneous)
Whole blood
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Mendelian short stature

Height

Skeletal muscle

Monogenic diabetes

Type Il diabetes

Pancreas

Skeletal muscle

Adipose (subcutaneous)
Small intestine terminal ileum

Table 2. Tissue-trait pairs

Tissues were selected for each trait based on a priori knowledge of disease biology.

Violated assumptions

Genes implicated via coding variants
are irrelevant for non-coding
associations

- Our genes are enriched for GWAS associations even after
removing the effects of coding variants.

- Loss-of-function variants, which underlie many Mendelian-trait
genes, can be thought of as large-effect eQTLs.

- Genes identified from Backman et al. are not based on cognate
phenotypes, but the same complex phenotypes as GWAS.

Regulatory mechanisms other than
cis-eQTLs

- Splice QTLs are consistently found to explain less phenotypic
variance than eQTLs, and they cannot explain the many GWAS
associations that fall within intergenic regions.

- Trans-eQTLs are believed to rely on their effects as cis-eQTLs
for other genes; the few exceptions to this model (e.g., CTCF
binding sites) are not broadly applicable.

Insufficient power

Lack of GWAS power

- GWAS have been shown to have sufficient power to identify
small effects even in rare variants.

- 2/3 of the genes we used have nearby GWAS associations,
reflecting a strong enrichment and indicating that GWAS
discovery is not a limiting factor.

- Our analysis is conditioned on the presence of GWAS
associations.

Lack of eQTL mapping power

- GTEx is well powered for eQTL discovery in bulk tissue®=2.
- 93% of our genes have a mapped cis-eQTL in a relevant tissue.

Lack of power for colocalization and
TWAS methods

- Simulations show that colocalization and TWAS methods are
well-powered*? 424219,

- They are robust to levels of LD mismatch higher than what
would be expected given our datasets?"2'°,
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- Some, though not all, of the methods are robust to allelic
heterogeneity***.

Table 3. Proposed explanations for negative results under the unembellished
model.

Many explanations have been proposed for GWAS associations that are not explained
by cis-eQTLs. This table details explanations inconsistent with our results, which are
explained in the left column and addressed in the right. Explanations involving more
detailed models of gene regulation can be found in Table 4. Two of the explanations
addressed here involve violations of the assumptions of our and other expression-based
complex trait studies. If coding and non-coding variants affect fundamentally different
biological pathways, or if trait associations rarely depend on cis-eQTLs, our methods of
mapping regulation to traits would have nothing to uncover. Even in the presence of
eQTL-driven trait associations, insufficient power to detect trait associations, to detect
eQTL associations, or to link the two would result in predominantly negative results.

Extended models of gene regulation

Context dependency: Cell type®*-2%

A context-specific eQTL, invisible in |- Only a subset of cell types in the tissue contribute to the GWAS
bulk tissue, replaces or supplements |phenotype.

the bulk tissue homeostatic eQTL - An eQTL specific to such a cell type is causative for the
phenotype.

- The eQTL cannot be detected in bulk tissue because of the cell
type's low prevalence.

Developmental timing?20:235-240

- The GWAS phenotype is influenced by an earlier point in
individual development or cell differentiation.

- eQTLs present at the correct moment contribute to phenotype,
but eQTLs observed later do not.

Cell state or environment?2%:227:231:233.241-248

- The causative eQTL has effects that are undetectable in steady-
state expression under normal conditions.

- It may activate only in response to a specific environmental
condition, such as infection.

- It may depend on the stage of the cell cycle.

Non-linear or non-homeostatic: Nonlinearity?4¢-2%9
The relationship between eQTL and |- There may be buffering that prevents a change in expression
genotype is indirect from producing a change in protein levels.

- Expression below a certain level may not influence phenotype,
rendering small eQTLs irrelevant.

Steady-state expression may be a poor mode|*°-28
- Phenotype may depend on the kinetics of expression, which
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could be cyclical or follow some other pattern.
- Expression may be stochastic, such that only a random subset
of cells display the relevant expression pattern at any one time.

Table 4. Explaining negative results with more nuanced models of gene
regulation.
To reconcile an expression-based model with our observations requires us to both
explain the absence of trait-linked eQTLs as well as explaining away the inconsequence
of eQTLs for trait-linked genes. The left-hand side lists additions or changes to the
unembellished model, while the right contains explanations of the models and current
relevant research.

