medRXxiv preprint doi: https://doi.org/10.1101/2021.06.03.21258258; this version posted June 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license .

Journal of Statistical Software

MMMMMM YYYY, Volume VV, Issue II. doi: 10.18637/jss.v000.i00

Group Testing Large Populations for SARS-CoV-2

Hooman Zabeti® Nick Dexter? Ivan Lau
Simon Fraser University Simon Fraser University Simon Fraser University
Leonhardt Unruh Ben Adcock? Leonid Chindelevitch?
Imperial College London Simon Fraser University Imperial College London

@These authors contributed equally to this work. $These authors contributed equally to this work.

Abstract

Group testing, the testing paradigm which combines multiple samples within a single
test, was introduced in 1943 by Robert Dorfman. Since its original proposal for syphilis
screening, group testing has been applied in domains such as fault identification in elec-
trical and computer networks, machine learning, data mining, and cryptography. The
SARS-CoV-2 pandemic has led to proposals for using group testing in its original context
of identifying infected individuals in a population with few tests. Studies suggest that non-
adaptive group testing - in which all the tests are determined in advance - for SARS-CoV-2
could help save 20% to 90% of tests depending on the prevalence. However, no systematic
approach for comparing different non-adaptive group testing strategies currently exists.

In this paper we develop a software platform for evaluating non-adaptive group testing
strategies in both a noiseless setting and in the presence of realistic noise sources, modelled
on published experimental observations, which makes them applicable to polymerase chain
reaction (PCR) tests, the dominant type of tests for SARS-CoV-2. This modular platform
can be used with a variety of group testing designs and decoding algorithms. We use it to
evaluate the performance of near-doubly-regular designs and a decoding algorithm based
on an integer linear programming formulation, both of which are known to be optimal in
some regimes. We find savings between 40% and 91% of tests for prevalences up to 10%
when a small error (below 5%) is allowed. We also find that the performance degrades
gracefully with noise. We expect our modular, user-friendly, publicly available platform
to facilitate empirical research into non-adaptive group testing for SARS-CoV-2.
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2 Group Testing for SARS-CoV-2

1. Introduction

The current COVID-19 pandemic has required a widespread mobilization of resources aimed
at controlling the morbidity and mortality due to its etiological agent, SARS-CoV-2. Since
the primary human-to-human transmission of SARS-CoV-2 is through respiratory droplets
and contact, testing has played a key role in control efforts by enabling rapid self-isolation,
contact tracing and monitoring, and limiting exposure at the population level. However,
the requirements of regularly testing populations at scale have proven a challenge for many
governments and public health agencies, especially in low-resource settings.

Group testing is an approach to testing introduced by Robert Dorfman in 1943 (Dorfman
1943) to provide a more efficient method of screening large numbers of men for syphilis in
the United States during conscription for World War II. Since syphilis was a rare disease,
most tests would produce a negative result. To improve efficiency, Dorfman proposed pooling
the samples (i.e. combining them inside the same test tube) to test multiple individuals of a
group at once for infection. If the result of a group test was negative, the individuals were
assumed to be free of infection. If the result was positive, it was assumed that at least one
individual had the infection and the members of the group would be re-tested individually to
identify the infected individuals. By pooling and testing in this manner, the total number of
tests to be conducted could be reduced significantly over the amount required for individual
testing provided that the prevalence was low.

Testing in this manner is called adaptive group testing. Here, multiple rounds of testing are
performed and the way samples are grouped together in any round depends on the previous
ones (e.g. in Dorfman’s approach the decision about which individuals are re-tested depends
on which groups were positive). In contrast, in non-adaptive group testing all groups are
decided in advance. In testing for SARS-CoV-2, adaptive testing has two main drawbacks.
First, laboratory testing of samples for the presence of viral RNA is time-consuming, taking
around 4-5 hours for a single round (Ben-Ami, Klochendler, Seidel, Sido, Gurel-Gurevich,
Yassour, Meshorer, Benedek, Fogel, Oiknine-Djian et al. 2020). However, results need to be
available quickly to enable isolation of infected individuals. Non-adaptive testing takes only
as long as individual testing plus the extra time required to pool samples. Second, basing
successive rounds on the results of previous ones makes the scheme sensitive to human error,
as results need to be repeatedly read out and interpreted. On the other hand, by deciding
in advance which samples are pooled together, a non-adaptive testing procedure can be fully
automated and all the tests carried out in parallel (Shental, Levy, Wuvshet, Skorniakov,
Shalem, Ottolenghi, Greenshpan, Steinberg, Edri, Gillis et al. 2020).

For these reasons, much research has focused on non-adaptive group testing. However, despite
many existing publications with a variety of group testing schemes, no software platform
currently exists for a rigorous comparison of different approaches in a systematic way. This
leaves open the question of which specific non-adaptive group testing approach provides the
best balance of accuracy, cost and complexity in a particular context.

In this paper, we propose an open-source software platform, named GroupTesting, for eval-
uating and optimizing non-adaptive group testing approaches for COVID-19 testing. Our
platform is robust, flexible, and modular by design. We focus on non-adaptive group testing
and account for the constraints on group sizes and divisibility imposed by practical COVID-
19 testing, and include realistic, tunable noise models to reflect the performance of existing
COVID-19 tests. For definiteness, we use a near-doubly-regular design (also known as a
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constant-items-per-test and constant-tests-per-item design), but our platform can accommo-
date other designs seamlessly. To ensure that the determination of the infected individuals
is as accurate as possible, we use an Integer Linear Programming-based method, known to
be optimal in the absence of noise; however, thanks to its modular design, our platform also
allows other methods to be employed by the user.

For a given user-specified set of characteristics (test performance, population size, number
of tests, and estimated prevalence), our platform provides the optimal group size and the
expected performance of a group testing scheme. It is available at https://github.com/
WGS-TB/GroupTesting and can be installed via The Python Package Index (Pypi). To
demonstrate its efficacy, we also perform a series of numerical experiments. These experi-
ments examine the performance of group testing across a range of experimental conditions,
including different prevalences (average infection rates), group sizes, and noise models.

The outline of the remainder of this paper is as follows. We commence in Section 2 with
preliminary material. This includes key definitions, an overview of the relevant literature, a
description of the specific measurement model and integer linear program used, as well as
the group testing scheme considered. In Section 3 we discuss noise models for SARS-CoV-2
testing. Then in Section 4 we describe the software package GroupTesting. In Section 5 we
present numerical experiments using this package, and then we conclude in Section 6 with a
summary and discussion of future directions.

2. Preliminaries

2.1. Definitions

We begin by defining the key terminology used throughout the paper. These definitions
are mostly in agreement with a recently published review paper (Verdun, Fuchs, Harar, El-
brachter, Fischer, Berner, Grohs, Theis, and Krahmer 2020), with appropriate notes when
there are differences.

