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The genetic basis of most complex traits is highly polygenic and dominated by
non-coding alleles. It is widely assumed that such alleles exert small regulatory
effects on the expression of cis-linked genes. However, despite the availability of
expansive gene expression and epigenomic data sets, few variant-to-gene links
have emerged. We identified 134 gene-trait pairs in which protein-coding variants
cause severe or familial forms of nine human traits. For most of these genes, we
find that adjacent non-coding variation is associated with common complex
forms of the same traits. However, we found limited evidence of
colocalization—the same variant influencing both the physiological trait and gene
expression—for only 7% of genes, and transcriptome-wide association evidence
with correct direction of effect for only 6% of genes, despite the presence of
eQTLs in most loci. Fine-mapping variants to regulatory elements and assigning
these to genes by linear distance similarly failed to implicate most genes in
complex traits. These results contradict the hypothesis that most complex
trait-associated variants coincide with currently ascertained expression
quantitative trait loci. The field must confront this deficit, and pursue this
“missing regulation.”

1

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 25, 2021. ; https://doi.org/10.1101/2021.06.08.21258515doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2021.06.08.21258515
http://creativecommons.org/licenses/by-nc-nd/4.0/


Modern complex trait genetics has uncovered surprises at every turn, including the
paucity of associations between traits and coding variants of large effect, and the
“mystery of missing heritability,” in which no combination of common and rare variants
can explain a large fraction of trait heritability1. Further work has revealed unexpectedly
high polygenicity for most human traits and very small effect sizes for individual variants.
Bulk enrichment analyses have demonstrated that a large fraction of heritability resides
in regions with gene regulatory potential, predominantly tissue-specific accessible
chromatin and enhancer elements, suggesting that trait-associated variants influence
gene regulation2–4. Furthermore, genes in trait-associated loci are more likely to have
genetic effects on their expression levels (expression QTLs, or eQTLs), and the variants
with the strongest trait associations are more likely also to be associated with transcript
abundance of at least one proximal gene5. Combined, these observations have led to
the inference that most trait-associated variants are eQTLs, exerting their effect on
phenotype by altering transcript abundance, rather than protein sequence. The
mechanism may involve a knock-on effect on gene regulation, with the variant altering
transcript abundances for genes elsewhere in the genome (a trans-eQTL), but the
consensus view is that this must be mediated by the variant influencing a gene in the
region (a cis-eQTL)6. As most eQTL studies profile cell populations or tissues from
healthy donors at homeostatic equilibrium, the further assumption has been tacitly made
that these trait-associated variants affect genes in cis under resting conditions.
Equivalent QTL analyses of exon usage data have revealed a more modest overlap
with trait-associated alleles, suggesting that a fraction of trait-associated variants
influence splicing, and hence the relative abundance of different transcript isoforms,
rather than overall expression levels. Thus, a model has emerged in which most
trait-associated variants influence proximal gene regulation.

Several observations have challenged this basic model. One challenge comes from the
difference between spatial distributions of eQTLs, which are dramatically enriched in
close proximity of genes, and GWAS peaks, which are usually distal7. Another comes
from colocalization analyses, attempting to map shared genetic associations between
human traits and gene expression. If the model is correct, most trait associations should
also be eQTLs; trait and expression phenotype should thus share an association in that
locus (rather than two overlapping association peaks). However, only 5-40% of trait
associations co-localize with eQTLs in relevant tissues or cell types6,8–10, and only 15%
of genes colocalize with any of 74 different complex traits11. Finally, expression levels
mediated a minority of complex trait heritability12. This has led to the suggestion that
most trait-associated alleles influence gene regulation in a context-specific
manner13—either altering expression during development or in response to specific
physiological stimuli—or that they act indirectly in trans to affect the regulation of a small
number of genes involved in trait biology (the omnigenic model14,15). Without a set of
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true positive cases, in which the gene driving trait variation is known, it remains difficult
to assess either the basic model or the proposed variations.

One source of true positives is to identify genes that are both in loci associated with a
complex trait and are also known to harbor coding mutations causing severe or early
onset forms of related traits (e.g. related Mendelian disorders). The strong expectation
is that a variant of small effect influences the gene identified in the severe form of the
trait. This expectation is supported by several lines of evidence. Comorbidity between
Mendelian and complex traits has been used to identify common variants associated
with the complex traits16. A handful of genes have been conclusively identified in both
Mendelian and complex forms of the same trait, including APOE, which is involved in
cholesterol metabolism17,18, and SNCA, which contributes to Parkinson’s disease risk.
Early genome-wide association studies (GWAS) found associations near genes
identified through familial studies of severe disease19,20, and more recent analyses have
found that GWAS associations are enriched in regions near causative genes for
cognate Mendelian traits in both blood traits8 and a diverse collection of 62 traits21.