A C

12

15
91 — BC
— CD
| = HDL
6 / 10
= Height

54 T2D
uc
———

-log10(P)
-log10(P)

== .. AL --
R M . —
0- 0-
1000000 750000 500000 250000 0 1000000 750000 500000 250000 0
B
15+
2 10-
o
—
[@)]
o
1
5.
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1000000 750000 500000 250000 0
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Supplementary figure 1. Enrichment of Mendelian genes near GWAS peaks.
A) As the window around GWAS peaks shrinks, the enrichment of Mendelian genes
within the window becomes increasingly significant, while the enrichment of non-
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matching trait pairs used as controls (gray lines; Methods) is not consistently increased.
Some controls achieve nominal significance (dotted horizontal line), but none reach
significance once multiple-testing is corrected for (solid horizontal line). B) As above, but
for genes from Backman et al. (2021)*. C) The combined gene lists from parts A and B.
Note that, accounting for multiple test correction (based on the total number of tests
across all panels) height does not reach significance using the Mendelian gene list,
while T2D is barely significant using the Backman list. However, combining the lists
increases power and demonstrates significance for all traits.
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Initial results | | MASH applied

250 -
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. Not putatively causative
. Putatively causative
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Phenotype

Supplementary figure 2. Change in coloc hits when adjusting eQTL statistics

using MASH.

By using the Bayesian method MASH to update our measurements of eQTLs based on

tissues with similar expression patterns, we increased the number of colocalizations

found. However, even in tissues in which the number of genes identified increased

substantially, we did not meaningfully increase the number of putatively causative

genes identified.

Alias Descriptive Name

E027 Breast myoepithelial primary Cells

E028 Breast luminal epithelial Cells / Human mammary epithelial cells

E062 Primary mononuclear cells from peripheral blood

E063 Adipose nuclei

E066 Liver

EQ75 Colonic mucosa
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EQ76 Colon smooth muscle

E087 Pancreatic islets

E095 Heart left ventricle

EO096 Lung

E104 Heart right atrium

E107 Skeletal Muscle Male

E108 Skeletal Muscle Female

E109 Small Intestine

Supplementary Table 1. Roadmap epigenomics aliases of tissue types used for
functional genomic analysis.

Tissue types from the Roadmap Epigenomics Consortium do not perfectly match those
from GTExX. However, there is overlap, and as with GTEXx, we analyzed trait-relevant
tissues.
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Tissue Biosample Name
Adipose AL
Blood Namalwa_0, Karpas_422, K562, CD34_T0, CD56, GM12878, CD3,

NB4, hTH1, CD34_T17, Dendritic_cells_C51, hTH17, CD34_T18,
GM12865, CD14, CD34_T15, CD34_T8, hTR, iTH2, CD19, iTH1,
KBM?7, hTH2, Oci_Ly_7, Jurkat, Dendritic_cells_C190, CD4,
RPMI_8226, fThymus, MM_1S, CD4pos_N, CD34_T6, CD8, CD20,
CMK, GMO06990, CD34_T4, HAP1, GM12864, Namalwa + Sendai
virus_2h, CD34

Bone fBone_arm_left, fBone_femur, fBone_leg_left, fBone_arm_right,
SK_N_MC, MG63, fBone_leg_right, limb, A673, SISA1

Colon CACO2, RKO, LoVo, HCT116, CEC, PANC1, SW_480, HT29

Heart HCF, fLeftVentricle, fHeartFibroblasts, RuES2_cms, H7_hESC_T2,
H7_hESC_T9, fHeart, HPAEC, H7_hESC_T14, HCFaa, AoAF, HCM,
Heart, fRightVentricle, H7_hESC_T5, fLeftAtrium

Liver hepatocytes, fLiver, HepG2

Lung fLung_L, A549, NHBE_RA, WI_38_TAM, fLung_R, NHLF, IMR90,
SAEC, AG04450, NCI_H460, fLung, PC9, HMVEC_LBI, WI_38, HPF,
HMVEC_LLy

Mammary MCF10a_ER_SRC_6h_Tam/Washout 18 h, MCF10a_ER_SRC_control,
MCF10a_ER_SRC_24h_Tam, MCF7, HMEC, T_47D, MCF7_ER, HMF,
vHMEC

Muscle SKMC, fMuscle_arm, fMuscle_lower_limb, LHCN_M?2,

fMuscle_upper_back, fMuscle_back, LHCN_M2_D4, Psoas_Muscle,
SJCRH30, fMuscle_upper_limb_sk, HSMM_D, HSMM, fMuscle_trunk,
fMuscle_leg

Pancreas Pancreas, ISL1

Small Intestine fIntestine_Sm, Small Intestine_Mucosa

Supplementary Table 2. Tissue types and bio-samples from the DNase |
hypersensitive sites index used for functional genomic analysis

Meuleman et al. assess DNase | hypersensitive sites across 438 cell and tissue types®;
we selected the above based on their relevance to our complex traits.
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Supplementary Note 1. Evidence for the relationship between Mendelian and
complex traits.