A group testing scheme is a procedure for testing a population of possibly infected
people for the presence or absence of an infection by using group tests (also known as
pool tests). Each test combines biological samples from a subset of individuals in the
population, and returns a positive result if and only if a least one of them is infected.

e The population size N is the number of people we wish to test. We typically assume
100 < N < 10,000.

o The number of tests m is the overall number of tests (pools, groups) used in a group
testing scheme. We try to minimize this number to improve the efficiency of the scheme.

o In an adaptive group testing scheme, some of the testing decisions (i.e. which members
of the population combine into each group test) are taken after learning the results of
a subset of the tests, while in a non-adaptive group testing scheme, all the testing
decisions are made in advance. We focus on non-adaptive group testing schemes here.

o A non-adaptive group testing scheme is comprised of two parts. First, a design matrix
(also called test design) is the binary matrix A € {0,1}™*" with a row for each test
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4 Group Testing for SARS-CoV-2

and a column for each member of the population, such that A;; = 1 if and only if test
i includes individual j. Second, a decoding algorithm specifies how the outcome
vector y € {0,1}™, with y; = 1 if and only if test 7 is positive, is converted to a status
vector x € {0,1}", with z; = 1 if and only if individual j is inferred to be infected.

e The prevalence p is the probability that a randomly chosen member of the population
of interest is infected. We assume that p < 20% in the context of COVID-19, in line
with reported population-level figures (Roser, Ritchie, Ortiz-Ospina, and Hasell 2020).

e The divisibility d is the maximum number of times a person’s sample can be included
in a test. We assume that d < 16, in line with the fact that aliquots as small as 50
uLi are sufficient for pooling (Abdalhamid, Bilder, McCutchen, Hinrichs, Koepsell, and
Iwen 2020) and a patient sample has a volume around 0.7 mL (Primerdesign 2020).

e The group size g is the maximum number of samples included in a single group. We
assume that g < 32, shown reasonable in previous work (Yelin, Aharony, Shaer-Tamar,
Argoetti, Messer, Berenbaum, Shafran, Kuzli, Gandali, Hashimshony et al. 2020).

e The sensitivity is the probability of returning a correct positive result for an infected
person. We distinguish between the sensitivity of a single test, denoted s., which
refers to a group containing a single individual, and the sensitivity of a method,
denoted S., which refers to an entire group testing scheme. We typically want to detect
all infected people, and require either S =1 or Se > 1 — € for a small tolerance € > 0.

e The specificity is the probability of returning a correct negative result for an uninfected
person. As above, we distinguish between the specificity of a single test, denoted
sp, and the specificity of a method, denoted S),. We typically allow a small fraction
of false positive results, and tolerate values of S, > 0.9 in some settings.

e The balanced accuracy BA is a composite evaluation metric for a method, defined
as the arithmetic mean of its sensitivity and specificity: BA = (S, + 5p)/2.

e The number of infecteds K is the total number of infected people in the population.
Note that the expected value of K is pN.

e The efficiency FE is the number of tests per person for a given scheme. Note that the
expected value of m is EN.

2.2. Previous work

Since the pioneering work of Dorfman, various mathematical models have been considered
for group testing in the literature (Aldridge, Johnson, and Scarlett 2019, p. 203). Some of
these models, such as non-adaptive testing and noisy testing, are motivated by real-world
restrictions. Prior to (Gandikota, Grigorescu, Jaggi, and Zhou 2019), the models in the lit-
erature often unrealistically assumed that a group may contain an arbitrary number of items
(unbounded ¢), and an item may participate in an arbitrary number of tests (unbounded
d). (Gandikota et al. 2019) introduce the sparsity-constrained group testing, in which they
consider separately the following models: (a) the finite-tests-per-item model (items have di-
visibility at most d < «y); or (b) the finite-items-per-test model (groups have size at most
g < p). Furthermore, they consider the effect of noise on the test outcomes.
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In (Gebhard, Hahn-Klimroth, Parczyk, Penschuck, Rolvien, Scarlett, and Tan 2020), it was
shown that a pooling scheme based on a random regular test design together with the Definite
Defectives (DD) algorithm (Aldridge, Baldassini, and Johnson 2014) is order-optimal for the
finite-items-per-test model. Their simulations suggest that the decoding procedure succeeds
for moderate population sizes. They also show the asymptotic optimality of DD algorithm
when equipped with a suitably-chosen random test design for the finite-items-per-test model.
Neither of these consider the impact of noise on the test outcomes.

To the best of our knowledge, no prior theoretical study of group testing models considers
non-adaptive testing with both the finite-tests-per-item and finite-items-per-test constraints,
and includes the effect of noise. In applications-based studies that use group testing to reduce
the number of tests required to identify infected individuals during the COVID-19 pandemic,
we argue that all of these requirements should be satisfied simultaneously.

Many studies on COVID-19 group testing use adaptive 2-stage testing (Yelin et al. 2020;
Sinnott-Armstrong, Klein, and Hickey 2020; Abdalhamid et al. 2020; Hogan, Sahoo, and
Pinsky 2020; Gollier and Gossner 2020; Ben-Ami et al. 2020; Shani-Narkiss, Gilday, Yayon,
and Landau 2020; Deckert, Bérnighausen, and Kyeia 2020; Cherif, Grobe, Wang, and Kotanko
2020). Among those studies which consider a non-adaptive model (Téufer 2020; Verdun et al.
2020; Nalbantoglu 2020; McDermott, Stoddard, Woolf, Ellingford, Gokhale, Taylor, Demain,
Newman, and Black 2021; Seong 2020; Shental et al. 2020), only the latter two consider noise
models. However, Seong (2020) only consider a “symmetric noise” model (Aldridge et al.
2019, Example 3.1) defined as tests whose sensitivity S. and specificity S, are equal, which is
unrealistic for the tests typically used for SARS-CoV-2. Shental et al. (2020) considered two
noise models, both of which lowered test sensitivity. We summarize these studies in Table 1.

We note that besides the decoding algorithms listed in Table 1, other decoding algorithms
have been previously used in the literature, such as those in (Aldridge et al. 2019, §3). In
addition, a recent paper (Ciampiconi, Ghosh, Scarlett, and Meel 2020) proposes a MaxSAT
framework for decoding, whose current implementation uses a hybrid approach leveraging a
satisfiability solver as well as an integer linear programming solver like the one we adopt here.

Finally, we also note that standard group testing, where test results are binary (positive
or negative), is not the only framework proposed for efficiently identifying infected COVID-
19 individuals. A closely related, but less standard group testing approach based on com-
pressed sensing (Foucart and Rauhut 2013) has also been proposed (Ghosh, Rajwade, Kr-
ishna, Gopalkrishnan, Schaus, Chakravarthy, Varahan, Appu, Ramakrishnan, Ch et al. 2020b;
Ghosh, Agarwal, Rehan, Pathak, Agrawal, Gupta, Consul, Gupta, Goyal, Rajwade et al.
2020a; Zhu, Rivera, and Baron 2020; Yi, Mudumbai, and Xu 2020c; Petersen, Bah, and Jung
2020; Yi, Cho, Wu, Mudumbai, and Xu 2020a; Yi, Cho, Wu, Xu, and Mudumbai 2020b;
Cohen, Shlezinger, Solomon, Eldar, and Médard 2020). This approach assumes that the viral
load is additive for different individuals in a given pool and that it can be accurately measured.
The latter assumption does not seem realistic with standard COVID-19 testing technology, as
evaluating the viral load requires additional, quantitative tests (Pujadas, Chaudhry, McBride,
Richter, Zhao, Wajnberg, Nadkarni, Glicksberg, Houldsworth, and Cordon-Cardo 2020). Un-
der these assumptions, however, the compressed sensing-based approach can not only identify
whether an individual is infected, but also estimate their viral load. We return to the question
of using viral loads within COVID-19 group testing in the Discussion section.
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6 Group Testing for SARS-CoV-2
Paper Design matrix Decoding algorithm Noise model Error Parameter ranges tested
(Téaufer 2020) Shifted Transversal Design Noisy COMP N/A FP N/A
(Verdun et al. 2020) Non-adaptive Array Test Noisy COMP N/A FP 0.0025 < p <0.15
(Nalbantoglu 2020) Random Constant Column Weight Noisy COMP N/A N/A | N € {96,384,1536},0.0005 < p < 0.2
(McDermott et al. 2021) Disjunct Matrix Noisy COMP N/A N/A N =1700,0.001 <p<0.1
(Shental et al. 2020) Reed-Solomon Codes Gradient Projection Random, Erasure | FN, FP N = 384,0.0026 < p <0.013
(Seong 2020) LDPC Belief Propagation Symmetric FN, FP N =1000,0.01 < p<0.1
This paper Random Doubly Regular Noisy LP / ILP Various FN, FP | 1000 < N < 10000,0.005 <p <0.2

