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Abstract

SARS-CoV-2 has infected nearly 3.7 million and killed 61,722 Cal-
ifornians, as of May 22, 2021. Non-pharmaceutical interventions have
been instrumental in mitigating the spread of the coronavirus. How-
ever, as we ease restrictions, widespread implementation of COVID-
19 vaccines is essential to prevent its resurgence. In this work, we
addressed the adequacy and deficiency of vaccine uptake within Cali-
fornia and the possibility and severity of resurgence of COVID-19 as
restrictions are lifted given the current vaccination rates. We imple-
mented a real-time Bayesian data assimilation approach to provide
projections of incident cases and deaths in California following the re-
opening of its economy on June 15, 2021. We implemented scenarios
that vary vaccine uptake prior to reopening, and transmission rates
and effective population sizes following the reopening. For comparison
purposes, we adopted a baseline scenario using the current vaccination
rates, which projects a total 11,429 cases and 429 deaths in a 15-day
period after reopening. We used posterior estimates based on CA
historical data to provide realistic model parameters after reopening.
When the transmission rate is increased after reopening, we projected
an increase in cases by 21.8% and deaths by 4.4% above the base-
line after reopening. When the effective population is increased after
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reopening, we observed an increase in cases by 51.8% and deaths by
12.3% above baseline. A 30% reduction in vaccine uptake alone has
the potential to increase cases and deaths by 35% and 21.6%, respec-
tively. Conversely, increasing vaccine uptake by 30% could decrease
cases and deaths by 26.1% and 17.9%, respectively. As California
unfolds its plan to reopen its economy on June 15, 2021, it is criti-
cal that social distancing and public behavior changes continue to be
promoted, particularly in communities with low vaccine uptake. The
Centers of Disease Control’s (CDC) recommendation to ease mask-
wearing for fully vaccinated individuals despite major inequities in
vaccine uptake in counties across the state highlights some of the lo-
gistical challenges that society faces as we enthusiastically phase out
of this pandemic.

Introduction

The coronavirus pandemic has highlighted how inadequate and unprepared
the public health and healthcare system was for such an event, with dis-
proportionate consequences for traditionally underserved populations. As of
May 19, 2021, the US had administered at least one dose of available vaccine
to nearly 48% of the adult population, with 37.8% fully vaccinated. Califor-
nia has used 79% of its vaccine supplies to fully vaccinate 47.8% of the adult
population, ranking 27th, proportionally, out of all states.

Management of the pandemic at the county level has thus far been lead
by California’s Blueprint for a Safer Economy [3], which uses local case
and test positivity rates, adjusted for equity measures in the most vulnera-
ble census tracts, to determine a color-based qualitative threat level for the
entire county. Business operation, non-pharmaceutical intervention (NPI)
mandates, and general advice on safety and maximum gathering sizes are
tied to these threat levels. In the recent Beyond the Blueprint for a Safer
Economy, The California Department of Public Health (CDPH) issued plans
and guidance for a full easing of all business restrictions by June 15th, 2021,
contingent on case, vaccination, and equity measurements staying on track.
CDPH stressed the importance of maintaining infrastructure and resources
for continuing vaccination programs; monitoring for new cases and strains
with active testing, especially in the most vulnerable areas of the state; ro-
bust contact tracing and outbreak investigations; statewide plans to scale
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up resources in the case of another large outbreak; and monitoring hospital
usage, appropriate availability of personal protective equipment, and surge
capacity [2].

It is unlikely that any given state in the US will be able to eliminate
SARS-CoV-2 completely. Short of elimination, the next best hope is that
forcing the virus into endemicity will result in a much less severe disease in
years to come [20], which is the foundation for California’s current approach.
For infectious diseases like COVID-19, the risk and size of an outbreak—
and the threshold for forced endemic transmission—is determined by the
transmissibility of the virus and the effective size of the population who can
acquire it. Transmissibility is a function of biochemical, biological, and social
factors and can thus change over time in unpredictable ways. Multiple new
strains of the SARS-CoV-2 virus have already appeared over the course of
this pandemic, the interactions of which with natural and pharmaceutical
immunity is only partially explored [19]. Though acquiring an infection after
a complete vaccination regimen is rare [18, 23], the continued appearance of
new strains, the risk of which increases with circulation around the world,
could reduce vaccine effectiveness [5, 6]. Additionally, messaging around the
lifted restrictions and pandemic fatigue may lead people to change their be-
haviors in ways that could change transmission rates, such as ignoring mask
use, social distancing, and limitations on indoor gatherings of unvaccinated
individuals [1, 8].

