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ABSTRACT 24 

Background: Potential therapy and confounding factors including typical co‐administered 25 

medications, patient’s disease states, disease prevalence, patient demographics, medical histories, 26 

and reasons for prescribing a drug often are incomplete, conflicting, missing, or uncharacterized 27 

in spontaneous adverse drug event (ADE) reporting systems. These missing or incomplete features 28 

can affect and limit the application of quantitative methods in pharmacovigilance for meta-29 

analyses of data during randomized clinical trials.  30 

Methods: In this study, we implemented adaptive signal detection approaches to correct spurious 31 

association, hidden factors, and confounder misclassification when the covariates are unknown or 32 

unmeasured on medications affecting the renin-angiotensin system (RAS), potentially creating an 33 

increased risk of life-threatening outcomes in high-risk patients.  34 

Results: Following multiple filtering stages to exclude insignificant and noise-driven reports, we 35 

found that drugs from antihypertensives agents, urologicals, and antithrombotic agents (macitentan, 36 

bosentan, epoprostenol, selexipag, sildenafil, tadalafil, and beraprost) form a similar class with a 37 

significantly higher incidence of pADEs. Macitentan and bosentan were associates with 64% and 38 

56% of pADEs, respectively. Because these two medications are prescribed in diseases affecting 39 

pulmonary function and may be likely to emerge among the highest reported pADEs, in fact, they 40 

serve to validate the methods utilized here. Conversely, doxazosin and rilmenidine were found to 41 

have the least pADEs in selected drugs from hypertension patients. Nifedipine and candesartan 42 

were also found by our signal detection methods to form a drug cluster, shown by several studies 43 

an effective combination of these drugs on lowering blood pressure and appeared an improved 44 

side effect profile in comparison with single-agent monotherapy. 45 
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Conclusions: We consider pulmonary ADE (pADE) profiles in a long-standing group of 46 

therapeutics, RAS-acting agents, in patients with hypertension associated with high-risk for 47 

COVID-19. Using these techniques, we confirmed our hypothesis that drugs from the same drug 48 

class could have very different pADE profiles affecting outcomes in acute respiratory illness. We 49 

found that several indidvual drugs have significant differences between their drug classes and 50 

compared to other drug classes. 51 

Funding:  GJW and MJD accepted funding from BioNexus KC for funding on this project but 52 

BioNexus KC had no direct role in this article. 53 

Clinical trial number: N/A 54 

 55 

Author Summary 56 

Underlying comorbidities continue to negatively affect COVID-19 patients. A recent focus has 57 

been on medications affecting RAS. Therefore, with the advent of COVID-19 acute respiratory 58 

distress syndrome (ARDS) in high-risk patients with hypertension, identifying specific RAS 59 

medications with the lowest incidence of pADEs would be beneficial.  For this purpose, we curated 60 

the FDA ADE database to search for information related to human pADEs. As part of post-61 

marketing drug safety surveillance, state/federal regulatory agencies and other institutions provide 62 

massive collections of ADE reports, these large data-sets present an opportunity to investigate 63 

ADEs to provide patient management based on comparative population data analysis. The 64 

abundance and prevalence of ADEs are not always detectable during randomized clinical trials 65 

and before a drug receives FDA approval for use in the clinic, which may appear with more 66 

widespread use. This is especially true for specific agents or diseases since there are simply too 67 
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few events to be assessed, even in a large clinical trial for side effect profiles of specific disease 68 

states. For this purpose, we employed a novel method identifying extraneous causes of differential 69 

reporting including sampling variance and selection biases by reducing the effect of covariates.  70 

  71 
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INTRODUCTION 72 

The coronavirus disease 2019 (COVID-19) pandemic continues with 115,094,614 confirmed cases 73 

and over 2.6 million deaths as of March 5, 2021 (1, 2). Surprisingly, it is estimated that as high as 74 

45% of infected individuals may remain asymptomatic, contributing to disease transmission and 75 

underlying the disparity in symptomology (3). A commonality of severe clinical course and 76 

mortality is comorbid conditions such as diabetes, heart disease, obesity, and hypertension (4). 77 

Hypertension was recognized early on as being a prevalent risk factor (5), possibly due to its 78 

pervasiveness. Hypertension affects 23% of adults in China, where the original study was 79 

conducted, but affects 45% of US adults. Moreover, specific antihypertensive medications, namely 80 

angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin-II receptor blockers (ARBs), 81 

target proteins of the renin-angiotensin system (RAS) (6). The RAS is intricately linked to initial 82 

infection and possibly the progression of COVID-19 through a RAS receptor, angiotensin-83 

converting enzyme 2 (ACE2), which acts as the viral entry point of coronavirus SARS-CoV-2 (7, 84 

8).  85 

 86 

In recent years, data science has emerged as a new and important discipline in medicine and 87 

healthcare.  Different quantitative therapeutic efforts in drug repurposing or repositioning combined 88 

with adverse drug event (ADE) identification have led to more efficient therapies while improving 89 

the clinical course, lowering fatality, and decreasing cost burden (9). Our previous work focused 90 

on the incidence of pulmonary ADEs associated with ACEI and ARB use in patients with 91 

hypertension and other comorbidities (10, 11). Our findings indicate that specific drugs—rather 92 

than entire classes—have higher incidences of pulmonary ADEs, which may have implications for 93 

treating patients diagnosed with COVID-19. Most epidemiological studies are not this granular as 94 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 2, 2021. ; https://doi.org/10.1101/2021.06.07.21258497doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.07.21258497


6 

 

they do not analyze drug effects at the individual drug level but rather compare pharmacological 95 

classes. The current study examines additional drugs that more broadly target hypertension, 96 

including pulmonary hypertension, to describe methods used to identify clinically important 97 

patterns of ADE data. We utilized the Anatomical Therapeutic Chemical (ATC) classification 98 

system from the World Health Organization (WHO) Collaborating Center for Drug Statistics 99 

Methodology (https://www.whocc.no/). The ATC system classifies drugs based on site of action 100 

in addition to chemical, pharmacological, and therapeutic properties (12). Here we identify a clear 101 

signal distinct from different drugs in patients with hypertension as an underlying medical 102 

condition which helps to quantify the anomaly and unexpectedness of an ADE reported for a drug 103 

through disproportionality analysis. For this purpose, we proceeded with a specific pairwise 104 

analysis of individual drugs compared to the drug classes using a modified empirical 105 