To test the model that trait-associated variants influence baseline gene expression,
therefore, we assembled a list of such “putatively causative” genes. We selected nine
polygenic common traits with available large-scale GWAS data, each of which also has
an extreme form in which coding mutations of large effect size affect one or more genes
with well-characterized biology (Table 1). Our selection included four common diseases:
type II diabetes22, where early onset familial forms are caused by rare coding mutations
(insulin-independent MODY; neonatal diabetes; maternally inherited diabetes and
deafness; familial partial lipodystrophy); ulcerative colitis and Crohn disease23,24, which
have Mendelian pediatric forms characterized by severity of presentation; and breast
cancer25, where coding mutations in the germline (e.g. BRCA1) or somatic tissue (e.g.
PIK3CA) are sufficient for disease. We also chose five quantitative traits: low and high
density lipoprotein levels (LDL and HDL);  systolic and diastolic blood pressure; and
height. By manual literature search, we selected 134 genes harboring large-effect-size
coding variants for one of the nine phenotypes (Table 1; specifically, we selected 134
gene-trait pairs, which represent 127 unique genes). These genes were identified in
familial studies, rare disease exome sequencing, and, for breast cancer, using the
MutPanning method26 (citations for each gene are included in table 1).

We first examined whether these genes are more likely than chance to be in close
proximity harboring variants associated with the polygenic form of each trait. In
agreement with existing literature21, we observe a significant enrichment for all traits
except for height and breast cancer. However, in well-powered GWAS, even relatively
rare large-effect coding alleles (mutations in BRCA1 which cause breast cancer, for
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instance) may be detectable as an association to common variants. To account for this
possibility, we computed association statistics in each GWAS  locus conditional on
coding variants. We applied a direct conditional test to datasets with available
individual-level genotype data (height, LDL, HDL); for those studies without available
genotype data, we computed conditional associations from summary statistics using
COJO27,28. After controlling for coding variation, we still detected a significant enrichment
of our genes under GWAS peaks for all traits but height and breast cancer (Supp. Fig.
1). Of our 134 genes, 84 (63%) fell within 1 Mb of a GWAS locus for the cognate
complex trait. Our window of 1 Mb represents roughly the upper bound for distances
identified between enhancer-promoter pairs, but most pairs are closer29, so we would
expect enrichment to increase as the window around genes decreases; this proves to
be the case (Supp. Fig. 1). After fine-mapping the GWAS associations in each locus
using the SuSiE algorithm30, we found that 23/134 (17%) putative causal genes are
closer to the GWAS fine-mapped SNPs (posterior inclusion probability > 0.7) than any
other gene in the locus, as measured from the transcription start site. Given their known
causal roles in the severe forms of each phenotype, we thus suggest that the 84 genes
near GWAS signals are likely to be the targets of trait-associated non-coding variants.
For example, we see a significant GWAS association between breast cancer risk and
variants in the estrogen receptor (ESR1) locus even after controlling for coding
variation; the baseline expression model would thus predict that non-coding risk alleles
alter ESR1 expression to drive breast cancer risk.

We next looked for evidence that the trait-associated variants were also altering the
expression of our 84 genes in relevant tissues. If these variants act through changes in
gene expression, phenotypic associations should be driven by the same variants as
eQTLs in relevant tissue types. We therefore looked for co-localization between our
GWAS signals and eQTLs in relevant tissues (Supp. Tab. 1) drawn from the GTEx
Project, using three well-documented methods: coloc10, JLIM9, and eCAVIAR31. We
found support for the colocalization of trait and eQTL association for only four (coloc),
seven (JLIM), and three (eCAVIAR) genes. Accounting for overlap, this represents 10 of
our 84 putatively causative genes, even before correcting for multiple-hypothesis
testing, which is not obviously better than random chance. We note that our estimates
of the number of putatively causative genes with colocalization of eQTL and GWAS
signal is conceptually distinct from and not directly comparable to the existing estimates
of the fraction of GWAS associations colocalizing with eQTLs. This distinction matters
because it illuminates the role of eQTLs in known trait biology rather than examining the
locus for the presence of a colocalizing eQTL which may or may not be relevant to the
complex trait.
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A different way to identify potential causative genes under GWAS peaks using gene
expression is the transcriptome-wide association study design (TWAS)32–34. This
approach  measures local genetic correlation between a complex trait and gene
expression. Though not designed to avoid correlation signals caused by LD35, the
approach has higher power than colocalization methods in cases of allelic heterogeneity
or poorly typed causative variants32. We used the FUSION implementation of TWAS,
which accounts for the possibility of multiple cis-eQTLs linked to the trait-associated
variant by jointly calling sets of genes predicted to include the causative gene, to
interrogate our 84 loci34.