Table 1: Summary of previously published non-adaptive group testing schemes for COVID-19
that satisfy the constraints we outlined. The decoding algorithms and the noise models are
discussed in (Aldridge et al. 2019, §3). Here ‘FP’ and ‘FN’ stand for False Positive and False
Negative respectively. For further discussion on the design matrices please see Section 2.4.

2.3. Group testing and measurement systems

As in the Section 2.1, let N be the number of individuals in the population to be tested and
let m be the number of tests to be performed. Let x € {0, l}N be the status vector, where
an entry of 1 in component j corresponds to infection in the jth individual. Let y € {0,1}™
be the outcome vector, where a value 3y = 1 implies that group ¢ has at least one infected
individual and a value of 0 implies the group is free of infection. In group testing, in the
absence of noise the measurement vector y satisfies

N
ye=\ AijAzj, 1<t <m,
7=1

which can be more concisely represented as
y=Avz, (1)

where V is the Boolean inclusive OR operator. Let K be the number of infected individuals, i.e.,
llz]lo = K, where ||x||o is the number of non-zero elements of x. Assuming that the number
of infected individuals is small, one can consider the Boolean vector recovery problem

min ||z[o subject to y = AV x and x € {0,1}". (2)

Observe that problem (2) can be restated as the following 0-1 integer linear program:
N
min Z Z;j
j=1

N
s.t. ZAW xzj>1 for y; = 1,
=1 (3)

N
ZAW z;j=0 for y; = 0,
j=1
xzj € {0,1} 1<j<N.

This allows us to solve the problem using integer linear program solvers such as IBM ILOG
CPLEX Optimizer (CPLEX) (IBM 2020), Gurobi (Gurobi Optimization 2021), and the GNU
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Linear Programming Kit (GLPK) (Makhorin). This problem is NP-hard (Aldridge 2019,
Remark 2.1); in fact, its restriction to only positive tests is the Hitting Set Problem, dual
to the Set Covering Problem (Aldridge 2019, Section 2.6), both of which are NP-complete
(Karp 1972). For this reason we also consider a linear programming relaxation, widely used
in previous work on group testing (Malioutov and Malyutov 2012; Aldridge 2019). The
linear programming relaxation attempts to estimate x by replacing the constraint z; € {0,1}
with x; € [0,1] for 1 < j < N. Since it is generally not binary, the solution of this linear
program is rounded; for instance, any value greater than 0 may be replaced by 1. However,
our experiments show that linear programming relaxation can increase the number of False
Positives (FP), even though it provides faster computation times in some cases. We discuss
this relaxation in more detail in Appendix A.

We also consider a formulation of the group testing problem that accounts for noise, similar
to those appearing in (Zabeti, Dexter, Safari, Sedaghat, Libbrecht, and Chindelevitch 2020)
based on previous work of (Malioutov and Malyutov 2012; Malioutov and Varshney 2013); see
also (Aldridge 2019, Section 3.2). This formulation uses a vector of slack variables, denoted
&, to represent the possibility of a test result disagreeing with the one predicted from the
status vector @, and penalizes its components via two adjustable penalty coefficients A9 > 0
and A; > 0. This leads to the following integer linear program:

N
min = Y xzi+X Y. &Gt+Ad Y &
j=1 0

Y= kiyrp=1
N
s.t. Z Ao +&§>1 for y =1,
j=1 4
i (@
9§ — Z A jr; >0 for y; = 0,
j=1
xj€{071} 1<j<N,
& e{0,1} 1<t<m,

where g := Z;-V:l Ay j is the group size for group t.

In Section 3.1, we describe noise models relevant to the group testing problem. In the next
section we discuss non-adaptive group testing schemes and the choice of the design matrix A.

2.4. Non-adaptive group testing schemes

In non-adaptive group testing, the set of individuals being pooled in each test is determined in
advance, independently of the outcome of every other test. This enables tests to be performed
in parallel, a desirable feature for time-sensitive situations.

A key component of any non-adaptive group testing strategy is the design matrix. We focus
on those designs that involve either a constant or near-constant divisibility d (defined as
the number of groups each sample is present in), a constant or near-constant group size g
(defined as the number of samples present in each group), or both. (Gebhard et al. 2020)
studied unconstrained test designs and showed that random near-constant divisibility designs
are information-theoretically optimal in the noiseless setting. They also studied bounded
group size designs, and showed that the random near-constant group size design is optimal
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8 Group Testing for SARS-CoV-2

within this class of designs in the noiseless setting. A near-doubly-regular test design is one
where both the divisibilities and the group sizes are near-constant. Random near-doubly-
regular test designs, such as the one we consider in this work, have also been considered in
(Mézard, Tarzia, and Toninelli 2008; Wadayama 2016) as part of a practical study of non-
adaptive group testing. Our design differs from theirs in our selection of the group size based
on an information-theoretical criterion — for details see Section 5.1.1. The algorithm described
below has also been studied in (Miklés, Erdés, and Soukup 2013), where it was shown that
the underlying Markov process performing edge swaps starting from an arbitrary realization
allows for a uniform sampling of such near-doubly-regular test designs. Therefore the results
presented in Section 5 are representative of the average performance of the algorithm over
the range of prevalences and group sizes tested.

We also emphasize that the modular architecture of the GroupTesting package described
in Section 4 allows for specification of alternative designs. For instance, the random near-
constant divisibility design may be preferred when no group size constraints are imposed
(Johnson, Aldridge, and Scarlett 2018), and explicit constructions based on disjunct matrices
(Aldridge et al. 2019, §5.7), shifted transversals (Thierry-Mieg 2006) or low-density parity-
check (LDPC) codes (Gallager 1962) can be substituted for the random near-doubly-regular
design when deterministic designs are required.

Near-doubly-reqular design construction details

We now describe the implementation of the random near-doubly-regular design. We use the
Python-igraph package from https://igraph.org/python/ for this task, as described below.