Bayes method to identify any distinctions between drugs within a class and compared to other 106 

classes.   107 

 108 

In our previous work, thirteen different pulmonary ADEs were selected based on clinical 109 

importance, and as they were prevalent among the top reported symptoms in patients with COVID-110 

19, to assess the related variation due to adverse event differences (10, 11). In the present work, 111 

we include 25 pulmonary, infectious disease, or cardiac-associated ADEs. Our novel method 112 

identifies extraneous causes of differential reporting including sampling variance and selection 113 

biases by reducing the effect of covariates. This method is both adaptive (it removes different 114 

covariates for different drugs) and appropriate for the systematic application and routine analysis 115 

(13). We hypothesize that drugs from the same class based on the Anatomical Therapeutic 116 

Chemical (ATC) classification system could have different ADE profiles. For this purpose, 117 
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penalized regression method will be used to detect clusters of drugs, may differ from the ATC 118 

classification, and will be validated by the Friedman test (14-16). Safety signals for a specific drug 119 

and associated adverse events are then identified and evaluated through different methods, such 120 

as the proportional reporting ratio (PRR) (14), the relative reporting ratio (RR) (17), the 121 

information component (IC) (18), and the empirical Bayes geometric mean (EBGM) 122 

(17). These methods are utilized to calculate the ratio of an ADE compared to the same event 123 

occurring with other drugs, however, PRR or RR is more liberal when an event incidence is small 124 

(19).  125 

 126 

RESULTS 127 

Preprocessing and Data Cleaning 128 

Here we briefly explain the data preprocessing and cleansing that will be used in different 129 

subsections. The focus of each subsection is given by the amount of data that will be used. A total 130 

of 480,236 spontaneous ADE reports for patients with hypertension were retrieved from our 131 

1DATA databank of the FAERS database from the first quarter of 2004 until the first quarter of 132 

2020. Alternatively, ADEs can be categorized by drug for a total of 612,733 reports (Table 1) 133 

arising from patients taking more than one drug. For example, a single ADE reported for a patient 134 

taking 2 different drugs, will generate one ADE report for each drug. This hypertension dataset 135 

was aggregated to 1520 ADEs in HLT codes corresponding to 1131 drugs with unique active 136 

substances. Next, drugs were excluded when the number of ADEs due to the fact that each drug 137 

was reported less than 500 times, accounting for approximately less than 0.1% of the data. 138 

Furthermore, 98.8% of the data corresponded to 134 of the 1131 drugs (Table 1 with the column 139 
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header: # Drugs after initial filtering; this dataset will be exploited to calculate the relative risk for 140 

the disproportionality measures of a drug-ADE occurrence). This study focused on the 98.8% of 141 

the data remaining after the elimination of insignificant and noise-driven reports. The 134 drugs 142 

were grouped according to the following ATC drug classes (Table 1): ACEIs, ARBs, other RAS 143 

agents, other Antihypertensives Agents (AHAs), Antithrombotic Agents (ATAs), Beta blocking 144 

Agents (BBAs), Calcium channel blockers (CCBs), Diuretics, Lipid modifying agents, Urologicals 145 

(UAs), Vasoprotectives, and Combinations of antihypertensives (COMBs).  146 

Since there were 5 unrelated pulmonary ADEs in the database (coronavirus infections, conditions 147 

associated with abnormal gas exchange, neonatal hypoxic conditions, newborn respiratory 148 

disorders NEC, pulmonary hypertensions), the hypertension dataset was further reduced to reports 149 

corresponding to the following 30 pulmonary ADEs: bacterial lower respiratory tract infections, 150 

breathing abnormalities, bronchial conditions NEC, bronchospasm and obstruction, congenital 151 

lower respiratory tract disorders, coughing and associated symptoms, fungal lower respiratory 152 

tract infections, infectious disorders carrier, lower respiratory tract infections NEC, lower 153 

respiratory tract inflammatory and immunologic conditions, lower respiratory tract neoplasms, 154 

lower respiratory tract radiation disorders, lower respiratory tract signs and symptoms, 155 

occupational parenchymal lung disorders, parasitic lower respiratory tract infections, 156 

parenchymal lung disorders NEC, pleural conditions NEC, pleural infections and inflammations, 157 

pleural neoplasms, pneumothorax and pleural effusions NEC, pulmonary oedemas, pulmonary 158 

thrombotic and embolic conditions, respiratory failures (excl neonatal), respiratory signs and 159 

symptoms NEC, respiratory syncytial viral infections, respiratory tract disorders NEC, respiratory 160 

tract infections NEC, respiratory tract neoplasms NEC, vascular pulmonary disorders NEC, and 161 

viral lower respiratory tract infections. Of the 30 pulmonary ADEs, 5 ADEs were additionally 162 
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excluded from the analysis since we did not have any reports for these ADEs: congenital lower 163 

respiratory tract disorders, lower respiratory tract radiation disorders, parasitic lower 164 

respiratory tract infections, respiratory tract neoplasms NEC, and viral lower respiratory tract 165 

infections.   166 

  167 

Relative Risk (RR) 168 

One of the frequentist methods, the relative reporting ratio (RR), based on the disproportionality 169 

measures of a drug-ADE occurrence compared to other drug-event combinations was applied to 170 

evaluate the weighting of drugs. To start our first analysis, we constructed a large contingency 171 

table for the entire data from 134 selected drugs based on their frequencies with respect to all 1520 172 

reported ADEs in HLT codes from MedDRA. We imposed the assumption that an ADE is selected 173 

when RR >2 for a specific drug to assess the drug disproportionality in pharmacovigilance data by 174 

observed-expected ratios prior to the EBGM analysis, a more conservative and accurate way of 175 

disproportionality evaluation. Taking into account only 25 pulmonary ADEs in HLT codes, we 176 

then obtain the results of Table 2 displaying the top 22 drugs with their corresponding number of 177 

pulmonary ADEs when RR >2. The order from the number of pulmonary ADEs is arranged based 178 

on the EBGM results after GLASSO elimination and the clustering given in Table 1 that will be 179 

explained below. RR is also utilized to calculate the baseline frequency for EBGM and to construct 180 

the PCA as explained below. 181 

 182 
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Principle Component Analysis (PCA) 183 