The effective susceptible population includes all who have not recovered
from the virus, those whose immunity has waned and thus may acquire the
virus again, and those rarer individuals who have a breakthrough event from
a vaccine failure. Each of these categories are difficult to estimate, especially
in the context of how they can influence the severity of outbreaks in the
future. Waning immunity, which is still poorly understood in both natural
and pharmaceutical cases, could be adding more people to the susceptible
pool than previously expected. Additionally, as more people feel comfortable
socializing in public, there may be a larger pool of people who may not have
been exposed had limitations on indoor gatherings been maintained.

Traditional SEIR models with fixed model parameters tend to be too
simplistic or divergent from real-world data to act as good assessments of
future trends to form the basis of an exit strategy. As an alternative ap-
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proach, we implemented a Bayesian sequential data assimilation model that
allows for non-stationarity by sequentially updating model parameters, such
as transmission rates and the effective population. In this way, our model
can implicitly account for the unobserved changes in social distancing behav-
ior, mobility, masking behavior, etc. We used posterior coverage intervals
to investigate the uncertainty of and establish reasonable ranges for these
model parameters to create realistic scenarios for widescale re-opening and
the lifting of restrictions. We summarize the potential impact of changes
in transmissibility, effective susceptible population, and vaccination rates by
observing how they can affect incident cases and deaths in the weeks after
the easing of restrictions in California.

Materials and methods

Data Sources

Daily COVID-19 confirmed cases, deaths, and vaccination for California were
obtained from California’s open data portal [4,16]. All data are publicly avail-
able and fully anonymized, and therefore did not require ethical approval of
an institutional review board nor written informed consent. All analyses were
conducted with data updated to May 18, 2021. For inference, we calculated
the weekly moving average for cases and deaths.

Mathematical Model

A dynamic SARS-CoV-2 transmission model with vaccination was imple-
mented (Fig 1). The total population was divided into eight classes: sus-
ceptible, exposed, reported infectious, unreported contagious, vaccinated,
recovered, and deceased. Individuals in the susceptible (S) group become
infected and move to the exposed group with the incubation of the virus.
Exposed (E) individuals subsequently move to the reported infectious group
(O) or the group of unreported contagious (U). Individuals move to com-
partment V1 after receiving the first vaccine dose and move from V1 to V2
when fully vaccinated. Lastly, individuals are removed through recovery (R)
or COVID-19 induced death (D). Once an individual is recovered, immunity
is assumed for the entire period of the simulation.
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Figure 1: Flow diagram of SARS-CoV-2 transmission dynamics with
vaccination.

Model Structure

A dynamic model of SARS-CoV-2 transmission was developed based on eight
epidemiological classes as illustrated in Fig 1. We model the process of vac-
cination by considering that: (1) individuals in all epidemiological classes,
with the exception of those diagnosed as positive are vaccinated, (2) vac-
cine is partially effective, suggesting that some individuals vaccinated can be
infected, (3) vaccine efficacy is different after first and second dose admin-
istration, and (4) vaccination rate is estimated using daily data of first and
second doses administered in California.
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Ṡ = −λS − λv1S
V̇1 = λv1(S + E + U +R)− λv2V1 − λε1V1
V̇2 = λv2V1 − λε2V2
Ė = λS − fσE − (1− f)σE − λv1E + λε1V1 + λε2V2

Ȯ = fσE − (1− g)γoO − gO
U̇ = (1− f)σE − γuU − λv1U
Ṙ = (1− g)γoO + γuU − λv1R
Ḋ = gO

(1)

We assume that only a small proportion of individuals diagnosed as positive
contribute to new infections because they do not follow recommendations to
isolate. We assume that asymptomatic individuals can also be infectious, so
λ = β (U+kO)

ωN
. N = S(t) + V1(t) + V2(t) + E(t) + O(t) + U(t) + R(t) + D(t)

corresponds to the total population of California. Parameter description and
values are summarized in Table [1].

