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Abstract: Various procedures are in use to calculate excess deaths during the ongoing COVID-19
pandemic. Using weekly death counts from 20 European countries, we evaluate the robustness of
excess death estimates to the choice of model for expected deaths and perform a cross-validation
analysis to assess the error and bias in each model’s predicted death counts. We find that the different
models produce very similar patterns of weekly excess deaths but disagree substantially on the level
of excess. While the exact country ranking along percent excess death in 2020 is sensitive to the
choice of model the top and bottom ranks are robustly identified. On the country level, the 5-
year average death rate model tends to produce the lowest excess death estimates, whereas high
excess deaths are produced by the popular 5-year average death count and Euromomo-style Serfling
models. Cross-validation revealed these estimates to be biased under a causal interpretation of
"expected deaths had COVID-19 not happened."
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Introduction

The concept of "excess deaths" became widely known in 2020. Early in the year, international
newspapers reported weekly death counts that were notably elevated compared to previous years
[30, 33]. In a situation where tests for COVID-19 were scarce and the underlying cause of death
often hard to determine, excess deaths proved to be a rational means of monitoring the direct and
indirect mortality impact of the ongoing COVID-19 pandemic with minimal data requirements
[16]. Since the start of the pandemic, the literature on excess deaths has been growing fast and
already features international comparisons and rankings owing to the readily available data on
death counts for many countries [14, 12, 22, 4]. However, despite the prominence and relevance
of the measure, the excess death methodology is far from standardized with different definitions
of excess deaths and different models used to estimate an expected death counts against which the
excess is judged. This eclectic state of the art begs the questions on robustness and bias of excess
death estimates and cross-country comparisons under various analysis strategies.

Given data from 20 European countries, we will assess how excess death measures in the year
2020 vary under different modeling choices for the expected number of deaths. Furthermore, we
test the models for bias in their predicted weekly and annual death counts using a time-series
cross-validation setup. While the lack of consensus extends beyond the model specification to the
very definition of excess deaths, we will focus entirely on the impact of model specification and
define excess as observed minus expected, allowing the measure to be negative.

As the literature on excess deaths in 2020 is dominated by simple average or regression-based
approaches, we will restrict our attention to this class of models, focusing on the effect of different
specifications. Models based upon multi-year averages are prominently employed by newspapers
and statistical offices and featured in the academic literature [5, 17, 18, 20]. While simple and easy
to communicate, these procedures do not adjust for time trends in the death counts or rates. This
issue is addressed by the Serfling model [27], which in various specifications has been applied
to quantify covid related deaths [3, 31, 32, 9, 12]. Generalized additive models relax the strict
specifications of the Serfling model and allow for smooth long-term and seasonal effects [1, 26].
These models may be further elaborated via the inclusion of temperature effects, autoregressive
residuals, adjustments for bank holidays, and Bayesian inference [14].

Having chosen 9 model specifications reflecting the heterogeneity in the literature (Table 1), we
probe each model for a tendency to produce high or low estimate of expected and conversely
excess deaths, both weekly and total. We ask if the ranking of European countries along the total
percentage of excess deaths in 2020 differs under different baseline models, and we identify those
countries where there is disagreement about the existence of excess deaths among the models.

When excess death numbers vary by model, the question arises which model to trust. In line with
[14] and [19] we argue that the challenge of estimating the expected number of weekly deaths in
the year 2020, given that COVID had not occurred, is a classical forecasting challenge, and thus,
any model can be validated by testing its predictions on past data. To that end, we construct a
cross-validation challenge, where each model is fitted on seven years of weekly death counts and
is then tasked to predict the next 52 weeks from that series. The error and bias of any model
can then be estimated by comparing the model predictions with the observed data. If a model’s
predictions over past years tend to over/underestimate observed death counts, we argue that this
model also over/underestimates the expected deaths in 2020 under the counterfactual no-COVID
scenario, thereby biasing excess deaths.


https://doi.org/10.1101/2021.06.04.21258353
http://creativecommons.org/licenses/by/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2021.06.04.21258353; this version posted June 9, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license .