FUSION included our putatively causative genes in the set of genes identified as likely
relevant to the GWAS peak in 42 loci. TWAS does not require a genome-wide
significant GWAS hit, and three of the genes returned (MAP2K4, BC; KCNJ11, T2D;
ORC4, height) were not within 1 Mb of a GWAS peak. This leaves 39/84 (46%) of genes
near GWAS peaks as positive TWAS results, in addition to the three not near a peak.
Genes were often identified as hits in multiple tissues, but with an inconsistent direction
of effect—that is, increased gene expression correlated with an increase in the
quantitative trait or disease risk in some tissues, but a decrease in others. This may
indicate that different tissues have relevant genes that are different, but still called within
the same joint set. Because of this possibility, and the known biological role of many of
our genes, we restricted our results to tissues with established relevance to our traits.
Only 9/84 (11%) genes were identified by FUSION when we restricted the analysis to
relevant tissues, and of these, only 5/84 (6%) had a direction of effect on the complex
trait consistent with what is known from hypomorphic and amorphic Mendelian
mutations. This fact, combined with the inconsistent direction of effect across tissues,
may indicate that even when putatively causative genes fall within a set of genes jointly
called by TWAS, their baseline expression may not be mediating the association.

Our results so far are consistent with trait-associated variants altering the regulation of
causative genes in ways that are not well-represented by steady-state gene expression
measurements. We thus tried to find whether fine-mapped GWAS variants are enriched
in regulatory sites located within +/- 1 Mb of the transcription start sites (TSS) of our
genes of interest. We found that 73 fine-mapped variants with a high posterior
probability of association (PIP > 0.7) to a trait fall within some active histone
modification feature (marked by narrow peaks of H3K27ac, H3K4me1, or H3K4me3
measurements) near putatively causative genes across all the tissue types examined.
Despite our 1 Mb window, all identified features are located within a 100 kb window
around the transcription starts sites of 27/84 (32%) putatively causative genes
(ATG16L1 is putatively causative for both CD and UC and is counted twice). Extending
our search to include not only fine-mapped variants within chromatin modification
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features, but also those within 500 bp of features, identifies only two additional
putatively causative genes. Restricting our analysis to chromatin features in relevant
tissues, 45 fine-mapped variants fall within chromatin features, corresponding to 25/84
(30%) putatively causative genes.

While the appearance of a fine-mapped GWAS variant inside or near a chromatin
modification feature is a useful predictor of its importance, we also need to consider the
specificity of the feature in relation to the genes surrounding it. To quantify the specificity
of chromatin features for our putatively causative genes, we evaluated an
“activity-by-distance” measure, a simplified version of the “activity-by-contact” method36

for all chromatin features within +/- 1 Mb of the causative genes across different tissue
types. Activity-by-distance (ABD) combines the activity of the above histone
modification marks (specifically the strength of the acetylation or methylation peak) and
linear distance (in basepairs) along the genome instead of the chromatin contact
frequency between feature and TSS (Fig. 2). The two measures are multiplied together
and normalized to generate a score that can be used as a proxy for measuring the
specificity of a particular feature for a target gene in a tissue of relevance. When we
projected our fine-mapped variants onto the chromatin modification features across
different tissues, we found that 17 of them appear in features with the highest ABD
scores in the loci, corresponding to 11/84 (13%) putatively causative genes. Restricting
ourselves to only the relevant tissue types per trait, only nine fine-mapped variants fall
inside features with the highest ABD scores, corresponding to 5/84 (6%) causative
genes.

Next, we relaxed the requirement of proximity to a specific feature and selected all
enhancer regions annotated by the ChromHMM37 method in any measured cell or tissue
type. Overall, within +/- 1 Mb windows of our putatively causative genes 120/335
fine-mapped variants fall in an enhancer region (i.e. enhancer, bivalent enhancer,
genetic enhancer) highlighted by ChromHMM’s core 15-state model. These enhancers
correspond to 41/84 (49%) putatively causative genes. Restricting our analysis to
relevant tissues, 51/335 fine-mapped variants fall in enhancers, corresponding to 27/84
(32%) putatively causative genes.