Parameter estimation

The Bayesian sequential forecasting method in Daza-Torres, et al. [13] is
used to conduct parameter inference. The estimation is implemented by
decoupling the model into two parts. First, we consider the transitions for
vaccination [equation 3] and second, the remaining dynamics [equation 2].

Ṡ = −λS
Ė = λS − fσE − (1− f)σE

Ȯ = fσE − γoO − (1− g)γoO

U̇ = (1− f)σE − γuU
Ṙ = (1− g)γoO + γuU

Ḋ = γogO

(2)

Data on weekly moving average of confirmed cases and deaths are used to
estimate the contact rate (β), the proportion of the effective population (ω),
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the fraction of individuals infected that are deceased (g), and the initial con-
ditions for all compartments, except for the susceptible ones which is set as
S(t0) = ω ·N − (E(t0) +O(t0) + U(t0) +R(t0)) + V1(t0) + V2(t0).

Let W be the population of non-vaccinated individuals at time t. For t0 = 0,
W (t0) = N . We assume a vaccination rate, for first and second doses to be
constant and proportional to the actual population. Therefore,

Ẇ = −λv1W
V̇1 = λv1W − λv2V1
V̇2 = λv2V1

(3)

Data on individuals with at least one dose and fully vaccinated is required
to find the value of λv1 and λv2 .

Table 1: Parameter definition and estimates.
Parameter Description

β Transmission rate Estimated
ω Effective population Estimated
λv1 Vaccination rate, first dose Estimated
λv2 Vaccination rate, second dose Estimated
g Mortality rate Estimated

Parameter Description Value Ref.
κ Proportion of observed people that contribute to new infections 0.2
f Proportion of observed individuals 0.6
N California population size 39512223 [7]

1/γo Average time to recovery, diagnosed 1/14 [10,24]
1/γu Average time to recovery, undiagnosed 1/7 [22]
ε1 (1− ε1) Vaccine efficacy after first dose 0.40 [12]
ε2 (1− ε2) Vaccine efficacy after second dose 0.05 [12]
σ Median number of days from symptom onset 1/5 [14]

Scenarios

We propose a set of scenarios to analyze the impact of reopening on June
15th, considering changes in vaccination rate, virus transmission rate, and
effective population. Variability in the rate of infection can inherently reflect
the use of masks and new strains of the circulating virus. Changes in the ef-
fective population implicitly capture the number of people who are available
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to be infected due to restrictions or openings.

For the baseline scenario, we fitted the model to updated data until May 18,
2021, and we projected total positive cases and deaths from May 19 through
July 15, 2021. Starting on June 15th (reopening day), simulations were eval-
uated with two different values for both transmission rate (β) and effective
susceptible population (ω). Other parameters were the same as those esti-
mated in the baseline scenario. Replications were evaluated for situations
where the vaccination rate was reduced or increased by 30%. Table [2] sum-
marizes the scenario assumptions.

Table 2: Summary of scenarios.
Vaccination rate assumptions

Description Current rate
maintained

Current rate
reduced by 30%

Current rate
increased by

30%
Assumption: the viral
transmission rate changes after
June 15th.

β1 = 0.4 β1 = 0.4 β1 = 0.4
β2 = 0.5 β2 = 0.5 β2 = 0.5

Assumption: the effective
proportion of susceptible people
changes after June 15th.

ω1 = 0.3 ω1 = 0.3 ω1 = 0.3
ω2 = 0.5 ω1 = 0.5 ω1 = 0.5

Changes in vaccination rates are paired with changes in the effective susceptible population
(ω) or the transmission rate (β). Model for the baseline scenario is fitted using updated
data through May 18, 2021, generating parameters as in Table [1]

Results

Daily confirmed infections and deaths were projected through July 15, 2021.
Fig 2 depicts the predicted daily cases and deaths for California after reopen-
ing day. The black line corresponds to the baseline scenario, the cyan line
corresponds to the projection assuming a 30% reduction in the current vac-
cination rate, and the magenta line corresponds to the projection assuming
a 30 % increment in the current vaccination rate. After June 15, the red,
blue, and black lines correspond to the projection with the different values
of β (figures (a) and (b)) and ω (figures (c) and (d)). Assessing the im-
pact of different rates of transmission (β) allows for flexibility in changes in
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transmission resulting from reduction in social distancing measures, mask-
wearing, and uncertain circulation of new strains after reopening. We further
considered scenarios that allow for variability in the effective population size
(ω), as it is likely that reopening will result in increased social interactions
with unvaccinated, susceptible individuals. Parameter assumptions for the
rate of transmission and the effective population were estimated from Cali-
fornia’s own pandemic trajectory (Supplemental Fig S6).