We use the standard definitions, closely following (Wadayama 2016). Let G = (Vz, Vg, E) be
a bipartite graph, called a pooling graph, such that Vz has N (left) nodes, Vi has m (right)
nodes, and F is the set of undirected edges. We identify the nodes in V7, with the individuals,
and the nodes in Vi with the group tests. We define an (I, 7, N)-regular pooling graph as a
bipartite graph G in which the left nodes have degree [ and the right nodes have degree r.
Since we wish to perform no more tests than in individual testing, we assume m < N so that
[ < r. A pooling graph represents the relationship between the individuals and the group
tests they are part of, with an edge between u € Vi, and v € Vg present if and only if the
individual u is included in group test v.

Due to implementation details in Python-igraph, we rely on directed graph generation meth-
ods to generate random pooling graphs, with the convention that all edges have heads in V7,
and tails in V.

Given a pooling graph G with vertices Vi, = {v1,...,uox} and Vg = {vn41,...,ON+m} and
V := VU Vg, we define the in-degree of a vertex v € V', denoted deg™ (v), as the number of
edges with head v, and similarly the out-degree of v, denoted deg™ (v), is the number of edges
with tail v. The in- and out-degrees of a directed graph must satisfy the degree sum formula:

S deg (v) = [B] = Y deg” (1) (5)

veV veV

Here deg™ (v) for a sample v € V is its divisibility, and deg™(v) for a group v € Vg is
its size. We define the in-degree sequence of G with vertices V. = {vi,...,vn4m} as the
sequence indeg(G) = (deg™ (v1),...,deg” (vN+m)), and its out-degree sequence as the sequence
outdeg(G) = (deg™t(v1),...,deg" (vn1m)). If we require that the number of samples in each
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Figure 1: Example graphs generated with Python-igraph given m = 8, N = 48, and indeg(G)
and outdeg(G) as in (6) with increasing r = 6,12, 18,24, 30 and corresponding [ = 1,2,3,4,5
(left to right). Here the red nodes are groups and the blue nodes are individuals.

group v € Vg is equal to r and the divisibility of each sample v € V7, is equal to [, we can
specify the desired pooling graph with the following in-degree and out-degree sequences:

indeg(G) = (1,1,...,1,0,0,...,0); outdeg(G) = (0,0,...,0,7,7,...,7). (6)
—_——— ——— —_——— ———
N times m times N times mtimes

Note that these degree sequences ensure that the graph is bipartite. Figure 1 displays an
example of pooling graphs generated with the Python-igraph package from in-degree and
out-degree sequences specifying 8 groups (red) and 48 individuals (blue), where the groups
have increasing size and corresponding individual divisibilities moving left to right.

Note, however, that the degree sum formula (5) requires that NI = mr, which may not be
possible for some choices of parameters. In such a situation, we consider constrained near-
regular pooling graphs, whose in-degree and out-degree sequences are of the form

1ndeg(G) = (d17d27 .. ‘7dN70707 ... 70)’ OUtdeg(G) = (0707 v )0)917927 D )gm)a
— —

m times N times

where each g; = g to ensure that all the groups are full, each d; < d, and maxy d —min; d; <1
to ensure that each sample has the same or almost the same divisibility. Since the quantity
mg/N represents the average per-sample divisibility, we initially set

d; :=|mg/N|,1 <i<N.

We then increase the divisibility of a random subset of ¢ := mg — Nd; of the samples, chosen
without replacement, to d; + 1 in order to satisfy (5); this is always possible since 0 < ¢ < N.

The Python-igraph interface allows graph generation from such degree sequences with multiple
options. As the “simple” option can result in graphs with multiple parallel edges between
a test v € Vi and an individual v € Vi, we use the slower “no_multiple” option, which
generates graphs without parallel edges. Figure 2 compares the outputs of these two options.

3. Modelling SARS-CoV-2 testing in the laboratory

The primary method for testing for SARS-CoV-2 in the laboratory is via a polymerase chain
reaction (PCR) test. This test seeks to amplify pieces of ribonucleic acid (RNA) that match
a specific base-pair sequence, called a primer, designed complementary to the known genome
sequence of the virus (Primerdesign 2020). As PCR tests directly detect the presence of the
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Figure 2: Comparison of “simple” (left) vs. “no_multiples” (right) graph generation meth-
ods in Python-igraph. See https://igraph.org/python/doc/igraph.GraphBase-class.
html#Degree_Sequence for more details. Red nodes are groups, blue nodes are individuals.

SARS-CoV-2 virus in an individual, they are considered to be the gold standard of testing,
while other testing methods, such as antigen tests, may instead seck to ascertain previous
exposure to the virus. Our main focus is on the PCR tests, and the constraints we impose
are based on those, although most of the modules in our framework apply to other types of
tests as well.

An individual PCR test can yield a false positive result (i.e. a positive result in a patient who
is not infected) due to spurious RNA matches, which are rare, and the detection of viral RNA
that is no longer part of actively replicating viruses, which is common (Pujadas et al. 2020).
Similarly, an individual PCR test can yield a false negative result (i.e. a negative result in
a patient who is infected) due to technical errors, which are rare, or the test occurring too
soon after initial infection, which is common (Deeks, Dinnes, Takwoingi, Davenport, Spijker,
Taylor-Phillips, Adriano, Beese, Dretzke, Ferrante di Ruffano et al. 2020).

The pooling of samples in the context of group testing can introduce additional errors of both
kinds. Additional false positives may in principle occur when multiple negative samples are
pooled together that each have a small amount of inactive viral RNA, but together combine
to yield enough viral RNA to be detected by the test. Such false positives are highly unlikely
due to the fact that each sample is diluted before being pooled (Primerdesign 2020), and
will be disregarded in our error models. Additional false negatives, on the other hand, may
result from the dilution effect, where the concentration of viral RNA in a positive sample gets
reduced when it is combined with multiple negative samples. This effect is discussed in detail
in several evaluation papers (Yelin et al. 2020; Shani-Narkiss et al. 2020; Hirotsu, Maejima,
Shibusawa, Nagakubo, Hosaka, Amemiya, Sueki, Hayakawa, Mochizuki, and Omata 2020).
We also revisit their results in the following section as we discuss the noise models implemented
within our platform. Lastly, group testing is more prone to human error. Test tubes might
be mislabeled in the test preparation, which is more likely to occur in group testing due to
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increased design complexity compared to individual testing. This can introduce both false
positives and false negatives. We address the possibility of sample swapping as part of our
discussion on noise models.

3.1. Noise models

To quantify the efficiency of group testing strategies and decoding in real-world scenarios,
the sources of error discussed in the previous section must be accounted for through noise
modeling. We now discuss some noise models relevant to the group testing setting that have
been implemented in the GroupTesting package.

We assume that each test has the same probability distribution determining the outcome,
and that the result of each group test is independent of all other group tests. We require the
following definitions from (Aldridge et al. 2019) in defining noise models relevant to the group
testing setting. We denote by ) the space of possible outcomes; for our purposes, Y = {0, 1},
where 0 indicates a negative test and 1, a positive test. For each outcome y € Y, p(y|g,¥)
is a probability distribution representing the probability of observing y from a group test of
size g with £ infected individuals, and thus satisfies 37 ¢y p(y|g,¢) = 1. In the noiseless case

p(l]g,0) =1 if¢>1, p(0]g,6) =0 ife>1,
p(1]g,£) =0 if ¢ =0, p(0]g,0) =1 if ¢ = 0.

