
Article

Estimating Time-Dependent Disease Transmission Intensity
using Reported Data: An Application to Ebola and Selected
Public Health Problems

Anuj Mubayi 1,2,3,4 , Abhishek Pandey 5 , Christine Brasic 6, , Anamika Mubayi 7, Parijat Ghosh 8 and Aditi
Ghosh 6,*

Citation: Mubayi, A.; Abhishek, P.;

Brasic, C.; Mubayi, A.; Ghosh, P.;

Ghosh, A. Title. Journal Not Specified

2021, 1, 0. https://doi.org/

Received:

Accepted:

Published:

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional

claims in published maps and insti-

tutional affiliations.

Copyright: © 2021 by the authors.

Submitted to Journal Not Specified

for possible open access publication

under the terms and conditions

of the Creative Commons Attri-

bution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 PRECESIONheor, Los Angeles, CA, USA; anujmubayi@yahoo.com
2 Department of Mathematics, Illinois State State University, Normal, IL
3 Center for Collaborative Studies in Mathematical Biology, Illinois State University, Normal, IL
4 College of Health Solutions, Arizona State University, Tempe, AZ
5 Yale School of Public Health, Yale University, New Haven, CT; abhishek.pandey@yale.edu
6 University of Wisconsin-Whitewater, Whitewater, WI; brasiccs23@uww.edu (C.B.); ghosha@uww.edu

(A.G.)
7 University of Allahabad, Allahabad, India; anamikamubayi@yahoo.co.in
8 University of Missouri, Columbia; phool.ghosh@gmail.com
* Correspondence: ghosha@uww.edu

Abstract: Obtaining reasonable estimates for transmission rates from observed data is a challenge1

when using mathematical models to study the dynamics of “infectious” diseases, like Ebola.2

Most models assume the transmission rate of a contagion does not vary over time. However,3

these rates do vary during an epidemic due to environmental conditions, social behaviors, and4

public-health interventions deployed to control the disease. Therefore, obtaining time-dependent5

rates can aid in understanding the progression of disease through a population. We derive an6

analytical expression using a standard SIR-type mathematical model to compute time-dependent7

transmission rate estimates for an epidemic in terms of either incidence or prevalence type8

available data. We illustrate applicability of our method by applying data on various public9

health problems, including infectious diseases (Ebola, SARS, and Leishmaniasis) and social issues10

(obesity and alcohol drinking) to compute transmission rates over time. We show that transmission11

rate estimates can have a large variation over time, depending on the type of available data and12

other epidemiological parameters. Time-dependent estimation of transmission rates captures13

the dynamics of the problem and can be utilized to understand disease progression through14

population accurately. Alternatively, constant estimations may provide unacceptable results that15

could have major public health consequences.16

Keywords: Transmission coefficient; Infectious disease dynamics; Compartmental model; Param-17

eter estimation18

1. Introduction19

An epidemic is a function of environmental factors and a contact structure that20

varies over time, which in turn leads to varying transmission potential of an "infection".21

We also refer the word "infection" to describe social influences exerted by a typical22

influential individual with a particular social problem that results in a naive (to the social23

problem) individual getting involved in the problem. For example, an alcoholic might24

influence an abstainer into initiating drinking. Many authors have studied outbreaks25

of social problems and infectious diseases using compartmental transmission model.26

Qualitative aspects of homogeneous mixing models with constant transmission potential27

of an infection are well understood for various applications. These models are relatively28

easy to analyze and can answer questions, at the population level, with good precision.29
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Homogeneous mixing compartmental models have a long history, however, quantifica-30

tion of temporal transmission potential of an infectious agent, an input variable for this31

type of model, has been a challenge.32

William Hamer first published a paper in 1906 containing an epidemic model for33

the transmission of measles where his observation included the incidence of new cases,34

in a time interval, is proportional to the product, SI, of the density of susceptibles35

(S) and the density I of infectives (I) in the population. The formulation of incidence36

can be explained by considering some epidemiological quantity. Consider a single37

susceptible individual in a homogeneously mixing population of size N. This individual38

contacts other members of the population at the rate c, per unit time, and a proportion39

I/N of these contacts are with individuals who are "infectious". If the probability40

of transmission of infection given contact is ρ, then the rate at which the infection is41

transmitted to a susceptible is ρcI/N, per unit time, and the rate at which the susceptible42

population becomes infected is ρcSI/N.43

The contact rate is often a function of population density, reflecting the fact that44

contacts take time and saturation occurs. If c is assumed approximately proportional to45

N or equal to constant, incidence can be represented by terms like βSI (referred as mass46

action incidence) or βSI/N (referred as standard incidence), respectively. The parameter β,47

which includes the contact rate c, is called as a "transmission coefficient" (or "effective48

contact rate" or "transmission potential:) with units as time−1. At low population49

densities mass action is a reasonable approximation of a much more complex contact50

structure, however, in general, standard incidence is more appropriate for modeling51

transmission for human diseases or influences for social problems. The term βI/N is52

sometimes referred as the force of infection, i.e., per capita rate at which susceptible53

members of the host population are getting infected. On the other hand, the transmission54

rate, represents the number of new infections per unit of time generated by an infected55

individual. The transmission rate is calculated by dividing incidence for a given time56

period by a disease prevalence for the same time interval.57

Most infectious disease data is collected in form of incidence and/or prevalence.58

