
1 
 

 1 

 2 

 3 

What most influences severity and death of COVID-19 patients in Brazil? Is it clinical, social, or 4 

demographic factors? An observational study. 5 

 6 

Ana Carolina C. N. Mafra1*, Régis Rodrigues Vieira1, Camila N. Monteiro1, Denise F. B. 7 

Cavalcante1, João L. Miraglia1, Daiana Bonfim1, Danielle C. Palacio1, Alessandra C. F. Martins1,   8 

Letícia Yamawaka de Almeida1, João Peres Neto1 9 

 10 

 11 

 12 

1 Hospital Israelita Albert Einstein, São Paulo, São Paulo, Brazil. 13 

 14 

 15 

* Corresponding author 16 

Email: ana.mafra@einstein.br (ACCNM) 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 3, 2021. ; https://doi.org/10.1101/2021.06.03.21258128doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:ana.mafra@einstein.br
https://doi.org/10.1101/2021.06.03.21258128


2 
 

Abstract 25 

Objective: This study aimed to assess the space distribution and factors associated with the risk 26 

of severe acute respiratory syndrome (SARS) and death in COVID-19 patients, based on routine 27 

register data; and to develop and validate a predictive model of the risk of death from COVID-19. 28 

Methods: A cross-sectional, epidemiological study of positive SARS-CoV-2 cases, reported in 29 

the south region of the city of São Paulo, SP, Brazil, from March 2020 to February 2021. Data 30 

were obtained from the official reporting databases of the Brazilian Ministry of Health for 31 

influenza-like illness (ILI) (esus-VE, in Portuguese) and for patients hospitalized for SARS 32 

(SIVEP-Gripe). The space distribution of cases is described by 2D kernel density. To assess 33 

potential factors associated with the outcomes of interest, generalized linear and additive logistic 34 

models were adjusted. To evaluate the discriminatory power of each variable studied as well as 35 

the final model, C-statistic was used (area under the receiver operating characteristics curve). 36 

Moreover, a predictive model for risk of death was developed and validated with accuracy 37 

measurements in the development, internal and temporal (March and April 2021) validation 38 

samples. 39 

Results: A total of 16,061 patients with confirmed COVID-19 were enrolled. Morbidities 40 

associated with a higher risk of SARS were obesity (OR=25.32) and immunodepression 41 

(OR=12.15). Morbidities associated with a higher risk of death were renal disease (OR=11.8) and 42 

obesity (OR=8.49), and clinical and demographic data were more important than the territory per 43 

se. Based on the data, a calculator was developed to predict the risk of death from COVID-19, 44 

with 92.2% accuracy in the development sample, 92.3% in the internal validation sample, and 45 

80.0% in the temporal validation sample. 46 
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Conclusions: The risk factors for SARS and death in COVID-19 patients seeking health care, in 47 

order of relevance, were age, comorbidities, and socioeconomic factors, considering each 48 

discriminatory power.  49 

 50 

 51 

 52 

  53 
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Introduction 54 

In December 2019, the first cases of SARS-CoV-2 infection were described in Wuhan, 55 

China, and 16 months later COVID-19 has affected approximately 140 million people and resulted 56 

in more than 3 million deaths worldwide [1]. 57 

The American continent is currently the region most affected by the COVID-19 pandemic, 58 

and Latin America has one of the highest COVID-19 mortality rates in the world, driven by the 59 

inequality within its countries. Brazil has more than 200 million inhabitants and is a country 60 

marked by social inequality. Up to April 2021, SARS-CoV-2 has infected more than 14 million 61 

people and caused over 382 thousand deaths. São Paulo is the largest city in the country, with 12 62 

million inhabitants, and more than 980 thousand have been infected and 26 thousand have died 63 

[1,2]. 64 

The country has a mixed public and private health system, with one of the largest public 65 

health care programs in the world; in 2020, Brazil’s Unified Health Care System (SUS) completed 66 

30 years of existence. Approximately 75% of the Brazilian population depends exclusively on the 67 

public health care system. Despite the advances following expansion of health services, 68 

particularly in Primary Health Care (PHC), SUS has suffered with chronic underfunding, resource 69 

scarcity and deficient delivery of services [3]. 70 

         In the last five years, Brazil has undergone structural changes leading to more severe 71 

inequalities, which have strongly impacted the response to the pandemic. The following changes 72 

stand out: the spending ceiling that has frozen health care financing starting in 2016 through the 73 

next 20 years; changes in the National Primary Care Policy, in 2017, leading to uncertainty with 74 

flexibilization of the need for community health workers, and weakening of the Family Health 75 