A simple noise model in which both false negatives and false positives can occur is the binary
symmetric noise model. This has a parameter p € (0,1/2) and the probability distributions

p(lg,6)=1—p if £ >1, p(0]g,6) =p if £>1,
p(1]g,0) =p if =0, p(0]g,0)=1—p if £=0.

However, this model is often not realistic for the setting of group testing in the lab as false
negatives and false positives typically occur with different probabilities. Two important noise
models that are relevant to group testing in laboratory settings are threshold noise and per-
mutation noise. Both models, in addition to the binary symmetric noise model included for
completeness, are supported by the GroupTesting package. For usage details, see Section 4.

The threshold noise model is relevant to group testing problems where positive results are
attained when the proportion of defective items in the test exceeds some upper threshold
0, negative results are attained when the proportion is below a lower threshold #, and false
negatives occur at a rate of 1/2 when the proportion is between the two. A recent study by
(Yelin et al. 2020) suggested that false negatives occur at a smaller rate than 1/2 in COVID-
19 laboratory PCRtesting for the range of group sizes considered here. To account for the
possibility of the false negative rate depending on the group size, in this work we consider
a generalized threshold model in which false negatives occur at a rate Ppn € (0,1), specified
as a parameter, when the proportion lies between § and . In this case, the probability
distributions are given by

p(llg,0) =1 if £ >0, p(0]g,0) =0 if £ >0,
p(1]g,0) =0 if £ <0, p(0]g,0) =1 if £ <9,
p(l]g,0) =1— Ppx ifQ<§<§, p(0]g,¢) = Pex ifﬁ<§<§
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This model is relevant to testing scenarios where the laboratory testing process requires a
minimum viral concentration Cpi, in a test for a positive test result. In groups of size g
each positive sample contributes Csample > Cmin/g- A false negative result occurs if the total
concentration of all £ positive samples Cpoo1 = D Csample > Cming is smaller than C\,i,, where
the inequality explains the scaling with ¢/g.

Permutation noise occurs when the test results themselves are accidentally shuffled or mis-
labeled, and is a serious source of error that must be accounted for. In this case a small
number of pairwise swaps of the components of the test outcome vector y may occur, lead-
ing to some test results no longer being correlated with their assigned group. In realistic
laboratory testing scenarios, only a small number of test results will be swapped. These ef-
fects can be modeled by a discrete probability distribution such as the negative binomial or
the geometric distributions. The GroupTesting package supports these types of studies by
allowing for a user-supplied value p € [0,0.5] as input specifying the proportion of tests to
be permuted. The code then picks uniformly at random two items to swap until k = [pm]
pairwise swaps (without replacement) have been performed. Since these types of errors are
common in high-throughput testing scenarios requiring human intervention, group testing
and decoding procedures must be robust to these human errors.

Table 2: Default values of noise model parameters in GroupTesting

[ 0.0
0 0.0625
Py 0.1
p 0.01

4. Software for solving group testing problem

In this section we describe our main contribution, a Python (van Rossum 1995) software
package named GroupTesting which enables rigorous evaluation of the efficiency of group
testing schemes and solvers over a range of parameterizations. The GroupTesting package is
implemented in Python, and is freely available on GitHub at https://github.com/WGS-TB/
GroupTesting and through PyPi under GroupTesting. The package follows a modular de-
sign, allowing individual substitution and analysis of each component, and is focused on
reproducibility and ease of configuration. Figure 3 displays a diagram of the core modules of
the package and a typical workflow.

config.yml is the control center of the framework. It allows the user to build a group testing
pipeline, specify each core module that is needed, and parameterize that module. Listing 1
describes the format of the configuration file — a complete tutorial is available on the GitHub
repository.

config.yml is divided into two main dictionaries, design and decode, representing the pa-
rameters of the design and decoding stages of the framework, respectively. design contains
three sub-dictionaries: groups, individual_status and test_results, corresponding to the
core modules generate_groups, generate_individual_status, generate_test_results
respectively.
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Architecture of GroupTesting package

group_testing_mp.py:

. Prepares the ILP formulation,
takes input parameters, starts parallel runs P

PuLP calls the specified solver

Bconfig.yml:
input file

group_testing_decoder.py:

generate_groups.py:
Generates design matrix with Python-igraph

One of the supported solvers, e.g. GLPK,
CPLEX, Gurobi, Mosek, etc., solves the ILP

group_testing_evaluation.py:
Uses scikit-learn to compute the balanced accuracy
and the confusion matrix elements: TN, FP, FN, TP

generate_individual_status.py:
Patient status generator

generate_test_results.py:
Test results and noise generator

Figure 3: Modular design of the GroupTesting framework.

1 design:

2 groups:

3 params:

4 'N': 1000

5 'm': 300

6 'graph_gen_method': 'mo_multiple'
7 'group_size': 16

8 'max_tests_per_individual': 16
9 individual_status:

10 params:

11 s: 50

12 test_results:

13 params:

14 'test_noise_methods': ['permutation', 'threshold']
15 'permutation_noise_prob': 0.01
16 '"theta_1': 0.00

17 '"theta_u': 0.0625

18 decode:

19 'decoder':
20 'lambda_0': 0.25
21 'lambda_1': 1.25
22 'is_it_noiseless': False
23 '"lp_relaxation': False
24 'solver_name': 'CPLEX_PY'
25 'solver_options':
26 "timeLimit': 1800
27 'lambda_selection': False
28 'evaluation':
29 'eval_metric': 'balanced_accuracy'

Listing 1: General format of config.yml file.


https://doi.org/10.1101/2021.06.03.21258258
http://creativecommons.org/licenses/by/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2021.06.03.21258258; this version posted June 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license .

14 Group Testing for SARS-CoV-2

groups (Listing 1, lines 2-8) specifies the features of the design matrix A such as its dimension
(the population size N and the number of tests m), the group size g, and the divisibility d.
generate_groups.py uses these parameters to generate the desired design matrix.

individual_status (Listing 1, lines 9-11) records the number of infected individuals in the
population. This parameter is then used by generate_individual_status.py to randomly
assign an infected status to K individuals in the population. The remaining individuals are
labeled as not infected. This assignment is represented by the binary status vector.

test_results (Listing 1, lines 12-17) contains information relevant to the noise models for
the given testing scenario. This can be specified by selecting one or more models from the list
of available model options (‘threshold’, ‘binary symmetric’, ‘permutation’). These models
are then applied to generate the results of the group tests via the generate_test_results.py
module.

Similar to design, decode (Listing 1, lines 18-29) contains two sub-dictionaries, decoder
and evaluation, which represent the parameters corresponding to the two core modules,
respectively named group_testing_decoder and group_testing_evaluation.

decoder (Listing 1, lines 19-27) contains all the decoder’s arguments. Since we employ
the PuLP (Mitchell, O’Sullivan, and Dunning 2011; Lougee-Heimer 2003) package to set
up the ILPs (4), (3) and their LP relaxations, this sub-dictionary can also contain PuLP
parameters such as the solver name and solver options. Users can pass different parameters
to their chosen solver, as long as they are allowable by the chosen solver and PuLP, through
the solver_options sub-dictionary. The core module group_testing_decoder.py is then
responsible for setting up the ILP problem. This module uses the PuLP package to specify
the ILP’s variables, objective function, and constraints as expressions, and interfaces with the
supported solvers to compute a solution. See Section 4.2 for more details on the supported
solvers and examples of problem formulation.