Data and Methods

Raw and derived data

To replicate the more elaborate expected death regression models, we collected cross-country data
on weekly death counts and population exposure by age and sex, along with information on the
timing of public holidays and weekly population-weighted temperature anomalies (Figure S.2).

Age and sex-specific weekly death counts by country were sourced from the Short-term Mortality
Fluctuations (STMF) database [13, 21]. We selected all European countries with data going back
to at least 2007. As we are using the Mean Absolute Percentage Error (MAPE) measure to report
on prediction error, we needed to ensure strictly positive weekly death counts. We thus excluded
Estonia, Iceland, and Luxembourg from the analysis and summed deaths into age categories O to
65, 65 to 75, 75 to 85, and 85+.

Person-weeks of population exposure by country, sex, and age were derived from mid-year popula-
tion estimates from the Human Mortality Database [11]. We summed these estimates into the target
age groups and then interpolated over the weeks of a year by fitting a cubic spline and extrapolating
linearly to the end of 2020. Integrating the spline over single weeks yielded person-weeks of
exposure.

Population weighted weekly temperature anomalies were calculated from global gridded tempera-
ture [7] and population data [6]. First, we calculated the average weekly temperature per grid cell
from the daily measurements and then weighted these measurements by the population size in the
same grid cell. We then selected all grid-cells overlapping with the area of a given country and cal-
culated the country’s population-weighted average weekly temperature. By averaging the weekly
temperatures over multiple years, we established an expected temperature. A country’s weekly
population-weighted temperature anomalies were then derived by subtracting this long-term trend
from the weekly temperature in a given year.

We used the "Nager.Date" software [10] to determine for each week, year, and country the oc-
currence and type of a public holiday, distinguishing between Christmas, Easter, New Year, and
"other" types of public holidays.

Model choice

Expected deaths and associated excess deaths statistics were computed under nine different models
listed in Table 1. The models were chosen to represent the range of approaches in the literature
on excess deaths estimation since the start of the pandemic, from very simple to elaborate. All
models predict age and sex specific expected death counts and are fitted separately for each of the
20 countries.
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Table 1: Models for weekly expected deaths.

Model Description References
Weekly averages Average over the weekly deaths [20], [29], [5]
(AVGCcS) 5 year average death counts or rates in the preceding

counts 5 years implemented as

(AVGr5) 5 year average death quasi-Poisson GLM with

rates week-of-year coefficients

Serfling Model Quasi-Poisson regression on [31, [311, [32], [9], [12]
(SRFc) without exposures death counts with log-linear long

(SRFcem) Euromomo style, i.e.  term trend, AIC selected

no exposures, fitted only on Fourier-term seasonality, and

weeks without flu-activity public-holiday coefficients

(SRFr) with exposures

Generalized Additive Model Quasi-Poisson regression on [1], [26]
(GAMr) without temperature death counts with log-linear long

anomaly predictor term trend, penalized cyclical

(GAMTrt) with temperature spline seasonality, and

anomaly predictor as smoothly public-holiday coefficients
varying coefficient over week of

year
Latent Gaussian Model Bayesian Poisson regression on  [14]
(LGMr) without temperature death counts with autoregressive
anomaly predictor trend, non-parametric

(LGMrt) with temperature time-varying seasonality, and

anomaly predictor as varying public-holiday coefficients

coeflicient over week of year
implemented as cyclic random
walk

With the exception of the Latent Gaussian Models (LGMr, LGMrt) all models were specified as
quasi-Poisson regressions on weekly death counts D; of the form

D; ~ Pois(4;, ¢)
1
Ai = exp(1;), b

where A; is the expected death count, ¢ is the dispersion factor, and 7; is the linear predictor on a
log-scale. While we considered employing the negative binomial distribution instead, convergence
issues due to sporadic underdispersion informed our choice of the more robust quasi-Poisson model.

For the 5 year average death count model (AVGcS) we specified

Ni = Qj[ilwli]» ()
where a@;;},[; is a coeflicient for iso-week w and sexxage stratum j of observation i within some
country. The model was fit over a period of five years.