In sum, we observe that a sizable minority of our fine-mapped variants appear near
sites of regulatory activity—suggested by the presence of activating chromatin marks or
ChromHMM annotation. However, 47/84 (56%) putatively causative genes, no
fine-mapped variants are associated with regulatory regions in relevant tissues
according to either chromatin marks or ChromHMM. Furthermore, because we connect
regulatory features to genes based solely on proximity, it is possible that our finding of
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fine-mapped variants falling inside features specific to 30% of the putatively causative
genes in relevant tissue types represents an overestimate.

Overall, our results do not support the assertion that most common non-coding variants
associated with human traits alter baseline gene expression in trait-relevant tissues.
Several explanations may account for this: incorrect assumptions, lack of statistical
power, biological context, and alternative regulatory mechanisms. We discuss each
below.

Incorrect assumptions: it is possible that our putatively causative genes may simply not
be causative in complex trait forms. This would invalidate our underlying premise that
they should be targets of trait-associated variants in the common, complex forms of
phenotypes. This implies that in the vast majority of cases, a common variant
associated with the polygenic form of a trait near a gene known to cause a severe form
actually targets a different gene. For instance, the risk alleles driving the breast cancer
GWAS signal near BRCA2, do not alter BRCA2 expression in breast tissue, but instead
influence another gene. This would also explain why 50 putatively causal genes do not
fall near a GWAS peak. The implication is that the underlying biological causes of an
extreme phenotypic presentation are different from the causes of the polygenic form
across all nine of the traits we have studied. This, to our minds, stretches credulity given
the highly significant enrichment of our genes near significant GWAS loci for cognate
phenotypes. We suggest it is more likely that our putatively causative genes are
relevant but influenced in some other way by polygenic risk alleles. For the 50 genes
not near GWAS peaks, more parsimonious explanations are that currently available
GWAS are incompletely powered, and thus have not detected association with alleles in
those loci; or that strong purifying selection acting on noncoding regions of these genes
is preventing noncoding variants from reaching population frequencies detectable by
GWAS.

Lack of statistical power: it is possible that complex trait GWAS are insufficiently
powered to allow accurate fine-mapping and hence accurate colocalization; that eQTL
studies do not detect all eQTLs; that epigenetic studies do not identify all elements; or
that colocalization and regulatory element mapping methods lack power to detect
overlaps. We have ascertained GWAS associations at genome-wide significance, and
fine-mapped the majority of these signals using a Bayesian approach; we believe it is
unlikely that genetic associations to complex traits are the limiting factor for our
analysis. Though the GTEx Consortium eQTL studies have identified eQTLs for 95% of
protein-coding genes6, tissues with fewer samples are likely to remain underpowered.
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The upper bound on the power of colocalization methods, under near-ideal
circumstances, is 66% at P < 0.01 (Barbeira et al. 2020). Under more typical conditions,
the portion of GWAS peaks which colocalize with an eQTL is 25% or higher9,10,31. As not
all GWAS peaks will share a causative SNP with a cis-eQTL, these estimates represent
a lower bound on power, with empirical power likely to be much higher. Given our
assumption that putatively causative genes are mediating association signals, we would
expect that 25% of these associations would colocalize, and that in each case, the gene
they colocalize with is our putatively causative gene. We would thus expect at least
21/84 (25%) of putatively causative genes near a polygenic trait association signal to
have a colocalizing eQTL in relevant tissue. Here, we report all associations without
correcting for multiple testing, so we would expect to find most of these colocalizations.
We thus cannot attribute the absence of such events to lack of power. This conclusion is
supported directly by our analyses: coloc explicitly tests the hypothesis that GWAS and
eQTL signals are distinct, and finds strong statistical support for this hypothesis in three
times as many loci as it finds evidence for colocalization. This suggests that, in many
cases, genetically induced changes to baseline expression of putatively causative
genes do not translate into downstream phenotypic effects. At the same time, most
GWAS peaks over these genes are not eQTLs in available tissues.

The power of TWAS is comparable to colocalization methods in cases of a single typed
causative SNP. Its relative power increases in cases of poorly-typed SNPs, allelic
heterogeneity, or apparent heterogeneity (when multiple SNPs tag a single untyped
causative SNP)32. Thus, the paucity of TWAS signals in the correct tissue and with the
correct direction of effect cannot be explained by low power.