This module is also able to perform cross-validation to select the parameters Ag and A\
when the objective is to solve the problem (4). The cross-validation is performed using
GridSearchCV in scikit-learn (Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel,
Blondel, Prettenhofer, Weiss, Dubourg et al. 2011). To do so, Listing 1 should be modi-
fied as follows:

27 'lambda_selection': True

28 'number_of_folds': 5

29 'cv_param':

30 'lambda_0': [0.125,0.25,0.5,1,2,4,8]
31 '"lambda_1': [0.125,0.25,0.5,1,2,4,8]

Listing 2: Example of selecting the parameter g and A;.

The framework also allows the user to set A\y = A1 when performing cross-validation. This
setting can save a considerable amount of computing time, and is relevant for experiments in
a noise model with a symmetric error probability, or when the user would like the ILP (4) to
penalize the false positives and the false negatives equally. Listing 3 demonstrate this option,
with Ae = A\g = A1, where subscript e stands for equal.

evaluation (Listing 1, lines 28-29) contains evaluation metrics. After decoding is complete,
the results can be compared to the true solution using the group_testing_evaluation.py
module. This module provides the confusion matrix along with the desired evaluation metric
such as the balanced accuracy, the sensitivity, or the specificity using scikit-learn.
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27 'lambda_selection': True

28 'number_of_folds': 5

29 'cv_param':

30 'lambda_e': [0.125,0.25,0.5,1,2,4,8]
Listing 3: Example of selecting the parameter A..

1 design:

2 groups:

3 params:

4 N: 1000

b) m: 500

6 graph_gen_method: 'mo_multiple'

7 group_size: 8

8 max_tests_per_individual: 8

9 save_to_file: True

Listing 4: Example of when only generating a design matrix is needed.

After modifying the configuration file, the package can be run from the command line via:

GroupTesting —-config=PATH_TO_CONFIG.yml

4.1. Customization and performing series of experiments

The GroupTesting framework is modular and customizable to the users’ needs. In the
following section we provide different possible use cases. In the first one, only the design
matrix is being varied. In this case the user only needs to define the groups block. Listing 4
is a example of a complete config.yml file for this scenario.

Another possible use case is a pre-defined design matrix loaded from a comma-separated
values (CSV) file. Instead of providing a list of parameters, the user only needs to provide
the filename, as shown in Listing 5. This feature is also available for the next two modules,
individual_status and test_results. Note that when an input file is provided for a block,
no parameters need to be specified, as their values are automatically extracted from the input
file.

Users are also able to provide their own module to substitute any with of the core-modules
in Figure 3. This feature is accessible by the alternative_module keyword, followed by
the name of the module, the name of the function needed to operate it, and a list of its
parameters. Listing 6 demonstrates how to get the framework to use a custom module to
generate test results. In this example, custom_test_results is the name of the module,

T W N

groups:
input: 'design_matrix.csv'
individual_status:
params:

Listing 5: The groups dictionary accepts a pre-defined design matrix as an input.
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test_vector_generator is the function name, and p1, p2 and p3 are the argument values
to be passed to the function.

12 test_results:

13 alternative_module: ['custom_test_results','test_vector_generator']
14 params:

15 pl: 0.1

16 P2: 'moise_model'

17 p3: True

Listing 6: Generating the test results with the custom_test_results.py module.

Moreover, the framework allows the user to perform a series of experiments with a single
config.yml file. For example, if an experiment similar to Listing 1 is to be performed, but
the user would like to compare the performance of group testing for group sizes 4, 8, and 16
on a different range of infected individuals, from K = 50 up to, but not including, K = 100,
with a step size of 10, this can be achieved as follows:

7 'group_size':
8 mode: 'list'
9 values: [4,8,16]
10 'max_tests_per_individual': 16
Listing 7: config.yml accepts a list of values for a parameter.
11 s:
12 mode: 'range'
13 values: [50,100,10]

Listing 8: config.yml accepts a range of values for a parameter.

In this case, the framework performs a set of parallel experiments based on all possible
combinations of the parameters in config.yml, by distributing the corresponding experiments
over the available processors. The framework uses the Pool object of the multiprocessing
package (McKerns, Strand, Sullivan, Fang, and Aivazis 2012) for this purpose. Note that
the framework does not support nested parallelization, so if a series of experiments also
contains cross-validation for selecting parameters \g and A1, a process that is also performed in
parallel, the framework automatically performs the experiments sequentially while executing
each cross-validation in parallel.

4.2. Optimizers

The GroupTesting package supports a variety of solvers through the PuLP application pro-
gramming interface (API). Instead of specifying the ILP problem through input files, e.g.
mathematical programming system files, we rely on the PuLP API to directly specify the
problem. The PuLP package supports a variety of popular open-source and commercial
solvers, including pkgCBC, CHOCO, COIN, CPLEX, MIPCL, GLPK, Gurobi, Mosek, and
SCIP.

Furthermore, the config file makes it convenient to customize the decoding ILPs. For instance,
we can specify whether our problem is noiseless (i.e. ILP (3)) or noisy (i.e. ILP (4)) by setting
the is_it_noiseless parameter to True or False, respectively. Similarly, to solve the ILP
or replace it with an LP (as described in Appendix A), we can use the Boolean parameter
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lp_relaxation. The solver can be specified by solver_name and the solver’s arguments can
be set by solver_options. Listing 1, lines 19-27, provides an example of noisy group testing
without LP relaxation, while Listing 9 demonstrates a noiseless group testing problem with
LP relaxation.

19 decoder:

20 is_it_noiseless: True
21 lp_relaxation: True

22 solver_name: 'CPLEX_PY'
23 solver_options:

24 timeLimit: 1800

Listing 9: Example of noiseless group testing with LP relaxation.

5. Numerical experiments

In this section we include a selection of numerical experiments exploring the efficiency of the
GroupTesting package at identifying infected individuals from large populations. We study
the problem posed in Section 2.3 with the non-adaptive group testing scheme based on the
doubly-regular design from 2.4 in both the noiseless setting and in the presence of small
amounts of thresholding and permutation noise, as described in Section 3.1. We parameterize
and solve the resulting problems using the PuLP package with the CPLEX solver, see Section
4, testing the efficacy of the proposed approach over a range of group sizes. Finally, we record
our results in terms of the balanced accuracy, averaged over 10 trials.

5.1. Evaluation metrics

Effect of group size

A major question in practical group testing is how to set the maximum group size g given
an estimate for the prevalence p. From an information-theoretic perspective , it is desirable
that each test yields a positive result with a probability 1/2. In the noiseless setting, the
probability that a group yields a negative result is (1 — p)J. Hence, equating this with 1/2
leads to the following selection rule for g:

_ { log(1/2) } ‘

~ Llog(1 —p) @)

Here [z] denotes the nearest integer to x.