Strategy, one of the pillars of PHC in the country. Additionally, in 2019 the program “Previne 76 
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Brasil” [Prevent Brazil] was launched and changed the PHC funding scenario, increasing doubts 77 

about the ability of SUS to keep its universal nature, at the risk of reducing PHC to a selective 78 

model, based on focal targets [4]. 79 

The risk factors strongly associated with the severity of COVID-19 are known, particularly 80 

advanced age, cancer, chronic renal disease, chronic obstructive pulmonary disease, 81 

cardiovascular disease, prior transplantation, obesity, pregnancy, sickle cell anemia, smoking and 82 

diabetes mellitus [5-8]. However, there is no specific data on risk factors associated with high 83 

mortality rates in territories of low-income and household overcrowding, such as Brazilian slums 84 

[9]. 85 

The combination of the SARS-CoV-2 epidemic with chronic non-communicable diseases 86 

(NCD) in a social context of poverty and inequality has disproportionally affected the so-called 87 

slums, i.e. densely populated and poverty-stricken areas [10].  88 

The territorial distribution of COVID-19 in Brazil started in large, more populous urban 89 

centers, where trade relations are more intense, and flowed along the richest transport routes in the 90 

country, shaping virus spread, and ultimately reaching poorer regions [11]. São Paulo is one of the 91 

cities with the highest incidence of cases, mostly driven by its high population density. However, 92 

there is no specific data on how virus transmission occurred within the most vulnerable areas of 93 

the city [12], such as the districts of Vila Andrade and Campo Limpo, regions stricken by great 94 

social inequality and extreme vulnerability. 95 

Despite the known social inequalities among countries and even regions within the same 96 

country, and the need for differentiated responses in highly vulnerable and resource-scarce 97 

settings, little is known about the specific realities of virus spread and the risk factors present in 98 

slums. The data extrapolated is from regions with vastly different conditions, which may not 99 
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correspond to the real world [11]. Hence, this study aimed to assess the space distribution and 100 

factors associated with the risk of SARS and death from COVID-19, based on routinely collected 101 

register data, as well as to develop and validate a predictive model of risk of death from COVID-102 

19. 103 

 104 

 Methods 105 

This was a cross-sectional, epidemiological study that included positive COVID-19 cases 106 

reported in the south region of the city of São Paulo, SP, Brazil, between March 2020 and February 107 

2021. We conduct the work following the STROBE checklist (S2 Text). 108 

The study territory includes two administrative districts, Campo Limpo and Vila Andrade, 109 

which together have an estimated population of approximately 400 thousand people (Fig 1A) [13]. 110 

In this region, social vulnerability can be measured by the São Paulo Social Vulnerability Index 111 

(IPVS, in Portuguese) [14], which ranges from 1 for extremely low vulnerability (navy areas) to 6 112 

for very high vulnerability (purple areas) (Fig 1B). The GeoSES is another socioeconomic 113 

indicator [15] that can express the region’s vulnerability. It is a composite index that summarizes 114 

the Brazilian socioeconomic context, and is composed by seven dimensions: education, mobility, 115 

poverty, wealth, income, segregation and deprivation of resources and services. The index can 116 

range from -1 (worst socioeconomic context) to 1 (best socioeconomic context). The districts of 117 

Vila Andrade and Campo Limpo have average values of -0.03 and -0.36 respectively (Fig 1C). 118 

 119 

Fig 1. Study territory. A: Satellite image and photographs of the region. B: Distribution of the 120 

São Paulo Social Vulnerability Index. C: Distribution of the GeoSES Socioeconomic Index. 121 

 122 
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The distribution of the health care facilities, privet and public, accessed by the study 123 

population can be visualized in a map available in S1 Fig. Health care facilities were categorized 124 

as privet or public according to the National Registry of Health Care Facilities (CNES, in 125 

Portuguese), and was considered in the analyses as an indicator of health care access, since public 126 

health services are universally accessible, while only those with health insurance or high income 127 

have access to private services.  128 

The data reviewed come from official reporting databases of the Brazilian Ministry of 129 