Log-person-weeks exposure log(E;) were added as an offset to (2), yielding the 5 year average
death rate model


https://doi.org/10.1101/2021.06.04.21258353
http://creativecommons.org/licenses/by/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2021.06.04.21258353; this version posted June 9, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license .

ni = &j[ijwli) +10g(E;). 3)
The Serfling with exposures (SRFr) model was specified as

ni =aji) + Bjiti+
2n 27r 2n
Y1,j[i] Sin 52Wl +Y2,j[i] COS 52 (| +v3,j[i] Sin 26Wl + Y4, j1i] Sin 26w,~ + @)

O i1k +1og(E;).

Model (4) features log-linear time trends 3 [;; over weeks #; since the earliest observation, parametric
seasonal effects y[;;, and the effect of a public holiday 6 ;{;j«[;) on the expected death counts, where
k denotes the type of holiday. The model is completely stratified over sex and age groups j. Within
each stratum we selected the number of seasonal terms (no seasonality or yj 2 or y1234) via AIC
using the likelihood from an initial Poisson regression without overdispersion. Omitting the term
log(E;) from (4) yields the Serfling without exposures (SRFc) model. For the Euromomo style
Serfling model (SRFcem) we dropped the exposure as well and only fitted the model on weeks 15
through 26 and 36 through 45. All Serfling models were fitted via the glm function in R.

The Generalized Additive Model with temperature anomaly (GAMrt) allows for non-parametric,
smooth seasonal effects and adjusts for the effect of extreme temperature on weekly death counts.
We specified the model as

ni = ;) + Bt + Vitiwli) + VwliTi + 61k +1og Ei, )

where y(ijwii] = fj[i] (W) is a stratum specific seasonality term implemented as a cyclical penalized
spline with 12 knots spaced in equal distance over the weeks of a year w;, and v,,[;; = g(w;) is the
temperature anomaly coefficient varying smoothly over w; in a cyclical fashion. For the Generalized
Additive Model without temperature anomaly (GAMr) we omitted this term. Analogous to the
model (4) we specified a log-linear trend, public holiday intercepts, and an offset controlling for
population exposure. The model was fitted via the gam function from the mgcv library in R.

The Latent Gaussian Model with temperature anomaly (LGMrt) follows the specification by [14].
It features a nonparametric seasonal effect which may vary over time and an autoregressive trend.
The model is fitted separately by age group and sex and, omitting the subscript j[i], can be written
as

Dl' ~ POiS(/ll')

A; = exp(n;) (6)
N =a + Bt; + Gy + Vi) + Vwli) i + Okpi) + & +10g E;,

where ft; is a simple log-linear trend over time and {;[;; ~ Norm(¢{;[;1-1,0" ) is a first order
autoregressive trend. In contrast with the other models over-dispersion is dlrectly included in the
linear predictor in form of the unstructured error term & ~ Norm(0, o2). Seasonality is captured
with a time-varying random coefficient y,[;), following [23] section 3.5, where the summed effect
of every consecutive series of 52 weeks on mortality is distributed as Zi io Yi[i]+s ~ Norm(0, 0'3).
The effect of temperature anomalies on weekly mortality is captured by the varying coefficient
vwli] ~ Norm(vy[i]-1, 0'3), specified as a circular first order random walk over week of year.
The temperature effect was dropped for the Latent Gaussian Model without temperature anomaly
(LGMr). The models were fitted with the INLA library [24, 25] in R.
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Excess death measures

We defined excess deaths D* in a given week ¢ and stratum j as D = D;j — A;j, where D is the
observed death count and A are the expected deaths under a given model This definition as a model
residual allows to capture mortality displacement effects where a positive excess in part of the year
can be followed by negative excess in later weeks. The total number of excess deaths over period
[a, b] are given by D*[‘a’b]’j = Diap),j — A[ab].j» Where D, p, Z, o Dijand Apg p, Z, a i)
Following a common strategy, expected and observed deaths were summed over strata to estimate
the excess at a higher aggregation level [3, 1, 14, 31].