RR calculated for the expected frequency of 25 pulmonary ADEs associated with 134 drugs 184 

prescribed to patients with hypertension was used to generate the matrix for the PCA plot. This 185 

helped illustrate how the loadings of pulmonary features could separate drugs in a 2D or 3D space. 186 

Fig 1A shows 134 drugs in a 2D PCA panel following a V shape scatter plot, no clear separation 187 

can be intuitively observed. ADEs (blue text) are also superimposed on the graph to obtain the 188 

corresponding loadings, direction, and weights with regards to the drugs. Generally, two clusters 189 

of pulmonary issues, one in the direction of the X-axis, and another in the Y-axis played an 190 

important role in separating these drugs in the space of PC1 and PC2. Twelve different pulmonary 191 

ADEs in HLTS codes (breathing abnormalities, bronchospasm and obstruction, coughing and 192 

associated symptoms, lower respiratory tract infections NEC, lower respiratory tract inflammatory 193 

and immunologic conditions, lower respiratory tract signs and symptoms, parenchymal lung 194 

disorders NEC, pneumothorax, and pleural effusions NEC, pulmonary oedemas, pulmonary 195 

thrombotic and embolic conditions, respiratory failures (excl neonatal), and respiratory tract 196 

disorders NEC) exhibited similar impact by differentiating these drugs when projected to PC1 (X-197 

axis), and seven pulmonary ADEs in HLTS codes (bronchial conditions NEC, fungal lower 198 

respiratory tract infections, pleural conditions NEC, pleural infections and inflammations, 199 

respiratory signs and symptoms NEC, respiratory syncytial viral infections, and vascular 200 

pulmonary disorders NEC) contributed the most when projected to PC2 (Y-axis). A detailed 201 

contribution of all pulmonary variables is given in Table S1 in Supporting Information and will 202 

be reviewed in the discussion. 203 

 204 
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Fig 1B illustrates how the pulmonary ADEs are separated in a 3D space. The first, second, and 205 

third principal components, PC1, PC2, and PC3, explain more than 90% of the variation. Drugs 206 

from different branches in the 3D plot represent distinctive effects of pulmonary ADEs on the 207 

separation. This figure shows the optimal representation of three active variables in biplots 208 

acquired by PCA by diminishing the effect of supplementary variables that have no or little 209 

influence on the pulmonary ADEs. Consistent with our previous finding (11), Quinapril and 210 

Trandolapril in hypertensive patients have a notably higher incidence of pulmonary ADEs 211 

compared with its drug class as well as other classes, Fig 1B. 212 
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 213 

(A) 

(B) 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 2, 2021. ; https://doi.org/10.1101/2021.06.07.21258497doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.07.21258497


13 

 

 214 

Empirical Bayesian Geometric Mean (EBGM) 215 

While the RR method is widely utilized due to its simplicity and user-friendly processing, it is 216 

difficult to dismiss high variability for infrequent occurrences. The assessment of drugs or ADEs 217 

based on RR is variable because of information that the RR methodology does not include, 218 

including underreported or overreported events. To assess the effect that the RR methodology has 219 

when a small number of ADE occurrences are compared to the whole database, the 5th percentiles 220 

from the lower confidence interval of EBGM (EB05) were used as a very conservative alternative, 221 

and the results are compared to RR. This assessment was performed using EBGM, is reported 222 

similar to the prevalence evaluation using RR values from above. The frequencies of a single drug 223 

having multiple ADEs in HLT groups or a single HLT ADE occurrence in multiple drugs were 224 

calculated. We then found that the top ten drugs with pulmonary ADEs consisted of AHAs, ATAs, 225 

and UAs. Bosentan, tadalafil, treprostinil, and beraprost based on EBGM were ranked substantially 226 

higher than their corresponding ranks when using RR, with respect to pulmonary ADEs. This 227 

suggests that the conservative, EBGM method with a 5th percentile cut-off will allow for the 228 

examination of large datasets of ADEs when high variability is present in the number of ADEs 229 

Fig 1. Principal component analysis of the expected count for 134 drugs (from 12 ATC drug 

classes) in 2D (A) and 3D (B) spaces using the log expected value of RR, log 𝐸. In Panel B, 

individual drugs are (significantly) separated on the extreme edges are marked by (1) amlodipine, 

(2) quinapril, (3) trandolapril, (4) nilvadipine, (5) azosemide, (6) azelnidipine, and (7) treprostinil. 

An interactive figure can be found on the 1DATA home page. Click the following URL to see the 

figure: https://1data.life/pages/publication/figure1B.html. 
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across drugs or drug classes, and still allow for a robust reporting methodology as compared to the 230 

RR methodology. This allows analysis of very large sets of drugs and ADEs (such as 231 

approximately 500,000x134 matrix here) without loss of sensitivity or imparting an over-emphasis 232 

on ADEs from infrequently prescribed drugs.  233 

 234 

GLASSO  235 

The total number of distinct drugs used by patients with hypertension was 134 after filtering out 236 

drugs with very low frequency (<0.001) in the PCA section. EBGM data were used to construct 237 

the new feature matrix for different drug classes. Then 44 drugs were selected based on two 238 

conditions: (1) the lower confidence interval of EBGM, EB05, of drugs was larger than one, and 239 

(2) a minimum of two different pulmonary ADEs is associated with each drug, Table 1. We found 240 

that few drugs in ACEIs, diuretics, and combinations tended to cause pulmonary issues. More than 241 

half of the drugs were in ARBs, AHAs, ATAs, and CCBs when considering two different 242 

pulmonary ADEs in the HLT level. After two filtering steps, 44 drugs were set as the input for the 243 

penalized regression GLASSO. To have an adequate number of correlated drugs, the tuning 244 

parameter 𝜆 of GLASSO was adjusted to shrink the less associated drugs to 0, which accounted 245 

for 50% of the selected drugs. The remaining 22 drugs selected by the GLASSO method based on 246 

Pearson correlation were classified using the therapeutic group Cardiovascular System (C01: 247 

Cardiac Therapy, C02: Antihypertensives, C03: Diuretics, C04: Peripheral Vasodilators, C05: 248 

Vasoprotectives, C07: Beta Blocking Agents, C08: Calcium Channel Blockers, and C10: Lipid 249 

Modifying Agents), except for agents acting on RAS, which are the pharmacological subgroup 250 

C09 (C09A: ACE Inhibitors, C09B: Ace Inhibitors, Combinations, C09C: Angiotensin II Receptor 251 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 2, 2021. ; https://doi.org/10.1101/2021.06.07.21258497doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.07.21258497