Health, including two systems: one for influenza-like illness (esus-VE), with milder cases of the 130 

disease reported by any health care facility, and another (SIVEP-Gripe) for patients hospitalized 131 

with severe acute respiratory syndrome (SARS). The residence location of individuals included in 132 

the study was geocoded by GISA/CEINFO - SMS, and made available by the Health Surveillance 133 

Unit of Campo Limpo. The study database was anonymized, with all identifiable patient 134 

information removed. This study was approved by the Institutional Review Boards of Hospital 135 

Israelita Albert Einstein and the São Paulo Health Department, protocol numbers 4.462.994 and 136 

4.648.956, respectively. 137 

The study population was defined as all COVID-19 cases confirmed by PCR. The outcome 138 

variables were progression to SARS and death, categorized as: influenza-like illness (ILI)/severe 139 

acute respiratory syndrome (SARS) and discharge/death, respectively. 140 

The independent variables were sociodemographic characteristics, comorbidities, and 141 

symptoms. The following inclusion criteria were used: to be a resident of the study region, aged 142 

18 years and older, with laboratory confirmation of COVID-19 by PCR.  When the same patient 143 

had multiple records, and ILI had been reported previously to SARS, only the SARS record was 144 

considered (Fig 2). 145 
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Fig 2. Study data inclusion and exclusion flow. 146 

 147 

Results were presented as absolute and relative frequencies, overall and by outcome (death 148 

or SARS). For simple comparison between outcome groups, the chi-square test was used for 149 

categorical variables and Student’s t-test was used for numerical variables. 150 

The spatial distribution of cases was described by a 2D kernel density. 151 

To assess potential factors associated with the outcomes of interest, generalized linear and 152 

additive logistic models were adjusted, and the latter were used for inclusion of the spatial location 153 

of subjects’ place of residence (latitude and longitude). First, simple models were adjusted, and 154 

variables with a p value ≤0.2, and with less than 10% of missing values were considered for the 155 

multiple models. No data imputation was used, so only complete observations were used in the 156 

analyses. Symptoms were not included in the model, so it would only evaluate conditions that 157 

existed prior to COVID-19. The selection of variables for the final model was performed by 158 

backwards stepwise elimination, with a p value <0.05 as the criteria to inclusion in the model. In 159 

the final model, the quality of adjustment was verified by the magnitude of standard errors, the 160 

influence of inclusion or exclusion of variables in the estimated odds ratio, and the variance 161 

inflation factor, which was not greater than 1.2. 162 

To assess the discriminatory power of each variable evaluated as well as the final model, 163 

the C-statistic was used (area under the receiver operating characteristics curve). 164 

Since the multiple model presented a good discriminatory power, a predictive model for 165 

death was developed, with the main clinical and demographic characteristics of patients arriving 166 

at health care facilities for COVID-19 evaluation. In this analysis, the symptoms were also 167 

considered, and we followed the same method of variable selection presented above. The data was 168 

randomly split in two sets with a 2:1 ratio for training and testing, respectively. The predictive 169 
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performance of the model was assessed by accuracy measurements, discriminatory power and the 170 

Hosmer-Lemeshow test [16]. The temporal validation used data from patients over 18 years of 171 

age, with a positive COVID-19 test and who had symptoms onset between March and April of 172 

2021.  173 

All analyses were performed with the R software, version 3.6.3 [17], with the mgcv [18], 174 

ggplot2 [19] and viridis [20] packages. A 5% significance level was adopted. 175 

 176 

Results 177 

The study investigated a population of 16,061 patients with confirmed COVID-19, between 178 

March 2020 and February 2021, with 1,925 (11.98%) cases of SARS and 375 (2.37%) deaths. 179 

The age of included individuals ranged from 18 to 103 years, with a mean of 42.1 years 180 

(standard deviation 14.9) and a median of 40 years. 181 

The baseline characteristics of study participants, stratified by outcome, and the C-statistic 182 

for each variable and outcome can be found at Table 1. 183 

 Age presented the greatest C-statistic for the prediction of death and SARS, followed by 184 

the presence of symptoms, such as dyspnea, fever and cough, and the presence of comorbidities, 185 

like heart disease and diabetes.  186 

 187 

Table 1. Baseline characteristics of study participants, overall and stratified by study 188 

outcome, and C-statistics for each variable and outcome. N=16,031 confirmed for COVID-189 

19. 190 

 Overall 
Missing 

rate (%) 
SARS (yes) C SARS Death (yes) 