The first set of experiments we conduct aims to empirically study the effect of the group size
on the average balanced accuracy, given the same non-adaptive testing strategy and budget
of group tests m. We conduct this experiment in the noiseless setting with a population of
size N = 1000, studying the efficacy of the proposed approach in recovering the status vector
x by solving problem (4) with group size g € {4, 8,16,32} and increasing m up to N.

Figure 4 displays the results of solving this problem at various prevalences p. In Table 3, we
compare the information-theoretic group size (7) to the empirical results. We note that the
best-performing group sizes from the experiments match the information-theoretic choice for
larger prevalences. For smaller prevalences, namely, 0.5% and 1.0%, the information-theoretic
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group size is much larger and beyond the maximum allowed group size of 32 considered
reasonable in this study (see Section 2.1); however, in this regime group sizes at or just below
this allowed maximum exhibit very good performance, providing near perfect recovery after
approximately 100-150 tests in the case g = 32 and 200-250 tests when g = 16. In contrast
over 450 tests are required for a prevalence of 0.5% when g = 4.

However, as the prevalence increases, the efficiency of larger group sizes dramatically de-
creases. For p = 5% and group size g = 32, over 700 tests are required for near-perfect
recovery, and for the larger prevalences tested (namely 10%, 15% and 20%) this strategy
never achieves a balanced accuracy above 0.6. This behaviour is expected, since when the
prevalence is higher, larger group sizes yield tests that predominantly return positive values.
For the smaller group sizes, we also observe a loss of accuracy as the prevalence increases,
and at a 20% prevalence we require over 800 samples for a balanced accuracy of 0.9. In the
high prevalence regime, the proposed strategy of non-adaptive group testing with the doubly-
regular design conveys far less benefit over individual testing of the entire population. We
leave a study of the efficacy of alternative designs in this setting to future work, although the
performance of any group testing design is expecting to decrease at such a high prevalence.

In Table 3 we report the percentage saving offered by the best-performing group testing scheme
over fully testing the entire population. For small prevalences (0.5% and 1.0%), group testing
with the best-performing group size achieves over 90% savings. Moreover, the savings remain
above 50% even for prevalences as large as 10%.

Table 3: Recommended group sizes based on information theory (7) and empirical observa-
tions of solutions to (3) with a population of size N = 1000, see Fig. 4. The last two rows show
the percentage of tests saved relative to individual testing that allows a balanced accuracy
above 0.90 and 0.95, respectively.

Prevalence p 0.5% | 1.0% | 5.0% | 10.0% | 15.0% | 20.0%
Information-theoretical group size (7) 138 69 14 7 4 3
Empirical best group size 32 32 16 8 4 4

Percentage saving (balanced accuracy 0.90) | 92% | 90% | 70% | 50% | 34% | 22%
Percentage saving (balanced accuracy 0.95) | 91% | 89% | 65% | 40% 20% 5%

Large population test

Figure 5 displays the result of solving the group testing problem with a population size
of N = 10,000, for information theoretically optimal group sizes and various prevalences.
For small prevalences we see near-perfect recovery after approximately 1500 group tests,
suggesting a savings of 85% over fully testing the entire population. These results are similar
to the ones with N = 1000, suggesting that the near-doubly-regular test design is well-suited
for tackling such large population sizes.

Noisy experiments

To examine the effect of noise on the performance of the solvers under realistic laboratory
testing scenarios, we include a selection of numerical results with both the threshold noise
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Figure 4: Comparison of the average balanced accuracy over 10 trials across a range of group
sizes from 4 to 32 and Information Theoretical (IT) group size, for prevalences from 0.5% to
20%.


https://doi.org/10.1101/2021.06.03.21258258
http://creativecommons.org/licenses/by/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2021.06.03.21258258; this version posted June 5, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license .

20 Group Testing for SARS-CoV-2

Average balanced accuracy of 10 trials with N: 10000

0.9

=)
o

Balanced Accuracy

=]
jrt

06

— prevalence:0.5%, group size:32
prevalence:1.0%, group size:32
— prevalence:5.0%, group size:14
= prevalence:10.0%, group size:7
prevalence:15.0%, group size:4

05 = prevalence:20.0%, group size:3

o 1000 2000 3000 4000 5000 6000 7000 B00Q 9000 10000
m = Number of tests

Figure 5: Comparison of average balanced accuracy over 10 trials with N = 10000 using the
information theoretical group size, for prevalences from 0.5% to 20%.

model, with parameters chosen based on observations from (Yelin et al. 2020), and the permu-
tation noise model with various permutation levels p. We solve problem (4) along with using
cross-validation for selecting Ag and A\; where A\g = A\; = Ae. The GroupTesting platform
provides the facility for performing cross-validation, either on the single parameter A, or on
both parameters A\g and A;, which we describe in more detail in appendix B.

In (Yelin et al. 2020) it was observed that false negatives occur at a rate of approximately
10% when a group of size g > 16 contained one infected individual, and did not occur for
lower dilutions. The effect of these levels of false negative rates can be modelled by threshold
noise with parameters § = 0 and # = 1/16 and probabilities

p(0]g,¢) =1/10 and p(1]g,£) =9/10 it  0</{/g<0,

corresponding to Ppy = 1/10 in the model from Section 3.1. We study the effect of this
noise model with group testing with groups of size ¢ = 32, a population of N = 1000
individuals, and a range of prevalences p € {0.5%,1%,5%} in Figure 6. There we can see
that for small prevalences, e.g., 0.5% or 1%, to achieve near-perfect recovery the solvers require
approximately 50% more samples over the noiseless case. However at a prevalence of 5% the
solvers require approximately 700 samples to achieve near-perfect recovery in the noiseless
case, but with threshold noise the maximum of the averaged balanced accuracy scores over
all values m is only 0.987 even with m = 1000 group tests.

Our permutation noise experiments aim to examine the effect of small amounts of random
mislabeling that may occur during testing. Figure 7 shows the results obtained with group size
g = 16, prevalence p = 5%, and values of p from 1% to 5%. The results indicate that small
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Figure 6: Comparison of average balanced accuracy with and without presence of threshold
noise over 10 trials with N = 1000, g = 32 across a range of prevalence from 0.5% to 5%

amounts of permutation noise marginally lower the effectiveness of the solvers, decreasing
proportionally with the noise level. Nonetheless, with all noise levels considered near-perfect
recovery was obtained after approximately 600-650 samples, as in the noiseless case.

6. Summary and discussion

This work has focused on estimating whether or not an individual is infected based on group
tests that return only positive or negative values for each group. As discussed in Section
2.2, another line of recent work aims to compute the individual viral load, given viral load
data from each test (Ghosh et al. 2020b). This may not be realistic in standard COVID-19
testing. However, a variation is to consider the cycle threshold data for each group. The
cycle threshold is closely related to the viral load, but unlike the latter, can be measured in
practical COVID-19 tests. Using this data to infer cycle threshold values for each individual
may not be desirable in practical settings, due to concerns about how these values may
be interpreted by individuals (Rhoads, Peaper, She, Nolte, Wojewoda, Anderson, and Pritt
2020). However, one could use this data solely to estimate whether an individual is infected
or not. We anticipate that this approach may lead to non-negligible improvements in the
efficacy of group testing, and intend to pursue this in future work.