15 

 

Blockers (ARBS), and C09X: Other Agents Acting On the Renin-Angiotensin System,), the third 252 

level was applied to classify the RAS drugs since RAS drugs are the frontline agents in 253 

hypertension, Table 1.   254 

 255 

Table 1. Drug class after applying first the two filtering rules to obtain 44 drugs and then the 256 

elimination process from the penalized regression GLASSO to obtain 22 drugs. 257 

Drug class 
# Reports 

(Total 612,733)  

# Drugs after 

initial filtering 

(Total 134) 

# Drugs correspond to ≥ 2 

ADEs in HLT codes when 

EB05>1 (Total 44) 

Drugs using 

GLASSO (Total 22) 

ACEIs 69,327 13 3 1 

ARBs 87,415 8 5 3 

Other RAS agents 3,471 1 0 0 

Other Antihypertensive 120,425 14 7 4 

Antithrombotic Agents 67,767 10 7 3 

Beta Blocking Agents 74,574 13 3 1 

Calcium Channel Blockers 86,399 18 10 6 

Diuretics 29,394 14 3 1 

Lipid Modifying Agents 2,634 4 0 0 

Urologicals 18,186 4 2 2 

Vasoprotectives 909 1 0 0 

Combinations 52,232 34 4 1 

 258 

Circos plot 259 

The drug-drug correlation matrix with shrinkage is displayed in a circular layout, depicting drug 260 

class and associations between drugs from different classes (Fig 2). For drugs in ACEIs, ARBs, 261 

AHAs, and BBAs, no association was observed between drugs within the same class. More within-262 

class associations were depicted in AHAs, CCBs, and combinations. Fig 2A shows the association 263 

between the remaining 22 drugs after then the elimination process from the penalized regression 264 

GLASSO. After these stringent filtering methods, drug classes exhibit very low significant 265 
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correlations between drugs from the same class. This result is observed in Fig 2A by very few 266 

associations between drugs in the same class. Therefore, drug clustering using the RCM reordering 267 

method was employed in Fig 2A, with bridges connecting associated drugs. Without a doubt, this 268 

analysis corroborates our hypothesis that drugs from the same ATC class may have different 269 

pulmonary ADE profiles.  270 

 271 

Given the 22 drugs selected by GLASSO, Table 2 shows the assessment of drugs exclusively with 272 

respect to their pulmonary events. In the second column, # pulmonary ADEs defines the number 273 

of drug-ADE pairs from EBGM, which are depicted in the following section. Similarly, # 274 

pulmonary ADEs in the fourth column denotes the results when RR is larger than two. The order 275 

(A) (B) 

Figure 2. Two layouts of Circos plot for 22 hypertensive drugs selected by GLASSO. Circos 

plots of drugs were obtained based on the EBGM matrix after applying GLASSO. Edge bundling 

linkages for better visualization and drugs were selected by GLASSO with edge bundling. Grouped 

drugs based on their classes were assigned the same color based on their classes (A). Applying RCM 

reordering and edge bundling for grouping drugs based on the ATC class and edge bundling (B). 
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of drugs listed in Table 2 is calculated based on the original 44 drugs from the EBGM scores and 276 

here we only show the arrangement for the remaining 22 drugs out of 44 drugs. Beraprost showed 277 

13 pulmonary ADE profiles reported more commonly than other drugs used for patients with 278 

hypertension based on the estimated RR. Macitentan and Selexipag were equally located in the 279 

second most commonly reported drugs, each of which with 10 pulmonary ADEs. In contrast, 280 

beraprost was corrected from being the top drug with most pulmonary issues and then ranked down 281 

to the tenth location by EBGM. The assessment for bosentan and tadalafil also changed radically 282 

when the comparative analysis was done using RR or EBGM. 283 

 284 

Table 2. The number of pulmonary ADEs when RR larger than two or the 5th quantile of EBGM, 285 

EB05, large than two after GLASSO filtering process implemented in Table 1. 286 

Drug # pulmonary ADEs Order by EBGM # pulmonary ADEs Order by RR 

Macitentan 16 1 10 2 

Bosentan 14 2 5 11 

Epoprostenol 11 4 9 4 

Selexipag 10 5 10 2 

Sildenafil 10 6 7 6 

Tadalafil 10 7 3 44 

Beraprost 7 10 13 1 

Nifedipine 5 13 5 11 

Candesartan 4 16 3 34 

Althiazide\Spironolactone 3 20 4 18 

Bisoprolol 3 21 #N/A #N/A 

Imidapril 3 24 5 11 

Azelnidipine 2 30 4 23 

Azilsartan Kamedoxomil 2 31 3 32 

Bendroflumethiazide 2 32 3 33 

Benidipine 2 33 5 11 

Cilnidipine 2 34 5 11 

Doxazosin 2 36 3 36 

Lercanidipine 2 39 1 90 

Nicardipine 2 40 5 11 

Rilmenidine 2 42 #N/A #N/A 

Telmisartan 2 43 4 30 

 287 
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From GLASSO and Table 2, we can now obtain the ADE profiles in HLT groups for each drug in 288 

the newly identified group class, which we called GLASSO (GL) Clusters. The ADEs together 289 

with the drug classes from ATC and GL Clusters based on EB05>1 are arranged in Table 3 and 290 

depicted by an arc diagram in Fig S3, Supporting Information. It is apparent from Fig 2 and 291 