C 

Death 

N 16,061  1,925  375  

Profile       
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Mean age (SD) 42.10 (14.94) 0.0 56.93 (16.77)** 0.78 68.08 (14.48)** 0.90 

Age Range  0.0  0.75  0.86 

18 to 40 years 7892 (49.1)  337 (17.5)**  18 (4.8)**  

40 to 60 years 6022 (37.5)  736 (38.2)  82 (21.9)  

60 to 80 years 1830 (11.4)  653 (33.9)  184 (49.1)  

80 years and older 317 (2.0)  199 (10.3)  91 (24.3)  

Sex  0.0  0.56  0.57 

Female 8804 (54.8)  852 (44.3)**  153 (40.8)**  

Male 7230 (45.0)  1073 (55.7)  222 (59.2)  

Undefined 27 (0.2)  0 (0.0)  0 (0.0)  

Race/skin color  24.9  0.54  0.53 

White 5925 (49.1)  675 (51.4)**  144 (49.3)  

Black 663 (5.5)  63 (4.8)  21 (7.2)  

Yellow 901 (7.5)  35 (2.7)  10 (3.4)  

Brown 4563 (37.8)  539 (41.1)  117 (40.1)  

Indigenous 15 (0.1)  1 (0.1)  0 (0.0)  

Caucasian  24.9  0.51  0.50 

No 6142 (50.9)  638 (48.6)  148 (50.7)  

Yes 5925 (49.1)  675 (51.4)  144 (49.3)  

Conditions       

Diabetes (y) 997 (6.5) 5.0 506 (44.9)** 0.71 154 (49.4)** 0.72 

Obesity (y) 187 (1.2) 5.0 118 (10.5)** 0.55 44 (14.1)** 0.56 

Immunodepression 

(y) 
145 (0.9) 5.0 62 (5.5)** 0.52 26 (8.3)** 

0.53 

Heart disease (y) 1494 (9.8) 5.0 720 (63.8)** 0.79 215 (68.9)** 0.80 

Renal disease (y) 122 (0.8) 5.0 85 (7.5)** 0.54 53 (17.0)** 0.58 

Respiratory Disease 

(y) 
418 (2.7) 5.0 125 (11.1)** 0.55 46 (14.7)** 

0.56 

Pregnancy (y) 78 (0.5) 7.9 11 (1.7)** 0.51 0 (0.0) 0.50 

Symptoms       

Fever 6868 (43.8) 2.3 1211 (78.0)** 0.69 235 (73.2)** 0.65 

Cough 8354 (53.0) 1.9 1352 (83.3)** 0.67 271 (81.9)** 0.64 

Sore throat 3755 (24.6) 5.1 246 (22.3) 0.51 55 (20.3) 0.52 

Dyspnea 3567 (22.7) 2.0 1332 (82.7)** 0.83 293 (85.4)** 0.82 

Diarrhea 231 (1.5) 5.2 231 (21.1)** 0.61 65 (23.6)** 0.61 

Vomiting 125 (0.8) 5.5 125 (12.0)** 0.56 32 (12.5)** 0.55 

Abdominal pain 43 (0.3) 9.5 43 (10.8)** 0.55 7 (7.7)** 0.53 

Fatigue 157 (1.1) 9.2 157 (35.4)** 0.68 18 (18.8)** 0.58 

Loss of smell 1487 (10.2) 9.1 125 (27.3)** 0.59 12 (12.5) 0.51 

Loss of taste 1386 (9.5) 9.4 96 (22.8)** 0.57 11 (12.1) 0.51 

Socioeconomic      

Type of healthcare 

facility 
  

 

 

 

  

 

Private 6999 (51.6) 15.5 1079 (58.3)** 0.54 161 (44.7)* 0.53 

Public 6570 (48.4)  772 (41.7)  199 (55.3)  
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Mean IPVS (SD) 2.68 (1.60) 0.9 2.57 (1.54)* 0.52 2.78 (1.52) 0.53 

0-3 12619 (79.3) 0.9 1555 (81.2)* 0.51 287 (76.7) 0.51 

4-6 3302 (20.7)  360 (18.8)  87 (23.3)  

Mean GeoSES (SD) -0.20 (0.30) 0.0 -0.19 (0.30)* 0.52 -0.25 (0.28)* 0.54 

<0 11438 (71.2) 0.0 1336 (69.4) 0.51 289 (77.1)* 0.52 

>=0 4623 (28.8)  589 (30.6)  86 (22.9)  