More generally, this expectation is supported by several lines of evidence. Comorbidity
between Mendelian and complex traits has been used to identify common variants
associated with the complex traits?®2. Early GWAS found associations near genes
identified through familial studies of severe disorders?*?®* and later implicated some of
the same genes in complex and Mendelian forms of cardiovascular®® and
neuropsychiatric?®® traits. More recent analyses have found that GWAS associations are
enriched in regions near causative genes for cognate Mendelian traits in blood traits®®’,
lipid traits and diabetes'®, as well as a diverse collection of 62 traits*. Another recent
method used transcriptomic, proteomic and epigenomic data to prioritize genes and
found that, in a selection of nine phenotypes, selected genes were enriched for
Mendelian genes causing similar traits®®. Together, these suggest that genes causing
Mendelian traits also influence cognate complex traits, but not through the same coding
mechanism.

Genes can also harbor coding variants tied to less severe forms of a trait. These coding
variants are more difficult to identify individually, as their effect sizes are much smaller.
However, the greater number of variants (in aggregate) and freedom from searching for
severe segregating traits, allows the use of large population datasets. Backman et al.
used burden testing on UK Biobank data to identify genes whose coding variation
affects complex traits, finding many genes not identified through familial studies?*®.

Supplementary methods

Gene selection

By manual literature search, we selected 128 genes harboring large-effect-size coding
variants for one of the seven phenotypes (Table 1; specifically, we selected 128 gene-
trait pairs, representing 121 unique genes). These genes were identified using familial
studies, rare disease exome sequencing analyses, and, for breast cancer, using the
MutPanning method?*® (citations for each gene are included in Table 1). Review papers,
as well as the OMIM database?®®, were generally used as starting points, but an
examination of the original literature was needed to confirm genes’ suitability. For
example, though SMC3 is known to cause Cornelia de Lange syndrome, which is
characterized in part by short stature, SMC3 mutations lead to a milder form of the
syndrome, usually without a marked reduction in stature®°. Several of these phenotypes
—nheight, HDL, cholesterol, breast cancer, and type Il diabetes—were also analyzed in
Backman et al., which, through burden testing, identified a total of 110 genes; after
accounting for overlaps, this increased our set of putatively causative genes to 220,
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The inclusion of genes from Backman et al. ensures that our results are not dependent
on an undetected bias in our selection. The set of genes chosen from familial studies
offered the advantage that it was selected based on independent methods and data
distinct from the large-scale genotyping studies that have characterized the GWAS era.
The tradeoff to this was the impossibility of selecting genes through a fully systematic
and non-arbitrary process. Because this work was performed in the UKBB, there is
some overlap between their data and ours. However, our work did not use exomes, and
most of the variants driving their findings are too rare to influence GWAS results. When
this is not the case, our decision to condition on coding variants should make the effects
used in our work independent from their findings.

Identifying coding variants

Because GWAS sample sizes are large enough to detect the low-frequency coding
variants used to select some of our genes, it is possible that a coding SNP would distort
the association signal of nearby eQTLs. To minimize this concern, we removed the
effects of coding variants on GWAS. Many variants can fall within coding sequences in
rare splice variants, so it is important to remove only those variants that appear
commonly as coding. These coding SNPs were selected based on the pext (proportion
of expression across transcripts) data®*. Two filters were used. First, we removed
genes whose expression in a trait-relevant tissue was below 50% of their maximum
expression across tissues. Second, we removed variants that fell within the coding
sequence of less than 25% of splice isoforms in that tissue. The remaining variants
were used to correct GWAS signal, as explained below.

GWAS

For height, LDL cholesterol, and HDL cholesterol, GWAS were performed using
genotypic and phenotypic data from the UKBB. In order to avoid confounding, we
restricted our sample to the 337K unrelated individuals with genetically determined
British ancestry identified by Bycroft et al.?*> The GWAS were run using Plink 2.0%, with
the covariates age, sex, BMI (for LDL and HDL only), 10 principal components, and
coding SNPs.