Table 3 that GL Cluster 1 consists of most associated drugs with most pulmonary ADEs assessed 292 

by EBGM. 293 

 294 

Table 3. Comparative analysis of each drug and associated pulmonary ADEs based on our new 295 

classification from different GLASSO (GL) Clusters 296 

Drug Drug Class ADEs for EB05> 1 (n) * GL Cluster 

Macitentan AHAs 1-15,17 (16) 1 

Bosentan AHAs 1,2,4-15 (14) 1 

Epoprostenol ATAs 1,2,4-9,11,12,15 (11) 1 

Selexipag ATAs 2,4-12 (10) 1 

Sildenafil UAs 1,2,4-12 (10) 1 

Tadalafil UAs 1,2,4-12 (10) 1 

Beraprost ATAs 1,2,5-9 (7) 1 

Nifedipine CCBs 1-3,15,16 (5) 2 

Candesartan ARBs 1,3,14,16 (4) 2 

Althiazide\Spironolactone COMBs 4,10,11 (3) 3 

Rilmenidine AHAs 4,10 (2) 3 

Bisoprolol BBAs 1,2,14 (3) 4 

Lercanidipine CCBs 1,14 (2) 4 

Imidapril ACEs 1-3 (3) 5 

Azelnidipine CCBs 1,3 (2) 5 

Azilsartan Kamedoxomil ARBs 1,3 (2) 5 

Benidipine CCBs 1,2 (2) 5 

Cilnidipine CCBs 1,2 (2) 5 

Telmisartan ARBs 1,3 (2) 5 

Bendroflumethiazide TDAs 3,13 (2) 6 

Doxazosin AHAs 3,13 (2) 6 

Nicardipine CCBs 3,13 (2) 6 

 * Below we have ADEs found for each drug: 
 1. Parenchymal Lung Disorders NEC                                  

 2. Pneumothorax and Pleural Effusions NEC                                  

 3. Lower Respiratory Tract Inflammatory and 

Immunologic Conditions 

 4. Respiratory Tract Disorders NEC                                  

 5. Breathing Abnormalities                                         

 6. Lower Respiratory Tract Signs and Symptoms                      

 7. Pulmonary Oedemas                                               

 8. Respiratory Failures (Excl Neonatal) 

9. Vascular Pulmonary Disorders NEC                                  

10. Bronchospasm and Obstruction                                    

11. Coughing and Associated Symptoms                                

12. Respiratory Syncytial Viral Infections                          

13. Bronchial Conditions NEC                                  

14. Pulmonary Thrombotic and Embolic Conditions                     

15. Lower Respiratory Tract Infections NEC                                  

16. Fungal Lower Respiratory Tract Infections                       

17. Pleural Infections and Inflammations 
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Friedman test and multiple pairwise comparisons 297 

To test the significant difference between drugs grouped by the original ATC classes and the GL 298 

Clusters, which were from a shrinkage correlation matrix, a non-parametric Friedman test was 299 

applied to compare separately the magnitude of difference when drugs in the same group for the 300 

ATC classes or the GL Clusters. Table 4 summarizes the results of the p-value for different 301 

comparative analyses in the ATC classes or the GL Clusters. A p-value of 0.199 indicates that no 302 

differences in EBGM of pulmonary ADEs for different drugs in GL Cluster 1 when excluding 303 

Tadalafil. Similarly, GL Clusters 2, 3, 4, 5, and 6 showed no significant differences in EBGM 304 

respectively (Table 4). However, given the original ATC class drugs belonging to, the Friedman 305 

test did show significant differences in six of the ATC class before GLASSO. The same test was 306 

applied to 22 drugs selected from GLASSO, only drugs in UAs showed no significant differences 307 

in EBGM of pulmonary ADEs. This shows that instead of grouping drugs from the same ATC 308 

class, isolated groups from GLASSO showed homogeneity.  309 

 310 

Table 4. The Friedman test for drugs in ATC class and GLASSO class. 311 

 312 

Pairwise drug class comparisons based on ATC class are shown for all the pairs (nine drug classes: 313 

ACEIs, ARBs, AHAs, ATAs, BBAs, CCBs, COMBs, TDAs, and UAs) in Table S5-A in 314 
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Supporting Information. The EBGM scores from the pulmonary ADE profiles were statistically 315 

significant for the nine ATC classes using the Friedman test (p-value = 0.0072, Fig 3). Pairwise 316 

comparisons showed no significant differences among any two ATC classes from the adjusted p-317 

value (Table S5-A in Supporting Information). However, using drug class determined by 318 

GLASSO, Wilcoxon signed-rank test between groups revealed significant differences in EBGM 319 

of pulmonary ADEs between GL Cluster 1 and GL Clusters 3, 4, and 5, respectively, compared to 320 

the pairwise comparisons between ATC groups, Table S6-A in Supporting Information and Fig 321 

4. Drugs in GL group 1 showed significantly higher EBGM regarding pulmonary events. Friedman 322 

test confirming EBGM profile of selected drugs from GLASSO could be used for comparative 323 

analysis of drugs regarding certain indications. 324 

 325 

 326 

Fig 3. Pairwise Wilcoxon signed-rank test between different ATC classes. No pairwise 327 

significant comparison was found similar to Table S5-A in Supporting Information. But the 328 

group comparison was highly significant, p-value = 0.00072.  329 

 330 
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 331 

Fig 4. Pairwise Wilcoxon signed-rank test between different classes defined by GLASSO (A) 332 

and pairwise Wilcoxon signed-rank test between different classes defined by GLASSO excluding 333 

Tadalafil (B).   334 

 335 

DISCUSSION 336 

The future of large-scale biomedical science is data-driven decision-making and AI knowledge-337 

based development and validation. AI-enabled technologies can help in better understanding 338 

disease indication occurrence and disease determinants or patterns. Quantitative methods have 339 

countlessly been applied in various medical fields of study, e.g. measurement of disease frequency, 340 

prevalence or incidence; evaluation of source of bias and variation of observational studies; 341 

multivariate data analysis of risk factors such as applied logistic regression analysis; machine 342 

learning for survival analysis or analysis of time at risk (survival) data; boosting power for clinical 343 

trials using AI-assisted analysis, etc. In our study, we aimed to apply AI-driven methodologies 344 

involving EBGM and GLASSO techniques in predicting SARS-Cov-2 comorbidity for high-risk 345 

populations with hypertension.  346 

 347 

(B) (A) 
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Quantitative methods, i.e., PPR, RR, ROR, EBGM have been used to detect signals for 348 

spontaneously reported data. After filtering data by quantitative methods, we proposed that 349 

selected drug-ADE based on drug association mechanism would be a valuable procedure for 350 

clinical review and comparison of similar drugs with similar ADE profiles. In this study, we 351 

demonstrated a systematic way of filtering and selecting data that addresses the noise inherent to 352 

such data. None of these methods are free from including false positive and false negative signals, 353 

however, EBGM and the Information Component (IC) are recommended over other quantitative 354 

methods when evaluating by mean average precision (16). This helped us to build a model to 355 

understand the bias-variance tradeoff to achieve a balance between the two desirable but 356 

incompatible features. Given the absence of a gold standard, no available method is 357 

overwhelmingly better than the others (18). The confirmatory methods proposed in this study 358 