To facilitate comparisons between countries, we report the weekly percentage increase of observed

D*.

deaths over expected deaths, P;; = T’{, the so-called "P-score". For a sequence of weeks [a, b]
J

we calculated the cumulative P-score from the total excess and expected deaths over that period,

Digp),j
Aa,plj

Plap),j =

Prediction intervals

Prediction intervals around the measures of excess death were computed via simulation. We first
sampled 500 sets of parameter estimates, s = {1,...,500}, either from a multivariate normal
distribution Norm(, X), with B being the vector of estimated parameters, and X the variance-
covariance matrix of the fitted model, or, in case of the Latent Gaussian Models, from the posterior
distribution of the parameters. For each of the 500 simulated sets of parameters we calculated
the expected weekly death count A7 y and then sampled a single simulated death count d7 y from
a negative-binomial distribution with mean equal to 4} i and variance equal to /lf]x/), matching
the characteristic moments of the quasi-Poisson dlStI'lbuthIl. In case of under-dispersion, where
¢ < 1, and for the Latent Gaussian Models, we sampled from a Poisson distribution with rate A; ..
The simulated death counts d; . were then substituted into the excess death formulas in place of the
expected deaths A;; and the resulting distribution of excess summarized by its quantiles.

Cross-validation

In order to assess the accuracy of the predicted death counts from each model we performed a
cross-validation analysis. Time series of weekly death counts and co-variates were split into five
cross-validation sets (Figure S.1). The training period starts at week 27 of a year and ends after
seven fully observed summer to summer seasonal cycles with the beginning of week 8 of a year.
After fitting the model, weekly death counts were predicted for 45 weeks following week 8 of
the last year in the training set. The starting years for the five cross-validation series were 2007
to 2011. This particular cross-validation setup has been chosen to mirror the task of predicting
weekly deaths in 2020, given data observed until shortly before the outbreak of the pandemic.

We compared the expected death counts A; with the observed death counts D; in the test set

and quantified the prediction bias via the mean percentage error, MPE = 1/n 3" , , and the

[Di /1|
D;

D;
prediction error via the mean absolute percentage error, MAPE = 1/n 3! | , where i runs

over the n predictions in the five test sets.

All predictions were made by country, week, sex, and age. To facilitate presentation we first
summed the observed and predicted death counts a) over weeks, sex, and age (annual deaths by
country), and b) over sex and age alone (weekly deaths by country), then calculated the aggregated
prediction bias and error by country, and finally summarized the distribution of these aggregated
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measures of model fit across countries via quantiles. Stratum-specific prediction errors can be
found in the appendix.
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Results

Figure 1: Weekly and cumulative excess death percentage as predicted from 9 different models
during the year 2020 weeks 8 through 52 for 20 European regions. Note: Points indicate weekly
excess percentages. Cumulative excess percentages are indicated by curves and derived from
cumulated observed and expected deaths. The labels refer to the range of predicted percent
excess over the entire analysis period. Y-axis truncated at 60%.
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Models agreed on the weekly pattern of excess deaths but differed in the estimated level of excess
(Figure 1). The following weekly patterns were identified by all models: Austria, Switzerland and
the Eastern European countries suffered higher weekly peak excess deaths in fall and winter than in
spring. The situation was reversed in France, Netherlands, Scotland, Spain, and Sweden, with lower
levels of weekly percent excess in the second half of the year. Belgium and Portugal experienced
three distinct waves of pronounced excess death in 2020. Disagreement among models regarding
the level of country specific weekly and annual percent excess deaths in 2020 was typically around
5%, but could reach double digits within some age and sex strata (Figures S.3-S.10). Consequently,
models disagreed at times regarding the existence of significantly elevated annual percent excess
(P2020 > 0 with probability > 0.95). On the country level we found such disagreement only in
Denmark, Finland, Latvia, and Norway, countries with relatively few registered COVID deaths.
Within age and sex strata model disagreement was more widespread, affecting 15 out of 20
countries. Belgium, Spain, Scotland, Portugal, and Slovenia were the only countries where all
nine models agreed, within all age and sex strata, that annual percent excess deaths have been
significantly elevated above zero in 2020. On the country level the average death rate model
(AVGrS5) produced the lowest annual percent excess death estimates in 18 out of 20 countries,
whereas the maximum varied, with the Euromomo style Serfling (SRFcem) and the average death
count model (AVGcS) producing the highest excess in 13 out of 20 countries.