Prevalence of a "disease" in a population is defined as the total number of cases of the59

disease in the population at a given time, whereas prevalence proportion is computed by60

dividing the total number of cases in the population by the number of individuals in the61

population. It is used as an estimate of how common a condition is within a population62

over a certain period of time. Incidence is a measure of the risk of developing some63

new condition within a specified period of time. Incidence proportion (also known as64

cumulative incidence) is the number of new cases within a specified time period divided65

by the size of the population initially at risk. When the denominator is the sum of the66

person-time of the at-risk population, it is also known as the incidence density rate or67

person-time incidence rate. Using person-time rather than just time handles situations68

where the amount of observation time differs between people, or when the population69

at-risk varies with time. Prevalence is a measurement of all individuals affected by70

the disease within a particular period of time, whereas incidence is a measurement of71

the number of new individuals who contract a disease during a particular period of72

time. So prevalence and incidence proportion at the time t is given by I(t)/N(t) and73

β ∗ (S(t)/N(t)) ∗ (I(t)/N(t)), respectively.74

In compartmental mathematical models, varied assumptions are made based on75

characteristics of a modeling disease which lead modelers to focus on more important76

aspects of the epidemic. For example, an epidemic that occurs on a timescale that is77

much shorter than that of the population replenishment (that is, epidemic occurs at a78

much faster rate than births and deaths in the population), constant population size can79

be assumed. Additional common features of these models might include temporary or80

permanent recovery of infected individuals and a birth rate into infective class. Whether81

establishment or a major outbreak of an infectious disease or a social problem will82

occur in a population, requires extensive experience or a mathematical model of disease83
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dynamics and estimates of the parameters of the disease model. Here, we provide a84

method for estimating the transmission coefficient. A suitable set of data for estimation85

of β includes prevalence and incidence of the outbreak in question. There are many86

different methods for estimating β but most of them results in an aggregate value over87

time. The methods in literature include estimation using regression of prevalence and88

time since start of an epidemic [1], estimating from equation for basic reproductive89

rate when threshold density is known [2], estimating from equilibrium prevalence [3,4],90

using age prevalence curves [5], inferring from behavior or contact data [6], and iterative91

comparison of field prevalence data with model predictions [7].92

Some researchers have modeled time varying transmission coefficients for diseases93

that follow seasonal patterns but using a predefined functional form [8]. On the other94

hand, a study by Finkenstadt and Grenfell [9] uses a discrete time model that allows95

for a temporally varying transmission parameter with a period of one year with no96

assumption on functional form. However, their estimation is computationally intensive97

and assumes that reporting interval of the available data must be an integer fraction of98

the serial interval of the disease. Here, we provide an analytical formula for estimating99

transmission coefficient over time. Examples of social problems like alcohol drinking100

and obesity and infectious diseases like Ebola, Visceral Leishmaniasis (or Kala-azar),101

and SARS are used to show relevance of the analytical work. The available data of102

US college alcohol drinking and obesity outbreak in US include prevalence trends,103

whereas incidence data of Ebola outbreak in West Africa (Guinea, Sierra Leone, and104

Liberia), Kala-azar outbreak in Bihar, and SARS epidemic in Hong Kong are used for the105

estimation.106

In this paper, we compute time dependent and independent transmission coeffi-107

cient of Ebola virus disease along with other health care problems like college alcohol108

drinking, the obesity epidemic in United States, the spread of Visceral Leshmaniasis, and109

the spread of the 2003 SARS Outbreak in Hong Kong. The remaining paper is stratified110

as follows: Section 2 provides a compartmental SIR model and two analytical expres-111

sions of transmission coefficients based on prevalence and incidence data; examples for112

computing coefficient over time using each of the two expressions and field data are113

shown in Section 3; and finally, the results are discussed in Section 4. Fig.(1) represents114

the overview of this paper.115

Figure 1. Overview of the paper.
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2. Materials and Methods116

2.1. Formulation for Time Dependent Estimation117

Consider a "disease" outbreak in a population that follow the following system of118

differential equations:119

S′ = pb(t)− β(t)SI + γ(t)R− µ(t)S (1)

I′ = p̄b(t) + β(t)SI − α(t)I − µ(t)I (2)

where R(t) = 1− S(t)− I(t) and parameters are defined in Table 1 and Table 2.120

Following steps carried out in Hadeler [10] and using Equations (1) and (2), we121

derive two explicit expressions for β(t): one based on prevalence data and other on the122

incidence of the disease. The main derivation steps for are mentioned below.123

Table 1. Definition of variables and parameters in the model given by equations (1) and (2).

Variables Definitions

S Proportion of susceptibles
I Proportion of "infectives"
R Proportion of recovered individuals

Parameters Definitions
b(t) Rate of recruitment in the population
p Proportion of new recruits that are susceptibles

p̄ = 1− p Proportion of new recruits that are infected
β(t) Transmission or influence coefficient
α(t) Per-capita recovery rate
γ(t) Per-capita rate of loosing immunity or relapse rate
µ(t) Per-capita mortality or departure rate

Table 2. Definition of variables and parameters in the model given by equations (1) and (2).

Parameters ——– Estimates ——–
Ebola Alcohol Obesity Kala-azar SARS

p 1.0 0.35 [11,12] 0.94 [13] 1.0 1.0
(per month) (per year) (per year) (per month) (per day)

b 0.0 0.29 [14] 0.01 0.003 [15] 0.0
α 0.003 [16] 0.17 [4] 0.22 [17] 0.211 [7] 0.04 [18]
γ 0.008 [19] 0.0 0.14 [17] 0.0 0.0
µ 0.0 0.27 [4] 0.013 0.001 [7] 0.0

2.1.1. β(t) as a function of prevalence124

Suppose prevalence data are available. Derivation of β(t) as a function of prevalence125

is carried out as follows. Adding Equations (1) and (2) we get126

(S + I)′ = (b(t) + γ(t))− (γ(t) + µ(t))(S + I)− α(t)I (3)