An additional direction previously explored in the literature has focused on using group
testing to estimate only the prevalence of infection in a population, rather than identifying
the infected individuals. Under plausible assumptions, this can not only require fewer tests
(Tu, Litvak, and Pagano 1994), but also provide more confident estimates (Petito and Jewell
2016). The two approaches can also be combined; first, a certain number of group tests can
be performed to estimate the prevalence, and then, a group testing design can be selected
based on the estimated prevalence. However, our framework focuses on the case where the
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Figure 7: Left: Comparison of average balanced accuracy over 10 trials with N = 1000,
g = 16 and p = 5% across a range of permutation noise from 0% to 5%, right: same figure
zoomed in.

prevalence is known, at least approximately.

In conclusion, our framework provides an open-source robust and reproducible platform for
evaluating the effectiveness of non-adaptive group testing approaches, with a particular em-
phasis on SARS-CoV-2 testing via PCR tests. Thanks to its modular structure, it allows for
the exploration of a large number of parameters, designs, decoding algorithms, noise models
and evaluation metrics. By leveraging PuLP it also allows the comparison of different solvers
for linear and integer linear programs. It is our hope that it will provide an impetus for further
exploration of this paradigm, both in theory and in clinical and public health practice.
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A. Performance of ILP versus LP

In this section, we include a comparison of the results when solving the ILP (3) versus solving
its LP relaxation, defined as follows:

N
min Z l'j
j=1

N
s.t. ZAW xj>1 for 4 = 1,
=1 (8)
N
ZAW z; =0 for y, = 0,
j=1
zj € [0,1] 1<j<N.

Note that in the latter, the constraint z; € {0,1} is relaxed to 0 < z; < 1 to give an LP.
Once this program is solved, the solution is rounded by replacing any value greater than a
given threshold parameter 5 by 1 and any value less than 8 by zero. In this study, we use
the threshold value § = 0. Figure 8 gives a comparison of the averages over 10 trials of the
balanced accuracy, sensitivity, specificity, and system time (measured in ticks) to solve when
N = 1000, g = 32 and p = 0.5% or p = 1.0%. We also include the plot ranges covering
the minimum and maximum of these statistics taken over all trials. There we can see a
decrease in the specificity of the LP approach near the point when the balanced accuracy of
both methods crosses 0.75 (approximately m = 60 tests when p = 0.5% and m = 80 tests
when p = 1%). We also note a sharp increase in the system time to solve for the ILP near
these points, suggesting that the solvers required more iterations on average to find a suitable
solution.

Figure 9 gives the same comparison as Figure 8 when N = 1000, and g = 14, p = 5%, and
also g = 7, p = 10%. As in the previous figure, we can see a sharp decrease in specificity
of the LP decoder near the point where the balanced accuracy crosses 0.75 (approximately
m = 200 tests when p = 5% and m = 350 tests when p = 10%). We also note corresponding
increases in the system times to solve near these transition points.

Finally, Figure 10 gives the same comparisons as the last two figures when N = 1000, and
g =4, p=15%, and also g = 3, p = 20%. Here we note the sharp decline in specificity of
both methods until approximately m = 250 in the case p = 15% and m = 325 in the case
p = 20% group tests are reached. We also do not observe a significant decrease in specificity
of the LP near the previously mentioned transition point when the balanced accuracy exceeds
0.75, in contrast to the previous two figures where such a decrease was observed. However,
we do note the sharp increase in system time required by the ILP at this point when p = 15%
(approximately m = 500 tests). We also observed increased system time to solve for the ILP,
peaking at about m = 700 tests when the balanced accuracy crosses 0.85.

We summarize our observations on the efficacy of solving the ILP in comparison to solving
the LP, with the choice of rounding threshold 5 = 0, as follows. For larger group sizes and
smaller prevalences, e.g., p = 0.5%, 1%, 5%, or 10% and g > 7, the LP approach often
provides marginally better balanced accuracy and sensitivity at the expense of worse (and
sometimes substantially worse) specificity near the observed transition points. The ILP ap-
proach expends additional computational effort near these points to identify true negatives,
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Figure 8: Comparison of (15% row) balanced accuracy, (2°¢ row) sensitivity, (3" row)
specificity, and (4" row) system time (measured in ticks) to fit when N = 1000, ¢ = 32, and
(left) p = 0.5% and (right) p = 1%.
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Figure 9: Comparison of (1% row) balanced accuracy, (2" row) sensitivity, (3" row)
specificity, and (4" row) system time (measured in ticks) to fit when N = 1000, and (left)
g =14, p=>5 and (right) g =7, p = 10.
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as can be seen by the increased system time required to solve, hence yielding better speci-
ficity. Away from these transition points, both approaches provide similar results in terms
of the measured statistics and solve time. For higher prevalences and smaller group sizes,
e.g., p=15% or p = 20% and g = 4 or g = 3, the ILP and LP approaches provide similar
results in the measured statistics, with the ILP taking marginally longer to arrive at a so-
lution. We note that these results depend heavily on the choice of threshold parameter (.
The GroupTesting package provides an input variable for this parameter, allowing for the
rounding threshold to be tuned for the given sensitivity and specificity trade-off requirements
in practical applications.

Note that the comparison in the appendix A are for noiseless setting. It also worth mentioning
the precise format of the LP relaxation for the ILP (4). This is defined as

N
min Z r; + Ao

doG+M D &
0

Y= kyr=1

<
sy

s.t.

M-

Apjrj+§&>1 for y; = 1,

S
Il
—
—
=)
~—

M=

AtJ’SL‘j - gt =0 for Yt = 0,
j=1
I’je[o,l] 1<j<N,
& € [0,1] 1<t<m.

This formulation is also available in the GroupTesting package.

B. Cross-validation for selecting regularization parameters

In this section we briefly discuss the cross-validation procedure employed by the GroupTesting
package. As discussed in Section 5, GroupTesting supports cross-validation for both A, (in the
case \g = A\ = A¢) or for both parameters \g and \; independently, selecting the pair (Ag, A1)
yielding the best result. The cross-validation procedure divides the test data into K equal
parts, selecting one part for training and using the remaining K — 1 parts for testing. Here
we use K = 5 folds for cross-validation. We then cycle through each pairing of testing and
training splits, solving the group testing problem with values A, € {1/8,1/4,1/2,1,2,4,8}
and choosing the values leading to the lowest averaged testing errors, i.e. that predicts the
results of the group tests with lowest error, taken here to be the balanced accuracy score.
Figure 11 displays the results obtained by this procedure. There we see the cross-validation
procedure consistently chooses a value for A\, providing accuracies near the best-achievable
over a range of alternative fixed parameter values.
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Figure 10: Comparison of (15 row) balanced accuracy, (2°¢ row) sensitivity, (3'¢ row)
specificity, and (4" row) system time (measured in ticks) to fit when N = 1000, and (left)
g =4, p=15% and (right) g = 3, p = 20%.
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Figure 11: Left: Comparison of average balanced accuracy with N = 1000, prevalence
p = 5%, group size g = 16, and 5% permutation noise over a range of values of A\, and
compared to those selected with cross-validation, right: same figure zoomed in. Results

obtained on the noiseless problem are included for comparison.
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