(GLASSO and Friedman test) for assessing quantitative methods could reveal the strengths and 359 

drawbacks of the methods.   360 

 361 

Drugs from different branches in the 3D plot represent distinctive effects of pulmonary ADEs on 362 

the separation. For example, PC3 is dominated by fungal, PC2 by more pleural and vascular, and 363 

PC1 by respiratory tract effects (see Table S1 in Supporting Information). PCs were constructed 364 

using the expected counts of a drug and a pulmonary ADE through a linear combination. The 365 

spatial separation of drugs indicated that drugs at the perimeter of each branch (numbered) 366 

performed disparately regarding pulmonary ADE profiles, suggesting they may not best be 367 

managed as having ADE profiles defined by their class. This figure shows the optimal 368 

representation of three active variables in biplots acquired by PCA by diminishing the effect of 369 

supplementary variables that have no or little influence on the pulmonary ADEs. Using the 370 
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Friedman test, we found that these separated drugs have significant differences between their drug 371 

classes and compared to other drug classes. 372 

 373 

The consistency of the Friedman test and GLASSO to capture EBGM signals of drugs used in 374 

small and large populations could be a beneficial tool for drug comparative analysis. Xu et al. (20) 375 

and Stafford et al. (10) have already applied two methods in pharmacovigilance to animal and 376 

human data separately. This study proposed and successfully combined penalized regression 377 

together with the non-parametric Friedman test in considering to better visualization of drug-drug 378 

and drug-ADE associations. The RR method is widely utilized due to its simplicity and user-379 

friendly processing. RR, however, may be highly variable for small occurrences of an event. Our 380 

assessment of drugs or ADEs based on RR showed unstable performance, especially for hidden 381 

information. The estimates of small occurrences compared to the whole database were also inflated 382 

for events. To correct these issues, we introduce 5th percentiles from the lower confidence interval 383 

of EBGM (EB05) used as a conservative alternative compared to RR. 384 

 385 

EBGM detected that 16 out of 25 pulmonary ADEs in MedDRA databases were associated with 386 

macitentan, followed by bosentan with 14 pulmonary ADEs. Both of these drugs belong to the 387 

endothelin receptor antagonist class of drugs and are utilized in pulmonary arterial hypertension 388 

to prevent vasoconstriction, fibrosis, and inflammation on vascular endothelium and smooth 389 

muscle (32). Both drugs are proposed to curb the pulmonary vascular resistance to prevent right 390 

heart failure and death, however, pulmonary ADEs of both drugs can be of major concern 391 

compared to the outcomes of several other antihypertensives agents we utilized in this study. At 392 

the same time, because these two medications are used in a disease affecting pulmonary function 393 
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and commonly reported ADEs to include therapeutic failure, these drugs were not surprising to 394 

emerge among the highest with reported pulmonary ADEs and, in fact, they serve to validate the 395 

methods utilized in this paper. Conversely, doxazosin and rilmenidine were found to have the least 396 

pulmonary ADEs in selected drugs from hypertension patients since only two ADE signals were 397 

detected based on EBGM. Although it can be used in hypertension, doxazosin is primarily utilized 398 

for men with benign prostatic hyperplasia and works by blocking alpha-adrenergic receptors in the 399 

vascular smooth muscle, resulting in vasodilation (33). Additionally, studies in countries outside 400 

of the US suggest that rilmenidine, a sympatholytic, has a favorable ADE profile for patients with 401 

hypertension and diabetes, it is not approved in the US (34). After excluding GL Cluster 1, we did 402 

see almost the same results for the remaining GL clusters. It is also worth mentioning here that the 403 

results are shown in Tables S2, S3, S4, SB-5, and S6-B as well as Figs S1 and S2 in Supporting 404 

Information. 405 

 406 

The second group found by EBGM and GL clustering consisted of two drugs from CCBs 407 

(nifedipine) and ARBs (candesartan) grouped in combination (Fig 2) and showed four similar 408 

pulmonary ADEs: parenchymal lung disorders NEC, pneumothorax and pleural effusions NEC, 409 

lower respiratory tract inflammatory and immunologic conditions, and fungal lower respiratory 410 

tract infections. Several studies based on these drugs showed effective combination and blood 411 

pressure lowering effects in patients with hypertension and appeared an improved side effect 412 

profile in comparison with single-agent monotherapy (35-38). This is undoubtedly an interesting 413 

finding resulted from our EBGM analysis and demonstrated how these two drugs can be combined 414 

and investigated for pharmacokinetic assessment in drug development including bioavailability 415 
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and bioequivalence, drug safety pharmacovigilance, and efficacy and comparative tolerability of 416 

the combination of nifedipine and candesartan (39, 40). 417 

 418 

Our previous work showed that quinapril and trandolapril were significantly different from other 419 

ACEI and ARB drug classes (11). Separating from its drug class was initially observed in Fig 1 420 

when the PCA biplot was performed. However, these two drugs will not be present when more 421 

precautionary methods are applied for several reasons: (1) the dataset is no longer the same as 422 

before which contain only ACEIs or ARBs. (2) The methods are very different. (3) Several other 423 

drugs and ADEs are added to the study, 134 as opposed to only 16 drugs. (4) In our previous work, 424 

we only focused on analyzing 13 pulmonary ADEs at the PT level; however, in the current study, 425 

we obtained and compare 25 ADEs in HLT groups and each HLT contains several PT ADEs. To 426 

be more accurate, ADEs for the 25 ADEs in HLT groups contains approximately 200 different PT 427 

vs only 13 ADEs. (5) The whole purpose of this study was to use EBGM as a much more accurate 428 

method compared to RR and RR estimation is also better than the PRR method used before. (6) 429 

The implementation of the filtering process of penalized regression GLASSO helps eliminate the 430 

insignificant and noise-driven reports.  431 

 432 

Two drugs, tadalafil and sildenafil, are also used for the modulation of dopaminergic pathways 433 

and modifying risk factors to prevent and treat erectile dysfunction. Using our database when 434 

curating the data for the medicinal products of these drugs and checking their active ingredients of 435 

tadalafil and sildenafil, the top products are found to be Adcirca (n=32446) and Revatio (n=21358) 436 

marketed for the treatment of pulmonary arterial hypertension, respectively, and Cialis (n=15623) 437 

and Viagra (n=20820) marketed to treat erectile dysfunction, respectively. We also assessed 438 
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whether these drugs only show up at high doses or not. This also confirmed that the dose has an 439 

insignificant effect on the outcome of ADEs, data are given in Table S7 in Supporting 440 