Setting c(t) = b(t) + γ(t) and d(t) = γ(t) + µ(t) in Equation (3) and solving it we
obtain

S(t) = (S(0) + I(0))Z(0, t) +
∫ t

0
Z(s, t)[c(s)− α(s)I(s)]ds− I(t) (4)

where Z(a, b) = exp
(
−
∫ b

a d(s)ds
)

.127
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Isolating β(t) from Equation (2) we obtain β(t) as function of prevalence (I)

β(t) =
I′ + (α(t) + µ(t))I − p̄b(t)

SI
(5)

where S(t) is given by Equation (4).128

Note, beside prevalence (I), we also need I′ to compute β(t) using formula 5.129

However, I′ can be approximated using prevalence data.130

2.1.2. β(t) as a function of incidence131

On the other hand, suppose incidence data are available. In order to calculate132

expression of β(t) as a function of incidence (w(t) = β(t)SI) we first solve Equation133

(2) for I with initial condition I(T) (where T ∈ [0, L] is a time at which the prevalence134

proportion, I(T), is available) and get135

I(t) = I(T)H(T, t)−
∫ T

t
H(s, t)[w(s) + p̄b(s)]ds (6)

where H(a, b) = exp
(
−
∫ b

a (α(s) + µ(s))ds
)

.136

Using this expression of I(t) in Equation (1) and solving the resultant equation for137

S with initial condition S(0) we get138

S(t) =Z(0, t)S(0) +
∫ t

0
Z(u, t)[pb(u)− w(u)]du

+
∫ t

0
Z(u, t)γ(u)

[
1− I(T)H(T, u) +

∫ T

u
H(s, u)[w(s) + p̄b(s)]ds

]
du

(7)

139

Thus,

β(t) =
w(t)
SI

(8)

where S(t) and I(t) are given by Equations (7) and (6), respectively.140

Note, we need prevalence at time point T, I(T), to compute β(t) using formula (7).141

The time point T can be appropriately chosen, close to maximum of prevalence and not142

towards starting or end of epidemic.143

2.2. Time-Independent Estimation: Bayesian Analysis144

The Bayesian Monte Carlo Markov Chains (MCMC) approach can be used to145

quantify uncertainty around the transmission rates and compare our analytical estimates146

with it.147

Let θ represents vector of our transmission parameters and y = (y1, y2, ....., yT)
T is

the available data set. We can take likelihood function in our bayesian approach as

L(y|θ) =
T

∏
i=1

(
1√

2πσ2

)
× exp

(
− [ logit(yi)− logit( fi(θ)) ]

2

2σ2

)
(9)

where T is the total number of data points in the data set, σ is the appropriately chosen148

variance and f (θ) is the model output function for which data are used. If there are more149

than one data sets are used then the likelihood can be modified as follows:150

L(y|θ) = ∏
k

L(yk|θ)

While Bayesian approach can provide uncertainty around time-independent av-151

erage transmission rate, it doesn’t inform how the transmission rate varied over time152

and uncertainty itself is constant over time. Therefore, this approach, while assists in153

understanding uncertainty in disease progression, it does not address the challenge of154
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capturing changing transmission rates over the progression of an epidemic with respect155

to time.156

3. Results157

We use four examples to show how to estimate β over time from the available
epidemiological data. The examples provide a method to study social and public health
issues. To compute estimates of β(t), we use first order discretization for derivatives and
composite trapezoidal rule for integration as given below

f ′(t) ≈ f (t + h)− f (t)
h∫ t

0
f (x)dx ≈ h

(
f (0) + f (t)

2
+

n−1

∑
k=1

f (kh)

)
.

These discretization are used in the formulas given in Equations (5) and (8).158

We can avoid this discretization by choosing a function, for example, a polynomial,159

that can be fitted to the prevalence and incidence temporal data. This fitted function can160

then be used directly in the Equations (5) and (8).161

3.1. Using Incidence Data162

In this section, we apply available incidence data to three past epidemics: the163

2014-2016 Ebola outbreak in West Africa, the 2005 outbreak Visceral Leishmaniasis in164

the Indian state of Bihar, and the 2003 SARS outbreak in Hong Kong.165

3.1.1. 2014-2016 Ebola Outbreak in West Africa166

In this section, we estimate the transmission coefficient, β(t) for the 2014-2016 Ebola167

epidemic in West Africa using available incidence data. The number of reported cases168

per month were retrieved from the Center for Disease Control and Prevention (CDC)169

and are shown totaled as West Africa (Figure 3a), and individually for Guinea (Figure170

3c), Sierra Leone (Figure 3e), and Liberia (Figure 3g) [20]. For these estimates, prevalence171

is taken as May 31, 2015, as this point is close to the maximum prevalence and not172

towards the start of the epidemic (see Section 2.1.2). Incidence is calculated by dividing173

these case counts by the 2016 population for each country, as reported by the United174

Nations (UN) [21]. We assume a constant recovery rate of 10 days (α(t) = α), a constant175

relapse rate of 10 years (γ(t) = γ), no vertical transmission (p = 1), and a constant176

population (b(t) = µ(t) = u = 0); since the CDC data provides monthly case counts,177

these parameters are adjusted to per month rates. We estimate β(t) by simplifying178

Equation (6) as follows:179

β(t) =
w(t)(

S(0)−
∫ t

0
w(u)du

)(
I(T)eα(T−t) −

∫ T

t
eα(s−t)w(s)ds

)
(10)
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On discretizing Equation (10) we get following expressions. If t ≤ T,

β(t) ≈ w(t)
a1b1

(11)

where

a1 = S(0)− h

[
w(0) + w(t)

2
+

n−1

∑
k=1

w(kh)