C: C-statistic, representing the area under the ROC curve. Measures reported as absolute frequency 191 

(%), when mean not indicated (standard deviation). * p value for hypothesis testing <0.05. ** p 192 

value for hypothesis testing <0.001. Tests performed: chi-square and Student´s t. 193 

  194 

Geospatial distribution 195 

The density of COVID-19 cases was plotted to visualize the concentration of cases, 196 

alongside the incidence, which considers the total population of each area (Fig 3). It is possible to 197 

note on Figure 3 that disease severity was not correlated with the number of cases. 198 

 199 

Fig 3. Geospatial distribution of cases and outcomes. Density of positive COVID-19 cases in 200 

the region (A), incidence of cases in the population (B), SARS incidence among positive cases 201 

(C), mortality among positive cases (D), by census sector, according to the place of residence of 202 

cases.   203 

 204 

 In map “A”, Fig 3, there is clearly an area of higher density of positive COVID-19 cases, 205 

which overlaps with the area of the largest slums in the city of São Paulo, Paraisópolis, with a 206 

predominantly young and vulnerable population living in overcrowded households. However, the 207 

incidence of positive COVID-19 cases, SARS and deaths in this area are not high, when compared 208 

to other areas in the region (Figs “3B”, “3C” and “3D”). 209 
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The data on progression to SARS was reviewed for the 16,061 individuals included in the 210 

study. After excluding individuals with missing information on comorbidities, the multiple model 211 

was adjusted based on data from 15,235 patients. 212 

In the final multiple model (Table 2), clinical and demographic variables were more 213 

relevant than the region per se, which was not included in the final model, even dough place of 214 

residence had a p value <0.001, C-statistic of 0.57, and 0.74% of deviance explained in the simple 215 

analysis (Fig 4). The comorbidities found to be associated with a higher risk of SARS were obesity 216 

and immunodepression. No socioeconomic variable remained significant to be included in the 217 

multiple model. The complete model presented a C-statistic of 0.96 and deviance explained of 218 

50%. 219 

 220 

Table 2. Results of the multiple model for SARS associated with COVID-19. N=15,235. 221 

Factors OR (95%CI) p value 

Age (years) 1.063 (1.057;1.069) <0.001 

Sex (Male) 1.61 (1.36;1.91) <0.001 

Obesity (y) 25.32 (16.31;39.31) <0.001 

Immunodepression (y) 12.15 (7.62;19.37) <0.001 

Renal disease (y) 10.12 (5.81;17.62) <0.001 

Heart disease (y) 9.79 (8.21;11.68) <0.001 

Respiratory disease (y) 6.72 (4.81;9.40) <0.001 

Diabetes (y) 6.70 (5.51;8.15) <0.001 

s (Longitude, Latitude) Fig 4 0.721 

 222 

 223 
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Fig 4. Predicted probability of progression to SARS by the space-only model. N=16,601. 224 

 225 

 226 

The data of 15,795 individuals was reviewed for deaths. After excluding patients with no 227 

comorbidity data, the multiple model for death was adjusted based on information from 15,100 228 

patients. 229 

As was the case for SARS, in the final multiple model (Table 3), clinical and demographic 230 

variables were more relevant than the region per se, which was not included in the final model, 231 

even dough place of residence had a p value 0.001, C-statistic of 0.62, and 1.8% of deviance 232 

explained in the simple analysis (Fig 5). The comorbidities associated with a higher mortality risk 233 

were renal diseases and obesity. The complete model presented a C-statistic of 0.96 and deviance 234 

explained of 46.5%. 235 

 236 

Table 3. Results of the multiple model for deaths associated with COVID-19. N=15,100. 237 

Factors OR (CI 95%) p value 

Age (years) 1.082 (1.071; 1.092) <0.001 

Sex (Male) 1.68 (1.27; 2.21) <0.001 

Renal disease (y) 11.8 (7.1; 19.7) <0.001 

Obesity (y) 8.49 (5.21; 13.85) <0.001 

Immunodepression (y) 7.68 (4.22; 13.97) <0.001 

Heart disease (y) 4.41 (3.26; 5.97) <0.001 

Respiratory disease (y) 3.50 (2.23; 5.51) <0.001 

Diabetes (y) 3.06 (2.29; 4.09) <0.001 
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GeoSES (0.1 unit) 0.896 (0.844; 0.951) <0.001 

s (Longitude, Latitude) Fig 5 0.657 

 238 

 239 

Fig 5. Predicted probability of death (case fatality rate/100) by the space-only model. 240 