Figure 2: Country ranking of excess death percentage during the year 2020 weeks 8 through 52
under 9 different models.
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The ranking of countries along the percent excess deaths in 2020 changed between models (Figure
2). All models agreed on the five countries with the highest annual percent excess (Poland, Spain,
Belgium, Slovenia, Czech Republic) and on the four least affected countries (Finland, Latvia,
Denmark, Norway). There was substantial disagreement regarding the middle ranks with Hungary,
Lithuania, Sweden, Slovakia, Austria, Hungary, Netherlands, and Portugal jumping by more than
5 positions between models. Ranks under the Serfling with exposures (SRFr) and Generalized
Additive Models (GAMr, GAMrt) exhibited high agreement. Within age and sex strata we observed
more drastic changes in rank across models, but again with good agreement concerning the top and
bottom ranks (Figure S.11).

Figure 3: Percent differences of predicted death counts from various models against the 5-year
average weekly death count model prediction. Note: The prediction differences were summarised
across countries by the 0.25, 0.5, and 0.75 quantiles.
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We compared the 5-year average death count model (AVGcS, the reference) to various other
models concerning the expected number of deaths in 2020 (Figure 3). With the exception of the
Euromomo Serfling model (SRFcem), all models tended to predict higher numbers of weekly and
annual deaths compared to the average death count (AVGcS) model. The 5-year average death
rate model (AVGrS) gravitated towards the highest expected death counts, with annual predictions
being higher by 3.1 to 5.1% compared to the reference for half of the countries. We also found
rather high baseline estimates for the Latent Gaussian Models (LGMr, LGMrt) and the Serfling
without exposures (SRFc) model. Within population strata results varied. The tendency for the
AVGcS5 model to produce low expected death counts was most pronounced in the age group 85+,
but clearly reversed in the age group O to 65. Likewise, the tendency for the AVGr5 model to
produce high estimates of excess was present in all age groups but the highest (S.12).
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Figure 4: Bias (MPE, bold) and error (MAPE, italic) by model when predicting death counts on
test data. Note: The error and bias measures were summarised across countries by the 0.25,
0.5, and 0.75 quantiles.
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The cross-validation study confirmed the substantial biases of the Serfling Euromomo regression
and the 5-year average death rate and count models (Figure 4). While the average rate model
(AVGr)) consistently displayed the highest propensity among all models to overestimate annual or
weekly deaths on the country level, the average count (AVGcS) and the Serfling Euromomo models
(SRFcem) underestimated deaths. The lowest bias was presented by the models GAMr and SRFr.
For both models the average percentage error when predicting annual death counts was between
—1% and 0.2% for half of the countries with similar results for week-by-week predictions. Omitting
the population structure term from a Serfling model increased the prediction bias as seen for model
SRFc. Between sex and age strata the relative model performance when predicting annual deaths
often varied with model AVGce5 changing direction of the bias over age and model SRFcem being
comparably unbiased in the age group 85+ (Figure S.13). Models GAMr and SRFr consistently
displayed low bias across strata. We found no evidence that the inclusion of a temperature variable
decreased the prediction bias. The Latent Gaussian models (LGMr, LGMrt) exhibited a tendency
for overprediction, but less severe than seen with model AVGrS.

Prediction errors tended to more than double going from annual to weekly predictions and varied
across countries (Figure 4). Annual death counts were predicted with a MAPE ranging from
1.9-3.4% across models, increasing to 4.2-5.9% for the weekly predictions. Notably, the annual
country level predictions from the simple AVGc and the biased SRFcem model exhibited low
MAPEs. This result however, did not extend to annual predictions by age and sex, where both
models showed varying biases and comparatively high errors (Figure S.13). Because the annual
predictions were aggregated from the stratum specific predictions, this suggests a potential for
errors to cancel out in the aggregation process. Within strata the GAM and SRFr models exhibited
the lowest error when predicting annual deaths and the relative disadvantage of the LGM models
increased with age. Omitting the exposure variable from the Serfling model increased the MAPE.
The inclusion of a temperature effect did not consistenly decrease the prediction error.