Biological context: causative eQTLs may only manifest in certain developmental
windows, under specific conditions, or in a crucial cell subpopulation. We used data
from the GTEx project, which profiled bulk post-mortem adult tissue samples. If
causative eQTLs are only present in early development, or under specific exposures or
conditions not applicable to the GTEx donors, they would not be captured in these
contexts, even though cis-eQTLs have been detected for essentially every gene in the
genome in the GTEx data6.

Single-cell RNA sequencing (scRNA-seq) studies have identified eQTLs that are
present in only a subset of the cell types captured in bulk-tissue analysis, but these
appear to be limited—van der Wjist et al. found that 60% of cell type-specific eQTLs
replicate in bulk-tissue analysis, and their use of scRNA-seq found only 13% more
eQTLs than bulk-tissue analysis38. However, it has been posited that cell type-specific
eQTLs may be enriched in disease association39. Additionally, genes causative for
disease tend to have more enhancers, which may lead to more complex spatiotemporal
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expression40. Nonetheless, using this tendency to explain the many putatively causative
genes whose expression was not linked to GWAS requires us to believe most genes
both have cis-eQTLs that do not show up in bulk-tissue analysis, and do not influence
traits via those cis-eQTLs which do show up in bulk-tissue analysis. There is not, to our
knowledge, evidence that this phenomenon is common, but given the nascence of
research in cell type-specific eQTLs, we are withholding our judgement on this
possibility.

A new cell type-specific TWAS method leverages large sample sizes for human bulk
tissues and high-resolution mouse scRNA-seq data. It infers cell type-specific gene
expression for each GTEx sample with respect to each Tabula Muris cell type under an
empirical Bayes framework and produces gene expression prediction models at
cell-type resolution. This method found no additional disease-associated gene in type II
diabetes, and only one, targeting FGFR2, in breast cancer (albeit not in breast
mammary tissue; Huwenbo Shi and Alkes Price, unpublished correspondence). This
argues against cell type-specific eQTLs being the most prevalent effect of
trait-associated variants.

It is possible for eQTLs to change or disappear over the course of development41.
Because colocalization and TWAS methods rely on eQTL-mapping, such dynamic
eQTLs present a potential blind spot. Chromatin marks provide an orthogonal source of
information generally. Chromatin marks within a tissue, especially H3K4me3, can
remain stable across developmental time42—though this is by no means
universal—providing a useful, if imperfect, check on this blind spot.

The spatiotemporal patterns of gene expression may depend on tissue and cell types,
stages of development, and environmental context. All such factors undoubtedly matter,
complicating the question considerability. However, for this complexity to explain the
majority of our negative result, it must be the case that: 1) context-dependent eQTLs
exist for most of our gold-standard genes; 2) these eQTLs are not captured by steady
state bulk-tissue RNA-seq; 3) most gold-standard genes do have steady state eQTLs
captured by bulk-tissue analysis; 4) these measured eQTLs do not exist in the contexts
in which the gene’s expression matters.

Alternative regulatory mechanisms: finally, it is conceivable that most non-coding
trait-associated variants act not on expression levels, but on other aspects of gene
regulation. For example, splicing QTLs (sQTLs) are enriched in GWAS peaks to the
same extent as eQTLs43,44. However, only 29% of our trait-associated variants that are
highly likely to be causal (fine-mapping posterior probability > 0.7) fall in introns, despite
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introns composing 45% of the genome45. Thus sQTLs do not immediately appear as a
viable hypothesis to explain the majority of trait-associated variation.

We thus have to explain the observation that putatively causative genes are often near
GWAS signals driven by non-coding variants, and that these genes are influenced by
baseline eQTLs in relevant tissues, but that trait-associated variants are not driving
those eQTLs. This result questions the basic assumption that trait variants act by
perturbing baseline gene expression, so that eQTLs in GWAS peaks are necessarily
relevant to the mapped trait. That these genes are more likely than chance to be near
such non-coding trait-associated variants suggests that both the structure and
regulation of these genes is relevant to complex traits. However, our results
demonstrate that the mechanism by which our genes influence complex traits is
generally not their baseline expression.

Regardless of the root cause, our results have consequences for efforts to uncover the
biology underlying human traits by linking variants to molecular function through
baseline expression measurements. These variant-to-function methods are currently the
most common computational strategies for identifying the biological significance and
therapeutic potential of non-coding genetic associations. Though they have successfully
identified many genes of biological consequence and clinical promise, most causative
genes likely go undiscovered. Given the difficulties many tissues present in obtaining
expression data across diverse developmental and environmental contexts, the
limitations of examining baseline expression may present a difficult obstacle to
overcome.