]
and

b1 = I(T)eα(T−t) − he−tα

[
g1(t) + g1(T)

2
+

n−1

∑
k=1

g1(kh)

]

If t > T,

β(t) ≈ w(t)
a1b2

(12)

where

b2 = I(T)eα(T−t) + he−tα

[
g1(t) + g1(T)

2
+

n−1

∑
k=1

g1(kh)

]

where g1(x) = em1xw(x) and m1 = α.180

181

For the estimation of β(t) with regards to available incidence data, the estimates182

are found in Table 2 (see Appendix A.2) and are shown for West Africa (Figure 3b),183

Guinea (Figure 3d), Sierra Leone (Figure 3f), and Liberia (Figure 3h). Comparing the184

results for each region, we find the largest temporal estimate for both the mean and185

median β(t) to be that of Guinea (see Table 3 and Figure 2). Analysing the estimates for186

transmission rate temporally, we observe that transmission rate follows the incidence187

pattern reflecting the effects of exponential incline in the beginning of epidemic as well188

as impacts of disease-acquired immunity as well as non-pharmaceutical interventions189

implemented over the course of epidemic (Figure 3).190

Figure 2. Plot for estimates of β(t) using available incidence data for the 2014-2015 Ebola epidemic
of West Africa, where Qi represent ith quartile.
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Table 3. Summary statistics of Ebola results for β(t).

Minimum mean± SD Q1 Median Q4 Maximum

West Africa 0.00 1.57± 2.36 0.14 0.43 2.01 10.38
Guinea 0.00 2.73± 3.34 0.10 1.36 3.50 11.74

Sierra Leone 0.00 1.51± 2.30 0.02 0.68 1.65 6.23
Liberia 0.00 1.40± 2.52 0.00 0.03 1.71 10.50

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 3. β(t) estimates for the 2014-2016 Ebola outbreak: 3a Cases per month for West Africa; 3b β(t) estimates for West
Africa; 3c Cases per month for Guinea; 3d β(t) estimates for Guinea; 3e Cases per month for Sierra Leone; 3f β(t) estimates
for Sierra Leone; 3g Cases per month for Liberia; 3h β(t) estimates for Liberia.
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3.1.2. 2005 Occurence of Visceral Leishmaniasis in Bihar, India191

Visceral Leishmaniasis (VL) is a vector borne infectious disease that is spread from192

person to person by a bite of the tiny insect, sandfly. Large population suffers from VL193

in some tropical and subtropical countries of the world. The highest burden of the VL is194

found in Indian state of Bihar. We obtained underreporting adjusted 2005 incidence data195

of Bihar from [7]. The data contain number of new cases during past month adjusted for196

underreporting. The Expression (13) is used to estimate β(t) via two different models.197

The first model was for a single outbreak and hence demography was not considered198

whereas the second model assumed birth and death though with a same per-captia rate.199

If t ≤ T then

β(t) ≈ w(t)
a2b3

(13)

where

a2 = 1− e−µt(1− S(0))− he−tm2

[
g2(0) + g2(t)

2
+

n−1

∑
k=1

g2(kh)

]
and

b3 = I(T)e(α+µ)(T−t) − he−tm3

[
g3(t) + g3(T)

2
+

n−1

∑
k=1

g3(kh)

]

If t > T

β(t) ≈ w(t)
a2b4

(14)

where

a3 = 1− e−µt(1− S(0))− he−tm2

[
g2(0) + g2(t)

2
+

n−1

∑
k=1

g2(kh)

]
and

b4 = I(T)e(α+µ)(T−t) + he−tm3

[
g3(t) + g3(T)

2
+

n−1

∑
k=1

g3(kh)

]

where gi(x) = emixw(x) (for i = 1, 2), m2 = µ and m3 = α + µ.200

Since annual epidemic during 2005 started showing clear trend of decaying in201

the month of October, we took this time to compute the prevalence of VL in Bihar.202

Prevalence during October 2005 was computed under assumption that 25% of worldwide203

leishmaniasis prevalence is from VL cases whereas remaining is from other forms of204

Leishmaniasis. It also assumed 20% of global burden is in Bihar. Since some proportion205

of a population are naturally immune to the disease, we carried out estimation for three206

different values of initial proportion of susceptibles, namely, 0.1, 0.5 and 0.8. Recovery207

rate of 0.21 per month and influx/outflux rate of the population of 0.00138 was computed208

using data from Mubayi et al. (2010) [7]. The other assumptions of the model include209

constant recovery (i.e., α(t) = α), no vertical transmission (i.e., p = 1), permanent210

recovery (i.e., γ(t) = 0) and same constant per-capita incoming and outgoing rates (i.e.,211

b(t) = µ(t) = µ). We only model human population and do not take into account vector212

population explicitly. Thus, β(t) could be interpreted as vectorial capacity of sandfly213

population transmitting infection between humans.214

The obtained estimates of β(t) are given in Table 3 (see Appendix A.2) and Fig-215

ures 4a, 4b and ??. The β estimates that we have computed here are comparable to216

corresponding estimates in [7] (in this reference the mean estimates are βh = 0.13 (with217

Median=0.11, Std=0.08, Q1=0.07, Q3=0.17) and βv = 0.12 (with Median=0.11, Std=0.08,218

Q1=0.07, Q3=0.16) where around 75% of the population was susceptible).219
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(a)

(b)
Figure 4. Estimates of β(t) for the 2005 outbreak of Visceral Leishmaniasis in the Indian state
of Bihar, using available incidence data: 4a Estimates of β(t) related to an outbreak of Visceral
Leishmaniasis, when S(0) = 0.1; 4b Estimates of β(t) for two initial proportion of susceptibles in
a population affected with Visceral Leishmaniasis. Estimates of β(t) obtained for two different
values of µ (0.0 and 0.00138) are almost same.
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(a)

(b)
Figure 6. Box-and-Whiskers plot for estimates of β(t) for two different values of µ in a Visceral
Leishmaniasis outbreak, where qi represent ith quartile: ?? Estimates for µ = 0.0; ?? Estimates for
µ = 0.00138.