10
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Discussion

No matter the chosen model, in 2020, deaths across Europe have been unusually elevated, exhibiting
a weekly pattern closely following the course of the COVID-19 pandemic in the different countries.
Other inferences, however, are less robust to the choice of model. Depending on how the expected
deaths were calculated, one may have either Poland or Spain as the worst affected country, Denmark
may or may not have had significantly elevated death counts, annual deaths among Slovakian males
ages 85+ may be increased by as little as 4% to as much as 15%, and death counts following
the first wave of the pandemic may have returned to expected levels or dropped into a "mortality
deficit." Thus, short of a standard procedure of specifying expected deaths, robustness checks are
crucial. In the simplest case, such a check could be based upon expected deaths via 5-year average
weekly death rates and alternatively a Serfling model similar to the Euromomo implementation, as
we found these two approaches to have opposite biases, with predictions from other methods often
falling in-between.

The Euromomo model is designed to predict death counts as expected under exceptionally mild
seasonal mortality increases, thus resulting in high estimates of excess death. While this makes
the Euromomo approach very useful for monitoring influenza-related mortality, the baseline is
biased if interpreted as "expected deaths in the absence of the COVID-19 pandemic", as the typical
seasonal increase in deaths is not as shallow as predicted under Euromomo. The technical reason
for the low Euromomo predictions during fall and winter is the exclusion of weeks with likely
influenza activity from the model fitting. If the modeling goal is mortality forecasting, as under
the counterfactual no-COVID scenario, then fitting seasonal regression models over all weeks of a
year reduces the bias in the forecasted death counts.

A lack of adjustment for continuous mortality improvements, as have been observed across Europe
up until 2020 [15, 2], explains the tendency of the average death rate model towards low estimates of
excess. By simply averaging declining death rates over time, one overestimates expected mortality
for the current year, thus underestimating excess. Claims of no excess deaths based upon averaged
weekly death rates should therefore be checked for robustness against the inclusion of a time trend.

Two opposing time-trends explain the bias of the ubiquitous average weekly death count model:
increasing deaths due to population aging and decreasing deaths due to mortality improvements.
As the model adjusts for neither trend, it may be biased in either direction, depending on the relative
size of either effect in any given country, although we found a slight tendency towards high excess
death estimates across Europe. The lower overall bias when averaging counts instead of rates
suggests that errors due to non-adjusted time trends cancel to some degree, demonstrating that an
incomplete adjustment to trends can be worse than no adjustment at all.

A major challenge faced by every model is to estimate the magnitude of the future seasonality. In
the absence of information about influenza activity, all models just predicted an average seasonality
for the following Fall and Winter, possibly with minor temperature adjustments. Whether or not
an influenza predictor should be included when estimating excess deaths over the COVID-19
pandemic depends on the purpose of the analysis: causal inference or mortality monitoring. A
causal estimate of the direct and indirect effects of the pandemic on overall mortality can not
accommodate observed influenza activity past the beginning of the pandemic as this variable is
itself influenced by the "treatment," i.e., COVID-19 and associated mitigation measures [8, 28]. Ina
counterfactual world where the COVID-19 pandemic did not happen, influenza activity throughout
2020 may have been different. For mortality monitoring purposes, however, the inclusion of an
influenza predictor is admissible as the question is whether the currently observed death counts are
unusual given the currently observed levels of influenza.
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How many deaths would we have expected in 2020 if this would have been a typical year? This
definition of expected deaths allows to discriminate between suitable and unsuitable models on
empirical grounds: We want a model that excels at short-term forecast of weekly death counts.
While robustness checks and model averaging are pragmatic way to deal with model specification
uncertainty, models of expected deaths are not beyond scrutiny — like other prediction models, they
can and should be put to the test. Further research into "short-term mortality prediction" promises
a better understanding of systematic biases across different model specifications, which can then be
synthesized into a set of best practices when modeling expected deaths in the absence of unusual
events.
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Supplementary materials