There are limited mechanistic models to explain the function of non-coding variants
besides their action as cis-eQTLs. Besides sQTLs, another possibility is trans-eQTLs
that are not mediated by a cis effect on a gene, such as variants affecting CTCF binding
sites39, but this fails to explain the enrichment in GWAS signal near putatively causative
genes. Though it is likely that power and context play a role in the lack of overlap we
observe, for the reasons above it seems improbable that they explain it entirely.
Cumulatively, our analysis shows that whilst gold standard genes are often the closest
to a genetic association, more sophisticated analyses incorporating functional genomic
data fail to identify them as relevant to the trait in meaningful numbers. There are
currently no prominent models to fill this gap, but we must remember that complex trait
genetics has overturned our assumptions time and time again.

10

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 25, 2021. ; https://doi.org/10.1101/2021.06.08.21258515doi: medRxiv preprint 

https://www.zotero.org/google-docs/?FBaRjq
https://www.zotero.org/google-docs/?oe1eT2
https://doi.org/10.1101/2021.06.08.21258515
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figures

Figure 1. Putatively causative genes identified by each method.
The leftmost column displays the entire set of putatively causative genes, along with the
subset near a linkage peak, and its subset of genes closest to the peak. For JLIM,
Coloc, and eCAVIAR, the portion of genes that were the only gene to colocalize in their
locus is noted. The numbers for these methods represent nominal significance
thresholds. For TWAS results, the subsets of genes which are in an appropriate tissue
and in an appropriate tissue in the right direction are indicated.
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Figure 2. Chromatin-based causative gene identification.
Following the fine-mapping of GWAS variants, two parallel methods were used. One
identified variants falling within regions annotated as enhancers by ChromHMM. The
other identified variants within histone modification features, and evaluated their
relevance using an ABD score that combined the strength of the feature (i.e. the
strength of the acetylation or methylation peak) with its genomic distance to the gene of
interest (see methods).
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C)

Figure 3. Genes identified as associated with a complex trait by each method.
A) Positive results for each of the three colocalization methods. B) Positive results for
each of the two chromatin methods. C) Positive results for all methods, collapsing A) to
“colocalization” and B) to “chromatin.” The FUSION area reports all genes identified in
the correct tissues, and genes for which the direction of effect is consistent with known
biology are italicized (italication has no significance for other methods).

Phenotype Genes

LDL APOB46,47

APOC248

APOE49

LDLR50

LPL51,52

PCSK953

HDL ABCA154–56

APOA157

CETP58
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LIPC59–61

LIPG62

PLTP
SCARB163,64

Height ANTXR165,66

ATR67,68

BLM69,70

CDC671

CDT171,72

CENPJ73

COL1A174

COL1A275,76

COMP77,78

CREBBP79–81

DNA282

DTDST83

EP30084,85

EVC86,87

EVC287,88

FBN189–92

FGFR393–95

FKBP1096–98

GHR99–102

KRAS103–105

NBN106,107

NIPBL108,109

ORC171,72,110

ORC471,72

ORC6L71,111

PCNT112–114

PLOD2115–117

PTPN11118–120

RAD21121–123

RAF1124,125

RECQL4126–128

RIT1129–131

RNU4ATAC should remove snRNA
ROR2132–134

SLC26A2135–137

SMAD4138–140

SMC3 milder form of trait, remove
SOS1 same as above
SRCAP141,142

WRN143–145
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Blood pressure (systolic and diastolic) KCNJ1146,147

SLC12A1148,149

SLC12A3150,151

WNK1152

WNK4153

Crohn disease ATG16L1154

CARD9155

IL10156

IL10RA157,158

IL10RB159,160

IL23R161–163

IRGM164–166

NOD2167,168

PRDM1169

PTPN22170

RNF186

Ulcerative colitis ATG16L1171

CARD9155

IL23R163,172

IRGM164

PRDM1169

PTPN22170

RNF186173,174

Type II diabetes ABCC8175

BLK176

CEL177,178

EIF2AK3179–181

GATA4182

GATA6183,184

GCK185

GLIS3186

HNF1A187,188

HNF1B189,190

HNF4A191,192

IER3IP1193–195

INS196

KCNJ11197,198

KLF11199

LMNA200

NEUROD1201

NEUROG3202–204

PAX4205–207

PDX1208–210
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PPARG211,212

PTF1A213

RFX6214,215

SLC19A2216–218

SLC2A2219,220

WFS1221–223

ZFP57224,225

Breast cancer (selected using
MutPanning26)