3.1.3. 2003 SARS Outbreak in Hong Kong220

Severe acute respiratory syndrome (SARS) is a viral respiratory illness caused by221

a coronavirus. SARS epidemic in Hong Kong is shown in Figure 7a. We estimated222

transmission coefficient using a single outbreak model with parameters values given in223

Table ??. The formula used for estimating β(t) is224

β(t) =
w(t)(

S(0)−
∫ t

0
w(u)du

)(
I(T)eα(T−t) −

∫ T

t
eα(s−t)w(s)ds

) (15)

On discretizing Equation (15) we get following expressions. If t ≤ T,225
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β(t) ≈ w(t)
a4b5

(16)

where

a4 = S(0)− h

[
w(0) + w(t)

2
+

n−1

∑
k=1

w(kh)

]
and

b5 = I(T)eα(T−t) − he−tα

[
g4(t) + g4(T)

2
+

n−1

∑
k=1

g4(kh)

]
(17)

If t > T,

β(t) ≈ w(t)
a4b6

(18)

where

b6 = I(T)eα(T−t) + he−tα

[
g4(t) + g4(T)

2
+

n−1

∑
k=1

g4(kh)

]
(19)

where g4(x) = em4xw(x) and m4 = α.226

The temporal estimates of β(t) are shown in Table 4 (see Appendix A.2) and Figure227

7b.228
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(a)

(b)
Figure 7. The 2002-2003 SARS outbreak in Hong Kong: 7a Daily reported cases; 7b Estimation
of β(t) using available incidence data. Prevalence for April 16, 2003 was taken in the calculation
when number of symptomatic cases started declining [22].
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3.2. Using Prevalence Data229

We use US national college alcohol drinking and obesity data as examples in230

this section. In Appendix A, We also present a hypothetical example with synthetic231

prevalence data and known time varying transmission rate to illustrate the ability of our232

analytical expression to accurately capture the time-dependent transmission rate233

3.2.1. College Alcohol Drinking234

Figure 8. Estimates of β(t) related to alcohol drinking college population, when µ = 0.

The available alcohol drinking data represent prevalence (proportion of cases at a235

certain time) and not incidence (new cases over time period). This is because the data236

is based on the survey where the drinking pattern estimates are obtained by asking237

individuals their drinking behavior during past one year. Hence, data can be interpreted238

as the number of individuals in certain drinking category at a particular time. Therefore,239

we use formula given in Equation (5) to estimate β(t). We assume that drinking is a240

result of social influences exerted by drinkers (I) on susceptibles (S) or social drinkers.241

Individuals recovered from drinking at a constant rate α (i.e., α(t) = α). The recovery is242

assumed to be permanent (i.e., γ(t) = 0). The incoming and departure rates are same243

(i.e. µ(t) = b(t) = µ) and p = 1. These assumption are reasonable in context of the type244

of data (college population) used here.245

Alcohol drinking data, obtained from Engs et al., 1997 and 1999, is given in the246

Table 5 [11,12] that represent the trend observed in national college drinking surveys.247

The recovery rate, α is taken to be 0.17 [4]. We estimate β(t) using simplified Equation248

(5) and above assumptions as follows249

β(t) ≈
I(t)−I(t−h)

hI(t) + α + µ− p̄µ
I(t)

(S(0) + I(0))e−µt − I(t) + e−µthc1
(20)

where

c1 =
f2(0) + f2(t)

2
+

n−1

∑
k=1

f1(kh), and

f2(x) = eµx[µ− αI(x)].

If µ = 0, this equation can be reduced, where f2 is −αI(x).250

We found that mean estimate of β is 1.04 (std=0.3; Table 5 see Appendix A.2251

and Figure 8) during 1982-94 for the national college drinkers. The estimates of β are252

comparable to the estimates obtained in the [4]. These estimates of β(t) are all contained253
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in 95% CI of the estimates in the [4], which are β0 = 1.69 (95% CI[0.63, 2.75]) and254

β2 = 0.75 (95% CI[0.29, 1.21]).255

Engs et al., 1994 and 1997 suggest that 65% of freshman are drinkers during the256

start of Fall semester. Hence, we assumed that 0.65 proportion of incoming students are257

drinkers, i.e., p = 0.35. We assumed negligible change in size of a college population258

and consider rate of enrollments equal to combined rate of graduation and drop out259

rates (i.e., b(t) = µ(t) = µ).260

3.2.2. Obesity Epidemic in US261

Figure 9. β(t) estimates of Obesity with initial (1997) prevalence of 19.5%.