Information.  441 

 442 

As part of our future work, it is worth mentioning that this study aimed to reveal the potential risk 443 

of patients using hypertensive drugs in terms of pulmonary issues. Our database will be updated 444 

with MedDRA 24.0 that contains the new COVID-19 terms due to its outbreak. It has encouraged 445 

us to involve terms related to viral infections that facilitate the capture of ADEs caused by COVID-446 

19 in patients with hypertension in the near future. In addition, the pulmonary ADEs of HLT codes 447 

in this study were filtered by setting the highest level, system organ class (SOC), with the focus 448 

on respiratory, thoracic, and mediastinal disorders (n=28), and infection class containing viral 449 

infection (n=2). We plan to include ADEs from the class of Blood and lymphatic system disorders 450 

such as thrombosis, coagulation, or platelet disorders. In the big data era, as the spontaneous 451 

reports from different data sources including the FDA FAERS database (21), the Vaccine Adverse 452 

Event Reporting System (VAERS) (41, 42), and the WHO International Database are increasing 453 

in size; drug profiles based ADEs can be established based on quantitative methods, retrieving the 454 

signals, or detecting new signals in large numbers of reports by different methods with the 455 

combination of clinical review is need for pharmacovigilance. 456 

 457 

METHODS 458 

To derive the desired information from datasets, there are a few main methodological steps in this 459 

study. In the following, we briefly illustrate procedures in our workflow integrated by machine 460 
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learning where some preprocessing points are first presented in Fig 5. This figure summarizes the 461 

Fig 5. Workflow of data-driven methodology for pulmonary symptomology in hypertension 

using machine learning models from preprocessing and dictionary creation to storing tables in the 

database an analysis.  
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steps in the preparation and analysis of the ADE database to make a decision and interpret our 462 

results, each step is detailed in the following subsections:  463 

1. Working hypothesis: drugs from the same drug class could have different pulmonary ADE 464 

profiles affecting outcomes in acute respiratory illness, with potential implication in SARS-465 

CoV-2 infection.  466 

2. Designing error correction techniques for data scrubbing and retrieval.  467 

3. Implementing data exploration technique for initial data analysis to visually explore and 468 

understand the characteristics of the data from post-marketing drug safety surveillance.  469 

4. Data curation and annotation to organize and integrate data collected from various sources 470 

from the FDA, MedDRA, and ATC classification. This phase entails annotation, organization, 471 

clustering, and presentation of the assorted data types from the 1DATA databank.  472 

5. ADE-associated information retrieval for patients with hypertension provides massive 473 

collections of reports to investigate adverse drug events based on comparative population data 474 

analysis.  475 

6. Integration of machine learning models.  476 

7. Acquiring results after data preprocessing and cleansing that significantly reduces the size of 477 

data and eliminates insignificant and noise-driven reports.  478 

8. and 9. Enhancing decision and interpretation via data-driven machine learning to help identify 479 

incidences of pulmonary ADEs for potential therapy and confounding factors that may have 480 

implications for treating patients diagnosed with COVID-19, respectively. 481 

 482 

As a part of data cleaning, we were also challenged by multiple technical issues when combining 483 

drugs: (i) there were many drugs’ names that did not track a specific standard. (ii) Formulations of 484 
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the same active ingredient with different generic or brand names for different routes of 485 

administration created confusion in collecting data (for instance, Revatio, Viagra, sildenafil, 486 

sildenafil citrate, APO sildenafil, sildenafil film-coated tablet, sildenafil citrate Aurobindo pharma, 487 

sildenafil Amneal Pharmaceuticals, Teva sildenafil, sildenafil Pfizer, sildenafil Greenstone, 488 

sildenafil Hormosan Filmtabletten, Revathio, sildenafil SUP, etc.). For this purpose, we combined 489 

drugs with or without salt, alcohol, etc. from different generic names and brand names. 490 

 491 

Data Integration 492 

The data were integrated into the 1DATA databank (www.1DATA.life) (20) from multiple 493 

sources, including the Food and Drug Administration (FDA) Adverse Drug Events Reporting 494 

System (FAERS), the Medical Dictionary for Regulatory Activities (MedDRA), and the ATC 495 

classification system. The FAERS database consists of voluntarily or mandatorily reported ADEs 496 

from healthcare professionals, manufacturers, and consumers; encompassing drug-related adverse 497 

occurrences pertaining to standard use, medical error, overdose, or product quality (21). ADE 498 

reports from FAERS are typically coded in accordance with the Preferred Term (PT) level of 499 

MedDRA. The MedDRA provides an internationally recognized hierarchical terminology [System 500 

Organ Class (SOC), High-Level Group Term (HLGT), High-Level Term (HLT), PT, and Lowest 501 

Level Term (LLT)] for coding ADE reports (22). This study aggregates raw ADE reports to terms 502 

from the HLT and SOC levels. ATC classification is likewise an internationally applied 503 

hierarchical system for active drug substances based on site of action (organ or system) and 504 

mechanistic properties (therapeutic, pharmacological, and chemical). Drugs in this study were 505 

grouped according to ATC classification. Data integration into 1DATA occurred through the 506 
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PostgreSQL 13.2 version (PostgreSQL Global Development Group), which allows concatenation 507 

of drug and ADE information (20, 23).  508 

 509 

Adverse Drug Event (ADE) 510 

ADEs cause approximately 30 billion dollars a year of added health care expenses, along with 511 

negative—including fatal—health outcomes (20). The practice of prescribing drugs based on 512 

information from drug preapproval labeling may misrepresent or deprecate the incidence and 513 

prevalence of specific ADEs. The FDA defines the term ‘adverse event’ as: “any untoward medical 514 

occurrence associated with the use of a drug in humans, whether or not considered drug related, 515 

including the following: an adverse event occurring in the course of the use of a drug product in 516 

professional practice; an adverse event occurring from drug overdose whether accidental or 517 

intentional; an adverse event occurring from drug abuse; an adverse event occurring from drug 518 

withdrawal; and any failure of expected pharmacological action” (24, 25).  519 

 520 

Relative Risk (RR) 521 

The main method used in this study, Bayesian shrinkage, is based on a baseline frequency, which 522 

is the relative risk or relative reporting ratio  523 

RR𝑖𝑗 =
𝑁𝑖𝑗

𝐸𝑖𝑗
. 524 

It compares a drug-ADE count, N, to its expected count, E. For instance, when Nij/Eij is equal to 525 