AKT1
ARID1A
ATM
BRCA1
BRCA2
CBFB
CDH1
CDKN1B
CHEK2
CTCF
ERBB2
ESR1
FGFR2
FOXA1
GATA3
GPS2
HS6ST1
KMT2C
KRAS
LRRC37A3
MAP2K4
MAP3K1
NCOR1
NF1
NUP93
PALB2
PIK3CA
PTEN
RB1
RUNX1
SF3B1
STK11
TBX3
TP53
ZFP36L1

Table 1. Putatively causative genes
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Mendelian trait GWAS trait Tissues examined

Breast cancer Breast cancer Breast mammary tissue

Crohn disease Crohn disease Small intestine terminal ileum
Colon Sigmoid
Colon Transverse

Ulcerative colitis Ulcerative colitis Small intestine terminal ileum
Colon Sigmoid
Colon Transverse

Dyslipidemia
Hyperlipidemia
Tangier’s disease

HDL Liver
Adipose (subcutaneous)
Whole blood

Dyslipidemia
Hyperlipidemia

LDL Liver
Adipose (subcutaneous)
Whole blood

Mendelian short stature Height Skeletal muscle

Blood pressure Blood pressure Heart atrial appendage
Heart left ventricle

Monogenic diabetes Type II diabetes Pancreas
Skeletal muscle
Adipose (subcutaneous)
Small intestine terminal ileum

Table 2. Tissue-trait pairs
Tissues were selected for each trait based on a priori knowledge of disease biology.
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Supplementary figure 1. Enrichment of Mendelian genes near GWAS peaks.
As the window around GWAS peaks shrinks, the enrichment of Mendelian genes within
the window becomes increasingly significant, while the enrichment of non-matching trait
pairs used as controls (gray lines; see methods) is not consistently increased. Some
controls achieve nominal significance (dotted horizontal line), but none reach
significance once multiple-testing is corrected for (solid horizontal line). We suspect that
the non-significant results for breast cancer and height are due at least in part to the
large number of GWAS peaks these traits have. At a distance cutoff of 25 kb, most traits
no longer have significant enrichment, as the absolute number of genes captured within
the window becomes too small.
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Alias Descriptive Name

E027 Breast myoepithelial primary Cells

E028 Breast luminal epithelial Cells / Human mammary epithelial cells

E062 Primary mononuclear cells from peripheral blood

E063 Adipose nuclei

E066 Liver

E075 Colonic mucosa

E076 Colon smooth muscle

E087 Pancreatic islets

E095 Heart left ventricle

E096 Lung

E104 Heart right atrium

E107 Skeletal Muscle Male

E108 Skeletal Muscle Female

E109 Small Intestine

Supplementary Table 1. Roadmap epigenomics aliases of tissue types used for
functional genomic analysis.

Supplementary methods
Gene selection
Our gold-standard genes were selected by manual literature search. Review papers, as
well as the OMIM database226, were generally used as starting points, but an
examination of the original literature was needed to confirm genes’ suitability. For
example, though SMC3 is known to cause Cornelia de Lange syndrome, which is
characterized in part by short stature, SMC3 mutations lead to a milder form of the
syndrome, usually without a marked reduction in stature227.

Identifying coding variants
Because GWAS sample sizes are large enough to detect the low-frequency coding
variants used to select some of our genes, it is possible that a coding SNP would distort
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the association signal of nearby eQTLs. To minimize this concern, we removed the
effects of coding variants on GWAS. Many variants can fall within coding sequences in
rare splice variants, so it is important to remove only those variants that appear
commonly as coding. These coding SNPs were selected based on the pext (proportion
of expression across transcripts) data228. Two filters were used. First, we removed
genes whose expression in a trait-relevant tissue was below 50% of their maximum
expression across tissues. Second, we removed variants that fell within the coding
sequence of less than 25% of splice isoforms in that tissue. The remaining variants
were used to correct GWAS signal, as explained below.

GWAS
For height, LDL cholesterol, and HDL cholesterol, GWAS were performed using
genotypic and phenotypic data from the UKBB. In order to avoid confounding, we
restricted our sample to the 337K unrelated individuals with genetically determined
British ancestry identified by Bycroft et al.229 The GWAS were run using Plink 2.0230, with
the covariates age, sex, BMI (for LDL and HDL only), 10 principal components, and
coding SNPs.