Conditional analysis

Because UKBB has limited power for breast cancer, Crohn disease, ulcerative colitis,
and type Il diabetes, we used publicly available summary statistics. The Conditional and
Joint Analysis (COJO)?"?® program can condition summary statistics on selected
variants—in our case, coding variants—by using an LD reference panel. For this
reference, we used TOPMed subjects of European ancestry®*. The ancestry of these
subjects was confirmed with FastPCA*°2% and the relevant data were extracted using
bcftools®’. Our conditional GWAS data are available at doi:10.5061/dryad.612jm644q
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Enrichment analysis

At each distance, the number of Mendelian and non-Mendelian genes within that
window around GWAS peaks are counted. P-values are calculated using Fisher’s exact
test (Supp. Fig. 1). Because Mendelian genes may be unusually important beyond our
chosen traits, we conduct a set of controls by measuring the enrichment of non-
matching Mendelian and complex traits (CD genes & BC GWAS; BC genes & LDL
GWAS; LDL genes & UC GWAS; UC genes & height GWAS; height genes & T2D
GWAS; T2D genes & HDL GWAS; HDL genes & CD GWAS).

eQTL detection

eQTL summary statistics were taken from GTEXx v7. Some methods detect
colocalization with variants that are individually significant, but would not pass a
genome-wide threshold®?. Because we tested only a subset of genes and, we used the
Bejamini-Hochberg method?®® to calculate the FDR based on the number of tests we
conducted multiplied by a correction factor to account for variants that are tested in
combination with a gene but are not reported (a factor of 20 closely matched the
genome-wide FDR results for GTEX). With this method 204/220 (93%) of our genes
displayed an eQTL, including 134/147 genes with a nearby GWAS peak (91%). Even
using the FDR statistics of the GTEXx project—which are based on the assumption of
testing every gene in every tissue—107/220 (49%) of our genes and 76/147 (52%) of
genes near GWAS peaks had an eQTL at Q < 0.05.

Colocalization

JLIM*? was run using GWAS summary statistics and GTEx v7 genotypes and
phenotypes, for the tissues listed in Table 2. Coloc'! was run using GWAS and GTEXx v7
summary statistics for the same tissues. eCAVIAR™ was run using GWAS and GTEx v7
summary statistics for these tissues, and a reference dataset of LD from UKBB?*.
MASH was run incorporating data from all non-brain tissues, and coloc was re-run using
the adjusted values for the same tissues as before.

MASH

Multivariate adaptive shrinkage (MASH) was applied to all GTEx tissues using the
mashr R-package®. We restricted this model to non-brain tissues—which include all of
our trait-selected tissues—due to the known tendency of brain and non-brait tissues to
cluster separately in expression analysis®®2%,

Fusion (TWAS)

We used the FUSION implementation of TWAS, which accounts for the possibility of
multiple cis-eQTLs linked to the trait-associated variant by jointly calling sets of genes
predicted to include the causative gene, to interrogate our 220 loci®*. FUSION included
our putatively causative genes in the set identified as likely relevant to the GWAS peak
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in 66/220 loci (30%). However, interpretation of this TWAS result is difficult. For many
complex traits, TWAS returns a large number of findings (e.g., over 150 for LDL
cholesterol and over 4,800 for height). This is in part due to the multiple genes jointly
returned at a locus, and can also be a result of the large number of tissues and cell
types included in the implementation of FUSION. Most hits are found in tissues without
any clear relevance to the trait, and absent in relevant tissues—LDL, for example, has
more TWAS associations between expression and eQTL in prostate adenocarcinoma
(24 genes associated), brain pre-frontal cortex (23 genes associated), and transformed
fibroblasts (21 genes associated) than it does in adipose (16 genes associated), blood
(11 genes associated), or liver (5 genes associated). Individual genes were often
identified as hits in multiple tissues, but with an inconsistent direction of effect—that is,
increased gene expression correlated with an increase in the quantitative trait or
disease risk in some tissues, but a decrease in others, which suggests that the gene in
guestion may not be the one whose expression contributes to the complex trait.
Because of this possibility, and the known biological role of many of our genes, we
restricted our results to tissues with established relevance to our traits.