We use model to see whether weight gain in one person is associated with weight262

gain in his or her family members and friends. Obese persons is an individual whose263

body-mass index (the weight in kilograms divided by the square of the height in meters)264

is greater than or equal to 30. It is found that there has been increasing number of265

obese persons in a community and a person’s chances of becoming obese increases266

dramatically if he or she had a parent, sibling, friend or spouse who became obese in a267

given interval [23]. The most reasonable explanations for the obesity epidemic, include268

changes in which luxuries and food consumption are being promoted in the society and269

has not spared any socioeconomic class. An obesity is a result of individual’s choice and270

behavior which is influenced by appearance and behavior of others in the community.271

Hence, it suggests that just like the spread of drug-use or infectious diseases, weight gain272

in one person might influence weight gain in other person. That is, it’s not that obese273

or non-obese people simply find other similar people to hang out with. This influence274

could be direct or indirect, which can vary continuously over time and may depend on275

demographic and social factors of the community as well.276

We used annual CDC data from references [17] and [13] to estimate parameters277

for our obese epidemic model. The data obtained from [24] include a age-adjusted278

prevalence of obesity in US using the projected 2000 U.S. population.279

The model assumes constant population and hence b(t) = µ(t) = µ. It is assumed280

that 6% of children are born obese [13]. The vale of recovery rate is assumed to be equal281

to an average of rate at which an overweight individuals move on diet (4.068× 10−3 per282

week [17]) and rate at which an obese individual stops or reduces bakery, fried meals283

and soft drinks consumption (4.4379× 10−3 per week [17]). We assume obesity reduces284

life span by 6 to 7 years. Hence if average life span in US is 78.4 years than average285

life span of at-risk population for obese is (78.4− 6.5) years. The estimated β from [17]286

ranges from 0.02 to 0.04. These estimates are much lower than our estimated values287

in Table 6 (see Appendix A.2) with range of (0.36, 3.02). This is because the region of288

our study differ from the region modeled by [17]. Our results suggest that estimates289
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of transmission coefficient increases with increase in µ and decrease in initial size of290

susceptible population, S(0).291

β(t) ≈
I(t)−I(t−h)

hI(t) + α + µ− p̄µ
I(t)

(S(0) + I(0))e−(γ+µ)t − I(t) + e−(γ+µ)thc2
(21)

where

c2 =
f3(0) + f3(t)

2
+

n−1

∑
k=1

f3(kh)

and

f3(x) = e(γ+µ)x[γ + µ− αI(x)].

4. Discussion292

Compartmental models have provided valuable insights into the epidemiology293

of many infectious diseases. Transmission coefficient, a product of contact rate and294

probability of transmission given a contact, is a parameter in the compartmental model295

which naturally varies over time. This coefficient had the greatest effect on predictions296

of dynamics of disease or social problem and difficult to estimate. However, due to lack297

of detailed data as well as complexities involved in numerical estimating this parameter,298

most studies estimate it as a time-independent parameter averaging it over the course of299

epidemic. In this study, we present a method to estimate time-dependent transmission300

rate using two types of data commonly reported during infectious disease outbreaks:301

the time series of the number of infectives (or prevalence) and the number of new cases302

generated during a period of time (or incidence). By deriving an analytical method303

that uses a standard deterministic model and these data sets to directly estimate β(t),304

this new approach resolves the computational challenges often involved with more305

complex model. By applying our approach to a number of infectious diseases, we306

illustrate applicability of our methods in various contexts. Moreover, similar approaches307

can be applied with any appropriate mathematical model to derive time-dependent308

transmission rate for diseases whose dynamics may need to incorporate other factors309

such as environment (for.e.g., Cholera) or vector-dynamics (for. e.g. dengue).310

Utility of approach presented in this manuscript is demonstrated using several311

public health problems including Ebola, Visceral Leishmaniasis, US college alcohol312

drinking and obesity outbreak in the US. In particular, we estimated the temporal313

estimates of transmission rate for Ebola during 2014–2016 outbreak in West Africa314

(aggregated) as well as for individual countries of Liberia, Guinea and Sierra Leone. Our315

results though limited by the accuracy of data, demonstrated the wide-variability in316

transmission risks across the three countries. Moreover, we found that our temporal317

estimates of transmission risk followed the pattern of incidence closely reflecting the318

substantial contribution of transmission risk towards the nature of disease progression.319

During the times of public health emergencies due to an infectious disease out-320

breaks such as Ebola outbreak in West Africa or ongoing COVID-19 pandemic, effective321

reproductive numbers are often estimated using incidence data to understand the pro-322

gression of disease and inform strategies to curb the transmission. While estimates of323

effective reproductive numbers are useful, combining it with estimation of time-varying324

transmission risk through our approach can be more informative to inform public health325

decision making. Transmission risk at a particular time is a product of contacts and326

probability of transmission. Thus it can be used to make short term predictions about327

new infections as well as it can inform how much reduction in contact patterns or328

risk of transmission (through mask/vaccination/hygiene) can reduce the transmission329

parameter sufficiently to reverse the trend of an epidemic.330
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In the current study, we used simple deterministic model along with simple in-331

tegration numerical techniques to show how commonly reported data (incidence and332

prevalence) can be utilized in informing temporal transmission risk, and thus manage333

public health challenges more effectively. Practical application of our approach would334

improve with use of more complex models (appropriate) as well more sophisticated335

integration techniques. Moreover, analytical derivation can be used to understand the336

impact of changes in any other input parameter (such as smaller/longer quarantine337

periods) on transmission risk in a straight-forward way. Similarly, an area of future338

research can expand presented framework to understand how incomplete data may339

alter the quality of parameter estimation. Therefore, value of analysis reported here is340

as a beginning point for future research that will build on current approach to develop341

computational models that can inform policies in swift manner during public health342

emergencies.343

We believe using our methods can provide good approximation of time dependent344

transmission coefficients and goodness of approximation should increase with use of345

more sophisticated numerical integration techniques.346
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Appendix A.434

Appendix A.1. Estimation of Time Dependent Transmission Coefficient using Synthetic435

Prevalence data436

We demonstrate our method of using prevalence data to estimate time dependent437

transmission coefficient using synthetic prevalence data generated with two particular438

choices of transmission coefficients (constant and seasonal with respect to time) and the439

model ((1) and (2)) with rest of parameters given by Table A1.440

Table A1. Parameters for generating synthetic prevalence data.