Conditional analysis
Because UKBB has limited power for breast cancer, Crohn disease, ulcerative colitis,
and type II diabetes, we used publicly available summary statistics. The Conditional and
Joint Analysis (COJO)27,28 program can condition summary statistics on selected
variants—in our case, coding variants—by using an LD reference panel. For this
reference, we used TOPMed subjects of European ancestry231. The ancestry of these
subjects was confirmed with FastPCA232,233 and the relevant data were extracted using
bcftools234.

Enrichment analysis
At each distance, the number of Mendelian and non-Mendelian genes within that
window around GWAS peaks are counted. P-values are calculated using Fisher’s exact
test (Supp. Fig. 1). Because Mendelian genes may be unusually important beyond our
chosen traits, we conduct a set of controls by measuring the enrichment of
non-matching Mendelian and complex traits (CD genes & BC GWAS; BC genes & LDL
GWAS; LDL genes & UC GWAS; UC genes & height GWAS; height genes & T2D
GWAS; T2D genes & HDL GWAS; HDL genes & CD GWAS).

Colocalization
JLIM9 was run using GWAS summary statistics and GTEx v7 genotypes and
phenotypes. Coloc10 was run using GWAS and GTEx v7 summary statistics. eCAVIAR31
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was run using GWAS and GTEx v7 summary statistics, and a reference dataset of LD
from UKBB235.

Fine-mapping GWAS hits
We fine-mapped the GWAS variants located within +/- 1 Mb of our putatively causative
genes by applying the SuSiE algorithm30 on the unconditional summary statistics from
the GWAS of breast cancer, Crohn disease, ulcerative colitis, type II diabetes, height,
LDL cholesterol, and HDL cholesterol. An LD reference panel from UKBB subjects of
European ancestry was used for this analysis. Fine-mapped variants were annotated
using snpEff (v4.3t). Only non-coding variants were kept for further analysis.

Functional genomic annotation of fine-mapped hits
We downloaded imputed narrowPeak sets for acetylation of histone H3 lysine 27
residues (H3K27ac), mono-methylation of histone H3 lysine 4 residues (H3K4me1), and
tri-methylation of lysine 4 residues (H3K4me3) from the Roadmap Epigenomics
Project37 ftp site
(https://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidatedImputed/
narrowPeak/) for 14 different tissue types (Supp. Tab. 1). For each tissue type, we
extracted the narrow peaks that are within +/- 5 Mb of our putatively causative genes.
Then following the approach described in Fulco et al.36, we extended the 150 bp narrow
peaks by 175 bp on both sides to arrive at candidate features of 500 bp in length. All
features mapping to blacklisted regions (https://sites.google.com/site/anshul
kundaje/projects/blacklists) were removed. Remaining features were re-centered
around the peak and overlapping features were merged to give the final set of features
per histone modification track. Next, we calculated the mean activity/strength of a
feature (AF) by taking the geometric mean of the corresponding peak strengths from
H3K27ac, H3K4me1, and H3K4me3 marks. We then combined these activity
measurements with the linear distances between the features and the transcription start
sites of causative genes to compute “activity-by-distance” scores (a simplified version of
ABC scores36) for gene-feature pairs using the following formula.

𝐴𝐵𝐷 𝑠𝑐𝑜𝑟𝑒
𝐹, 𝐺

=
𝐴

𝐹
 × 𝐷

𝐹, 𝐺

𝑎𝑙𝑙 𝑓 𝑤𝑖𝑡ℎ𝑖𝑛 ± 5 𝑀𝑏 𝑜𝑓 𝐺
∑ 𝐴

𝑓
 × 𝐷

𝑓, 𝐺

The ABD score can be thought of as a measure of the contribution of a feature, F to the
combined regulatory signals acting on gene, G. A high ABD score may serve as a proxy
for an increased specificity between a chromatin feature and the gene of interest. We
projected the fine-mapped variants onto the chromatin features in different tissue types
to assess whether there is an enrichment of likely causal GWAS hits in regulatory
features near our putatively causative genes. Both proximity (genomic distance) and
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specificity (ABD scores) were considered to determine the regulatory contribution of the
fine-mapped hits.

Chromatin state predictions (chromHMM core 15-state model37) for the same tissue
types (Supplementary Table 1) were downloaded from the Roadmap Epigenomics
Project37 ftp site
(https://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/
ChmmModels/coreMarks/jointModel/final/). We considered a fine-mapped variant to fall
in an enhancer region if it mapped to a chromHMM segment described as enhancer,
bivalent enhancer, or genic enhancer.
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