100, then drugi and ADEj occurred 100 times as frequently as the baseline frequency represents. A 526 

huge difference of occurrences between two drug-ADE pairs might lead to similar RR due to E in 527 
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the denominator, even statistically the same, but the frequency illustrates sampling variation. When 528 

more events of ADEj are caused by drugi higher than the same ADE in the database, RRij>1. Drug-529 

ADE surveillance should be triggered when large RR scores show up for specific drug-ADE pairs. 530 

However, the variability of RR for small counts drug-ADE pairs is unreliable, the high value of 531 

RR might be accidental. 532 

 533 

Principal Component Analysis (PCA) 534 

Principal component analysis (PCA) was obtained based on the log expected value of RR, log(E), 535 

to analyze ADEs for different drugs, to reduce the features from the drug-ADE matrix. The distinct 536 

clusters from PCA plots were used to compare the similarities of drugs based on 𝐸. PCA was 537 

conducted using built-in function PCA in R (R 3.6.3 version, R Core Team, GNU GPL v2), and 538 

PCA biplots were produced using the R package factoextra, and 3D PC plots were produced using 539 

R package plotly. 540 

 541 

Gamma-Poisson Shrinker (GPS) 542 

DuMouchel (17) proposed an empirical Bayes approach based on the Gamma-Poisson Shrinker 543 

(GPS) algorithm to bring down the inflated value of RR due to small counts without impacting 544 

RR associated with large counts. Thus, the drug profile based on ADE could be reconstructed with 545 

reduced variation in RR. GPS redefines RRij as λij=μij/Eij drawn from a prior distribution with a 546 

mixture of two gamma distributions, μij is the mean of the Poisson distribution of counts 547 

for drugi and ADEj 548 
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prior: Π(𝜆|𝛼1, 𝛽1, 𝛼2, 𝛽2, 𝑃 ) = 𝑃 × gamma(𝜆|𝛼1, 𝛽1) + (1 − 𝑃) × gamma(𝜆|𝛼2, 𝛽2) 549 

which then gives the posterior probability from the components of the mixture model: 550 

posterior: 𝜆|𝑁 = 𝑛~Π(𝜆|𝛼1 + 𝑛, 𝛽1 + 𝐸, 𝛼2 + 𝑛, 𝛽2 + 𝐸, 𝑄𝑛 ) 551 

GPS shrinks RR scores by using EBGM from 552 

EBGM = 𝑒𝐸(log 𝜆). 553 

The shrinkage abates vagueness by reducing RR scores to a conservative level, which helps to 554 

alleviate false-positive signals, avoiding arbitrary drug-ADE assessment. The R package 555 

openEBGM was used to implement the GPS method (26).  556 

 557 

Correlation Matrix and GLASSO 558 

The profile of each drug comprises EBGM of all ADEs. The Pearson correlation matrix was 559 

constructed based on the EBGM between pairs of drugs. The vector 560 

𝐸𝐵𝑖 = (𝐸𝐵𝑖1, 𝐸𝐵𝑖2, … , 𝐸𝐵𝑖𝑝) 561 

for i∈{1,2,…,n} denotes the EBGM corresponding to drugi. The Pearson correlation method 562 

determines the associations between pairwise vectors of reported drugs, which are the elements in 563 

the correlation matrix. This adjacency matrix was highly dense (n×n), and it is difficult to graph 564 

the network when too many drugs (1131) are present. A penalized regression method, graphical 565 

least absolute shrinkage and selection operator (GLASSO), was then introduced to encourage 566 

sparsity in the adjacency matrix, in order to plot high dimensional graphs from the correlation 567 

matrix (27). An R package called huge was utilized to perform GLASSO (28).  568 

 569 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 2, 2021. ; https://doi.org/10.1101/2021.06.07.21258497doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.07.21258497


33 

 

Drug-ADE Correlation Diagram 570 

The MedDRA hierarchy is multi-axial, for example, “influenza” is from the PT level and is 571 

encompassed within two SOC levels “Respiratory, thoracic and mediastinal disorders” and 572 

“Infections and infestations”. Therefore, the columns of EBGM calculations in the drug-ADE 573 

matrix involve HLTs from the “Respiratory, thoracic and mediastinal disorders” and “Infections 574 

and infestations” levels. For better visualization, ADE columns of one drug were put in a block 575 

with other rows being zeros. The dimension of a drug-ADE matrix was expanded from (m×q) to 576 

(m×mq)  where m(<n), and m=22 denotes the number of drugs selected by GLASSO from original 577 

n=44 drugs, and q=17 denotes selected ADEs described above. 578 

 579 

Reverse Cuthill-Mckee Algorithm 580 

Reverse Cuthill-McKee (RCM) is a bandwidth and profile reduction method, which permutes a 581 

sparse matrix into a band matrix with vertices reordered close to the diagonal (29). RCM in this 582 

study implemented in MATLAB R2019b (MathWorks Inc., Natick, MA, USA) was applied to 583 

arrange the connections between drugs and ADEs to encourage fewer crossings in Circos plots 584 

and arc diagrams. Circos plots and arc diagrams were generated using the R packages edgebundleR, 585 

igraph, and ggrpah (30). 586 

 587 

Friedman Test 588 

Using SAS (SAS University Edition version 9.4, North Carolina, U.S), sample differences among 589 

antihypertensive drug groups according to therapeutic main group ATC (ACEIs, ARBs, BBAs, 590 
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CCBs, and TDs) were evaluated for a pairwise comparison analysis with the assumption that data 591 

were not normally distributed using the non-parametric Friedman test for two independent 592 

unequal-sized data. The Friedman test was also applied to perform multiple comparison tests (P-593 

value for statistical significance < 0.05). Pairwise comparison analysis was completed in SAS. The 594 

significance level of comparing drug classes against each other was adjusted using a rigorous 595 

paired Wilcoxon signed-rank test with Bonferroni correction to control family-wise type I error 596 

(31). 597 
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Data Availability 611 

The source code and data used to produce results and analyses presented in this manuscript are 612 

available at 613 

https://1data.life/pages/publication/data_driven_methodology_COVID19_related_pharmacovigil614 
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