Parameters p b(t) γ(t) µ(t) α(t)

Values 1 33/1000 0 33/1000 0

We used two particular choice of transmission coefficients,441

1. β(t) = 200,442

2. β(t) = 200(1− ε cos 2πt), with ε = 0.1443

to generate daily prevalence data for five years and estimated monthly transmission444

coefficient using (5). The monthly estimates for time dependent transmission coefficient445

were reasonably accurate and close to the true values of the transmission coefficients446

used to generate prevalence data in both the cases when transmission coefficient was447

constant and when it was periodic (Figure 1).448
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Figure 1. Monthly estimates of transmission coefficients and their true values used to generate synthetic prevalence data for
a) constant transmission coefficient and b) periodic transmission coefficient.

Appendix A.2. Tables449
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Table 2. 2014-2016 Ebola outbreak in West Africa. Estimates of β(t) for incidence data.

West Africa Guinea Sierra Leone Liberia

Incidence: Incidence: Incidence: Incidence:
Date ω(t) β(t) ω(t) β(t) ω(t) β(t) ω(t) β(t)

20
14

31-Mar 5.1E-06 0.20 9.5E-06 2.93 0 0 1.7E-06 0.03
30-Apr 4.8E-06 0.19 9.3E-06 2.78 0 0 1.1E-06 0.02
28-May 3.2E-06 0.13 5.1E-06 1.50 2.2E-06 0.05 0 0
24-Jun 1.2E-05 0.49 9.3E-06 2.68 1.9E-05 0.47 8.5E-06 0.16
31-Jul 3.1E-05 1.23 6.0E-06 1.69 5.1E-05 1.24 6.1E-05 1.12

28-Aug 7.3E-05 2.89 1.6E-05 4.41 6.7E-05 1.62 2.3E-04 4.14
26-Sep 1.5E-04 5.62 3.6E-05 9.35 1.4E-04 3.20 4.5E-04 7.75
31-Oct 3.0E-04 10.38 5.1E-05 11.74 4.5E-04 10.01 6.7E-04 10.50
28-Nov 1.5E-04 4.92 4.2E-05 8.75 2.4E-04 4.98 2.4E-04 3.51
31-Dec 1.4E-04 4.33 4.7E-05 9.08 3.2E-04 6.23 8.4E-05 1.20

20
15

28-Jan 8.0E-05 2.42 1.8E-05 3.26 1.5E-04 2.74 1.3E-04 1.87
25-Feb 6.9E-05 2.06 2.0E-05 3.58 1.1E-04 1.96 1.3E-04 1.88
31-Mar 6.3E-05 1.84 2.9E-05 4.88 9.2E-05 1.66 1.0E-04 1.43
29-Apr 4.7E-05 1.37 7.3E-06 1.21 5.8E-05 1.04 1.3E-04 1.81
31-May 3.6E-05 1.03 6.3E-06 1.03 5.9E-05 1.04 7.5E-05 1.01
30-Jun 1.7E-05 0.48 7.9E-06 1.29 4.1E-05 0.73 0 0
31-Jul 1.3E-05 0.36 3.1E-06 0.50 3.5E-05 0.62 1.3E-06 0.02

31-Aug 9.5E-06 0.27 7.7E-07 0.12 2.9E-05 0.52 0 0
29-Sep 1.4E-05 0.39 1.3E-06 0.21 4.2E-05 0.74 0 0
30-Oct 6.7E-06 0.19 2.6E-07 0.04 2.1E-05 0.37 0 0
30-Nov 2.3E-06 0.07 0 0 7.5E-06 0.13 6.6E-07 0.01
30-Dec 0 0 0 0 0 0 0 0

20
16

27-Jan 8.5E-08 2.44E-03 0 0 2.7E-07 4.81E-03 0 0
17-Feb 0 0 0 0 0 0 0 0
30-Mar 3.0E-07 0.01 6.0E-07 0.10 0 0 0 0
13-Apr 2.5E-07 0.01 2.6E-07 0.04 0 0 6.6E-07 0.01

Table 3. 2005 Visceral Leishmaniasis incidence data from Bihar, India. Estimates of β(t) of models
with and without demography.

Month Incidence S(0): 0.1 0.5 0.8 0.1 0.5 0.8
(ω(t)) β(t) : µ = 0 β(t) : µ = 0.00138

Jan 3.4E-05 0.44 0.09 0.05 0.42 0.08 0.05
Feb 6.2E-05 0.92 0.18 0.11 0.88 0.18 0.11
Mar 1.0E-04 1.65 0.33 0.21 1.57 0.32 0.20
Apr 1.2E-04 1.97 0.39 0.25 1.87 0.39 0.24
May 1.3E-04 2.10 0.42 0.26 1.98 0.41 0.26
June 1.0E-04 1.76 0.35 0.22 1.64 0.35 0.22
July 1.1E-04 1.98 0.39 0.25 1.83 0.39 0.24
Aug 9.5E-05 1.71 0.34 0.21 1.57 0.34 0.21
Sept 9.2E-05 1.73 0.34 0.22 1.58 0.34 0.17
Oct 6.8E-05 1.36 0.27 0.17 1.23 0.27 0.17
Nov 6.5E-05 1.41 0.28 0.17 1.25 0.28 0.17
Dec 9.2E-05 2.06 0.41 0.26 1.82 0.40 0.26
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Table 4. Estimates of β(t) using incidence data from the 2003 Severe Acute Respiratory Syndrome (SARS) epidemic in Hong Kong.