Fine-mapping GWAS hits

We fine-mapped the GWAS variants located within +/- 100 kb of our putatively
causative genes by applying the SuSiE algorithm?® on the unconditional summary
statistics from the GWAS of breast cancer, Crohn disease, ulcerative colitis, type Il
diabetes, height, LDL cholesterol, and HDL cholesterol. An LD reference panel from
UKBB subjects of European ancestry was used for this analysis. Fine-mapped variants
were annotated using snpEff (v4.3t). Only non-coding variants were kept for further
analysis.

Functional genomic annotation of fine-mapped hits

We projected fine-mapped GWAS variants onto active regions of the genome, identified
using three alternative approaches: (i) histone modification features, (ii) DNase |
hypersensitive sites, and (iii) ChromHMM enhancers.

First, we looked at three histone modification marks, namely, acetylation of histone H3
lysine 27 residues (H3K27ac), mono-methylation of histone H3 lysine 4 residues
(H3K4mel), and tri-methylation of lysine 4 residues (H3K4me3) from the Roadmap
Epigenomics Project® to identify functional enhancers which are key contributors of
tissue-specific gene regulation. We downloaded imputed narrowPeak sets for H3K27ac,
H3K4mel, and H3K4me3 from the Roadmap Epigenomics Project® ftp site
(https://egg2.wustl.edu/roadmap/data/byFile Type/peaks/consolidatedimputed/
narrowPeak/) for 14 different tissue types (Supp. Table 1). For each tissue type, we
extracted the narrow peaks that are within +/- 5 Mb of our putatively causative genes.
Then following the approach described in Fulco et al.*®, we extended the 150 bp narrow
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peaks by 175 bp on both sides to arrive at candidate features of 500 bp in length. All
features mapping to blacklisted regions (https://sites.google.com/site/anshul
kundaje/projects/blacklists) were removed. Remaining features were re-centered
around the peak and overlapping features were merged to give the final set of features
per histone modification track. Mean activity/strength of a feature (Af) was calculated by
taking the geometric mean of the corresponding peak strengths from H3K27ac,
H3K4mel, and H3K4me3 marks. We then combined these activity measurements with
the linear distances between the features and the transcription start sites of causative
genes to compute “activity-by-distance” scores (a simplified version of ABC scores®) for
gene-feature pairs using the following formula.

Apx1/d
ABDscorey, ;= 0 u Lo

> Apx11d; g

allf within£5Mb of G

The ABD score can be thought of as a measure of the contribution of a feature, F to the
combined regulatory signals acting on gene, G. A high ABD score may serve as a proxy
for an increased specificity between a chromatin feature and the gene of interest. We
projected the fine-mapped variants onto the chromatin features in different tissue types
to assess whether there is an enrichment of likely causal GWAS hits in regulatory
features near our putatively causative genes. Both proximity (genomic distance) and
specificity (ABD scores) were considered to determine the regulatory contribution of the
fine-mapped hits.

Next, we looked at the DNase | hypersensitive sites (DHSs) which are considered to be
generic markers of the regulatory DNA and can contain genetic variations associated
with traits and diseases®. We downloaded the index of human DHS along with
biosample metadata from https://www.meuleman.org/research/dhsindex/. The index
was in hg38 coordinates which were converted to hg19 coordinates using the online
version of the hgLiftOver package (https://genome.ucsc.edu/cgi-bin/hgLiftOver). We
created a DHS index for each tissue type relevant to the traits and diseases we
analyzed by including all DHS that are present in at least one bio-sample from a certain
tissue type (Supp. Table 2). We then selected DHS that lie within +/- 100 kb of the TSS
of our putatively causative genes. Since DHS are of variable widths, we recentered the
summits in a 350 bp window and merged overlapping sites in the same way as we did
for other chromatin marks. We calculated the mean activity (Ag) by averaging the
strengths of all the merged sites. Next, we calculated the activity by distance score for
each DHS and gene pair using the same formula described above. Finally, for each
fine-mapped SNP, we identified all DHS that fall within +/- 100 kb of the SNP.
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Finally, we used in-silico chromatin state predictions (chromHMM core 15-state model®’)
for relevant tissue types (Supp. Table 1) to identify active enhancer regions in the
genome. Tissue-specific chromHMM annotations were downloaded from the Roadmap
Epigenomics Project®’ ftp site
(https://legg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/
ChmmModels/coreMarks/jointModel/final/). We considered a fine-mapped variant to fall
in an enhancer region if it was housed within a chromHMM segment described as either
enhancer, or bivalent enhancer, or genic enhancer. Since chromHMM annotations are
not accompanied by activity measurements, the ABD approach could not be applied
here.
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