N=15,795. 241 

  242 

Predictive model for death from COVID-19 243 

The development of the predictive model included 9,931 observations. Socioeconomic and 244 

geolocation data were not included, since this information is more difficult to obtain during the 245 

patient’s clinical evaluation, but symptoms were included. The final predictive model included the 246 

following variables with their respective coefficients: 247 

Risk score = -10.37 + (0.075 x age in years) + (0.98 x diabetes) + (1.21 x obesity) + (1.89 x 248 

immunodepression) + (0.99 x heart disease) + (2.95 x chronic renal disease) + (1.18 x respiratory 249 

disease) + (0.78 x fever) + (1.81 x dyspnea), where variables are coded as 1 when the condition is 250 

present, and 0 when absent. 251 

Based on this formula, it is possible to calculate the predicted probability as follows: 252 

Predicted risk (or probability) = 1 / (1+ e- Risk score) A risk calculator was developed, and it 253 

is accessible at: https://redcap.einstein.br/surveys/?s=PFLPC9JJ8F 254 

To set a cutoff with a better balance between sensitivity, specificity and accuracy, the ROC 255 

curve was used to obtain a 0.0186 predicted probability with 92.2% specificity, 94.1% sensitivity 256 

and 92.2% accuracy. The C-statistic observed was 0.974 (95% CI: 0.967–0.981), demonstrating 257 

an excellent discrimination. 258 
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The training sample included 170 events, which is sufficient for the estimation of the 259 

coefficients of the 9 variables included in the final model. No collinearity between variables was 260 

evident, with the variance inflation factors ranging from 1.01 to 1.17. The maximum values for 261 

the estimated coefficient standard errors were 0.48 for the intercept, and 0.38 for 262 

immunodepression. The p value for the Hosmer-Lemeshow test was 0.485 indicating good model 263 

fit. 264 

For internal validation, a sample of 4,966 observations was used, in which 92 events 265 

occurred (10.2 events per variable). In this sample, by applying the predicted model and 266 

maintaining the same cutoff, 92.2% sensitivity, 98.9% specificity and 92.3% accuracy was 267 

achieved. The C-statistic observed was 0.985 (95%CI: 0.978 - 0.991), with the same 268 

discriminatory quality.  269 

For temporal validation, the predicted model for death was applied to a sample of 3,798 270 

COVID-19 cases confirmed by PCR, notified between March and April 2021. 104 died from 271 

COVID-19 during the study period.  The predictive analysis resulted in an accuracy of 80.04%, 272 

sensitivity of 98.08% and specificity of 79.53%. The C-statistic was 93.62 (95% CI: 92.24–95.00). 273 

 274 

Discussion   275 

   This study analyzed the space distribution and factors associated with the risk of SARS 276 

and death in positive COVID-19 cases and, derived a death risk calculator. 277 

The risk factors associated with severe acute respiratory syndrome (SARS) were age, 278 

obesity and immunodepression, a similar finding to those of systematic reviews that evaluated risk 279 

factors associated with severe COVID-19 [21-25]. However, none of these reviews evaluated the 280 

association of environmental factors, such as living in slums, overcrowded households or in 281 
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precarious sanitary conditions, with COVID-19 severity. Some observational studies have 282 

demonstrated a higher death prevalence among vulnerable and lower-income populations, but 283 

there is no solid evidence for this association [6,26].  284 

This study found a strong association between comorbidities and age with severe 285 

COVID-19, raising the question if the poor management of chronic conditions in a vulnerable 286 

population may have contributed to the severity of COVID-19. However, no significant 287 

association was found for living conditions, while regions with a lower prevalence of chronic 288 

diseases, even the highly vulnerable ones, had a lower risk of severe respiratory syndromes. 289 