Date Incidence Date Incidence Date Incidence
ω(t) β(t) ω(t) β(t) ω(t) β(t)

14-Feb 1.5E-07 8.11E-04 23-Mar 1.6E-05 1.49E-01 29-Apr 1.5E-06 1.33E-02
15-Feb 0 0 24-Mar 1.6E-05 1.31E-01 30-Apr 2.9E-07 2.73E-03
16-Feb 0 0 25-Mar 1.2E-05 8.84E-02 1-May 7.3E-07 7.06E-03
17-Feb 1.5E-07 9.07E-04 26-Mar 9.1E-06 6.34E-02 2-May 1.0E-06 1.02E-02
18-Feb 0 0 27-Mar 7.8E-06 5.25E-02 3-May 7.3E-07 7.45E-03
19-Feb 1.5E-07 9.78E-04 28-Mar 5.9E-06 3.90E-02 4-May 4.4E-07 4.61E-03
20-Feb 1.5E-07 1.01E-03 29-Mar 4.7E-06 3.10E-02 5-May 7.3E-07 7.92E-03
21-Feb 1.5E-07 1.05E-03 30-Mar 7.8E-06 5.08E-02 6-May 7.3E-07 8.15E-03
22-Feb 1.5E-07 1.09E-03 31-Mar 5.9E-06 3.78E-02 7-May 1.3E-06 1.50E-02

23-Feb 1.5E-07 1.13E-03 1-Apr 3.8E-06 2.46E-02 8-May 4.4E-07 5.14E-03
24-Feb 4.4E-07 3.51E-03 2-Apr 5.1E-06 3.32E-02 9-May 5.9E-07 7.06E-03
25-Feb 1.5E-07 1.21E-03 3-Apr 5.0E-06 3.22E-02 10-May 2.9E-07 3.64E-03
26-Feb 1.5E-07 1.26E-03 4-Apr 6.2E-06 3.95E-02 11-May 7.3E-07 9.38E-03
27-Feb 1.5E-07 1.30E-03 5-Apr 6.5E-06 4.10E-02 12-May 4.4E-07 5.79E-03
28-Feb 2.9E-07 2.70E-03 6-Apr 5.9E-06 3.69E-02 13-May 4.4E-07 5.97E-03
1-Mar 5.9E-07 5.58E-03 7-Apr 4.1E-06 2.58E-02 14-May 4.4E-07 6.16E-03
2-Mar 7.3E-07 7.19E-03 8-Apr 3.5E-06 2.24E-02 15-May 4.4E-07 6.35E-03
3-Mar 2.9E-07 2.97E-03 9-Apr 3.1E-06 1.98E-02 16-May 1.5E-07 2.19E-03

4-Mar 4.4E-07 4.60E-03 10-Apr 4.7E-06 3.04E-02 17-May 2.9E-07 4.52E-03
5-Mar 4.4E-07 4.76E-03 11-Apr 3.4E-06 2.20E-02 18-May 0 0
6-Mar 2.5E-06 2.74E-02 12-Apr 3.1E-06 2.03E-02 19-May 1.5E-07 2.43E-03
7-Mar 4.1E-06 4.49E-02 13-Apr 2.6E-06 1.77E-02 20-May 2.9E-07 5.02E-03
8-Mar 5.0E-06 5.34E-02 14-Apr 4.1E-06 2.78E-02 21-May 7.3E-07 1.29E-02
9-Mar 5.0E-06 5.21E-02 15-Apr 3.4E-06 2.30E-02 22-May 1.5E-07 2.65E-03
10-Mar 1.8E-06 1.83E-02 16-Apr 2.6E-06 1.82E-02 23-May 0 0
11-Mar 3.1E-06 3.23E-02 17-Apr 3.4E-06 2.36E-02 24-May 1.5E-07 2.85E-03
12-Mar 2.9E-06 3.07E-02 18-Apr 2.5E-06 1.77E-02 25-May 1.5E-07 2.95E-03

13-Mar 2.4E-06 2.47E-02 19-Apr 1.9E-06 1.38E-02 26-May 1.5E-07 3.05E-03
14-Mar 3.8E-06 4.01E-02 20-Apr 1.0E-06 7.60E-03 27-May 1.5E-07 3.16E-03
15-Mar 3.7E-06 3.82E-02 21-Apr 1.8E-06 1.34E-02 28-May 1.5E-07 3.27E-03
16-Mar 5.0E-06 5.11E-02 22-Apr 2.2E-06 1.70E-02 29-May 0 0
17-Mar 4.0E-06 3.99E-02 23-Apr 1.6E-06 1.27E-02 30-May 2.9E-07 7.00E-03
18-Mar 1.9E-06 1.93E-02 24-Apr 1.9E-06 1.54E-02 31-May 0 0
19-Mar 3.7E-06 3.72E-02 25-Apr 1.9E-06 1.57E-02 1-Jun 0 0
20-Mar 2.8E-06 2.82E-02 26-Apr 1.2E-06 9.87E-03 2-Jun 0 0
21-Mar 3.8E-06 3.85E-02 27-Apr 1.9E-06 1.64E-02 3-Jun 0 0
22-Mar 4.6E-06 4.53E-02 28-Apr 4.4E-07 3.88E-03

Table 5. Alcohol drinking data and estimates of β(t).

Years 1982 1985 1988 1991 1994

Drinkers (I(t)) 52% 51% 49% 46% 47%
β(t) when µ = 0 − 0.85 0.84 0.90 1.54
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Table 6. Age-adjusted Prevalence of Obesity in US using the projected 2000 U.S. population [24].

Year 1997 1998 1999 2000 2001 2002
Prev. (%) 19.5 20.6 21.5 21.8 22.9 23.8

Year 2003 2004 2005 2006 2007 2008
Prev (%) 23.5 24.3 25.3 26.2 26.6 27.5
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