Supplementary figures

Figure S.1: Rolling origin five-fold cross-validation setup mirroring the task of predicting weekly
deaths past the beginning of the COVID pandemic given pre-pandemic data.
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Figure S.2: Population weighted weekly temperature anomaly by country.
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Figure S.3: Female percent excess deaths for ages 0 to 65 as predicted from 9 different models
during the year 2020 weeks 8 through 52 for 20 European regions.
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Figure S.4: Female percent excess deaths for ages 65 to 75 as predicted from 9 different models

(Cumulative) weekly excess death percentage

during the year 2020 weeks 8 through 52 for 20 European regions.

Austria Belgium Croatia

+30 SRFcem

+13 AVGrS

Denmark Finland France

+16 AVGch
+7 AVGr5

Latvia Lithuania Netherlands

+19 SRFcem +10 AVGC5

3 AVGGS +3 SRFc

Czech Republic

Hungary

Norway

Poland Portugal Scotland

+37 SRFcem
+12 SRFcem
+6 AVGr5

+19 AVGr5

Slovenia Sweden

+19 SRFcem

+2 GAMrt
-6 SRFc

+7 AVGr5

Slovakia

Switzerland

Feb Apr Jun Aug Sep NovFeb Apr Jun Aug Sep NovFeb Apr Jun Aug Sep NovFeb Apr

19

Jun Aug Sep Nov


https://doi.org/10.1101/2021.06.04.21258353
http://creativecommons.org/licenses/by/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2021.06.04.21258353; this version posted June 9, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license .

Figure S.5: Female percent excess deaths for ages 75 to 85 as predicted from 9 different models
during the year 2020 weeks 8 through 52 for 20 European regions.
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Figure S.6: Female percent excess deaths for ages 85+ as predicted from 9 different models during
the year 2020 weeks 8 through 52 for 20 European regions.
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gure S.7: Male percent excess deaths for ages 0 to 65 as predicted from 9 different models
during the year 2020 weeks 8 through 52 for 20 European regions.
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Figure S.8: Male percent excess deaths for ages 65 to 75 as predicted from 9 different models
during the year 2020 weeks 8 through 52 for 20 European regions.
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Figure S.9: Male percent excess deaths for ages 75 to 85 as predicted from 9 different models
during the year 2020 weeks 8 through 52 for 20 European regions.

Austria Belgium Croatia Czech Republic

N
o
o

-
ul
o

100

a
o

+24 SRFcem
+13 AVGr5

o

Denmark Finland France Hungary
200

150

(Cumulative) weekly excess death percentage

_
o
o

+19 SRFcem
+11 AVGr5

+12 SRFcem

-4 AVGrb

Latvia Lithuania Netherlands Norway

+24 SRFcem
+10 AVGr5

Poland Portugal Scotland Slovakia

+17 SRFcem
+10 AVGr5

Slovenia Sweden Switzerland

+20 SRFcem +25 SRFcem

+11 AVGrS +5 AVGI5

Feb Apr Jun Aug Sep NovFeb Apr Jun Aug Sep NovFeb Apr Jun Aug Sep NovFeb Apr Jun Aug Sep Nov

24


https://doi.org/10.1101/2021.06.04.21258353
http://creativecommons.org/licenses/by/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2021.06.04.21258353; this version posted June 9, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license .

Figure S.10: Male percent excess deaths for ages 85+ as predicted from 9 different models during
the year 2020 weeks 8 through 52 for 20 European regions.
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Figure S.11: Within-stratum country ranking of excess death percentage during the year 2020
weeks 8 through 52 under 9 different models.
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Figure S.12: Within-stratum percent differences of predicted annual death counts from various
models against the 5-year average weekly death count model prediction. Note: The prediction

differences were summarised across countries by the 0.25, 0.5, and 0.75 quantiles.
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Figure S.13: Within-stratum bias (MPE, bold) and error (MAPE, italic) by model when predicting
annual death counts on test data. Note: The error and bias measures were summarised across

countries by the 0.25, 0.5, and 0.75 quantiles.
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