 Another key finding of this study was the increased risk of death associated with (in 290 

order of importance) age, comorbidities, and vulnerability status.  The comorbidities most often 291 

related to the risk of death, in decreasing order of association, were renal disease, obesity, 292 

immunodepression, heart disease, respiratory disease, diabetes, male sex and age. Better 293 

socioeconomic conditions had a protective effect on the risk of death. 294 

The density, incidence, severity, and case fatality rate of COVID-19 in the study region 295 

suggested the virus could spread in both high- and low-vulnerable regions. It is important to 296 

consider the vulnerability of specific groups in order to understand the impact of the pandemic on 297 

the study region, part of the largest Brazilian city with 400 thousand inhabitants, and presenting a 298 

diverse range of urban social vulnerability scores [27].  299 

 In Paraisópolis, the largest slum of the study region, there was an evident higher density 300 

of cases, in agreement with other Brazilian studies that found greater virus spread in highly 301 

vulnerable and densely populated locations [28,29]. However, a high incidence of severe cases 302 

and deaths was found in two areas of low vulnerability also presenting low density and overall 303 
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incidence of cases, which is in accordance with the findings of the study by Bermudi et al. [29], 304 

showing high mortality in the richest areas of the city of São Paulo. 305 

  The finding of increased mortality indicate that efforts aimed at the management of 306 

chronic conditions and the care of the elderly should be the focus of public policies towards 307 

COVID-19 [30], for areas with high and low socioeconomic status. 308 

Despite the extreme plausibility of the fact that poverty aggravates health conditions [31], 309 

this does not change the need for controlling risk factors that could be more easily modified, as 310 

well as seek strategies that would facilitate the implantation of social distancing for the most 311 

vulnerable. In Brazil, the SUS provides free and universal access to health services, with a large 312 

primary health care network present throughout the country which should be used as the 313 

transforming agents of this reality [32,33], given that countries without universal health care, such 314 

as the USA, suffered with high mortality rates from COVID-19 [34].  315 

Predictive models for COVID-19 severe disease should include symptoms to help with 316 

medical decision making, resource planning and improvements in monitoring of COVID-19 317 

patients [35] (i.e., the number of symptoms is predictive of disease duration [36,37]). This study 318 

identified cough, fever, sore throat, dyspnea, anosmia, loss of taste, diarrhea and fatigue as 319 

symptoms significantly associated with COVID-19 SARS and death.   320 

The proposed risk model for death had good performance, including a C-statistic of 321 

97.4% (95% CI: 96.7%–98.1%), which is higher than the value found by another calculator for a 322 

population of elders in the USA, with a C-statistic of 85.3%, while needing more variables [38]. 323 

Booth et al. [39] proposed a different strategy to predict deaths associated with COVID-19 324 

employing molecular biomarkers measured in laboratory samples used for PCR tests; however, 325 

this approach presents limitations related to cost and availability of results in a timely manner, in 326 
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addition a lower performance when compared to the model proposed by this study, with a C-327 

statistic of 93%, sensitivity of 91% and specificity of 91%. Additional studies have focused only 328 

on the elderly or hospitalized individuals [40,41]. 329 

  The model proposed by this study is a powerful response to support managers and other 330 

professionals in planning patient care, prioritizing more targeted and assertive strategies and 331 

actions, such as monitoring of positive cases with higher prediction of death, stewardship, and 332 

distribution of resources at different care levels, regions and cities, including different vulnerability 333 

contexts. 334 

Added to the risk factors highlighted in this study, many countries in the world are going 335 

through an economic, political and ethical crisis, including Brazil, with defective response, policies 336 

that go against social distancing, lack of country-level coordination, negationism, and neoliberal 337 

policies [42], which may affect the outcomes of this pandemic. Thus, the response to the pandemic 338 

in these settings must be challenged, and larger studies including these variables in the analyses 339 

are required, such as the need for interdisciplinary analyses [43-45], considering the clinical, 340 

demographic, socioeconomic and geospatial dimensions, and incorporating all of them into one 341 

single model. 342 

 This study had the strength, of using data derived from official databases of confirmed 343 

COVID-19 cases making it possible to include a large sample size, but at the same time is subject 344 

to the limitations of observational studies and of routinely-collected health data, with the 345 

possibility of the interference by multiple errors and biases (e.g., data linkage problems, 346 

misclassification bias and underreporting) During the study period the main SARS-CoV-2 variant 347 

in circulation changed, with the introduction of the P1 variant in January of 2021, in addition to 348 

the start of the vaccination campaign at the same month. Because of these factors, the temporal 349 
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validation was done finding some decrease in performance, but still finding and excellent 350 

discrimination. 351 

In conclusion, this study contributed to the global effort to fight COVID-19, identifying 352 

risk factors associated with SARS and death among COVID-19 patients, and proposing a 353 

calculator for risk of death from COVID-19, that showed a satisfactory performance, both on a 354 

diverse setting including urban slums and extremely vulnerable populations.   355 
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