Vaccine and transmission rate effects on projections

After June 15 and assuming current vaccine uptake (Baseline model), con-
firmed cases in California approached 1 case per 100,000 population and 0.03
deaths per 100,000 population (Figure 2(a) (b)). Increasing transmission
rate to 0.5, a value that reflects the highest peak experienced in California,
has the potential to double cases and deaths from baseline estimates.

Table 3 provides the estimates of confirmed cases and deaths assuming
changes in vaccination rates, transmission rates, and the effective population
size. Assuming that the current vaccine uptake remains consistent with the
current trend but we assume a transmission rate similar to the one observed
during California’s highest peak, we project a 48.5% and 9.6% increase from
baseline in cases and deaths, respectively, 15 days after reopening. Simulta-
neously increasing the rate of transmission to 0.4 and reducing vaccine rate
by 30% increases the percentage change in cases by 65.7% compared to base-
line. Increasing vaccination rate by 30% from the current trajectory has the
potential to reduce cases (10.1%) and deaths (14.6%) even under a rate of
transmission that is higher than baseline (β=0.31).

Vaccine and effective population effects on projections

Projections of confirmed cases and deaths post June 15 that consider sce-
narios in which the effective population size could increase due to removal of
restrictions, resulting in gatherings of susceptible unvaccinated individuals
exhibits higher cases and deaths, and much slower downward trends over the
period of projection (Fig 2(c), (d)). Increasing the effective population from
the baseline of 0.12 to 0.3 resulted in a 51.5% and 12.3% increase in cases
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and deaths, respectively; these estimates were further increased to 90.5%
for cases and 35.8% for deaths with a 30% reduction in the current vaccine
uptake.

(a) (b)

(c) (d)

Figure 2: Scenarios Estimated statewide confirmed cases and confirmed
deaths during live data collection, extrapolated between May 18th and June
15th for different vaccination rates, and predicted beyond June 15th with dif-
ferent effective susceptible populations and transmission rates. (a) and (b):
effects of varying transmission rate on confirmed cases and confirmed deaths,
respectively. (c) and (d): effects of varying effective susceptible populations
on confirmed cases and confirmed deaths, respectively. Dashed vertical line:
June 15th. Gray vertical bars: daily reported data. Black line: baseline
scenario, before and after opening. Cyan line: projection from May 18th
assuming a 30% reduction in the current vaccination rate. Magenta line:
projection from May 18th assuming a 30% increase in the current vaccina-
tion rate. The values used for β = 0.4, 0.5, and ω = 0.3, 0.5 were selected
according to historical data in CA (Fig. S6).
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Table 3: Parameters values for the baseline scenario correspond to the pos-
terior median value βbase = 0.31, ωbase = 0.12, λv1 = 0.00598, λv2 = 0.032;
β = 0.4, 0.5, and ω = 0.3, 0.5 were selected according to historical data in
CA (Fig S6).

Vaccination rate assumptions
Current

vaccination rate
Current

vaccination rate
decrease 30%

Current
vaccination rate

increase 30%

Current
vaccination rate

Current
vaccination rate

decrease 30%

Current
vaccination rate

increase 30%
βbase = 0.31 11429∗ 35.0 -26.1 429∗ 21.6 -17.9
β1 = 0.4 21.8 65.7 -10.1 4.4 27.8 -14.6
β2 = 0.5 48.5 103.4 8.4 9.6 36.8 -10.8

ωbase = 0.12 9829∗ 34.0 -25.0 402∗ 23.5 -16.4
ω1 = 0.3 51.5 90.5 22.7 12.3 35.8 -5.1
ω2 = 0.5 68.9 108.2 37.6 15.6 38.8 -2.7

∗Base scenario values (total cases and deaths between June 15 and June 30, 2021). All
percentages are calculated based on these values.

Discussion

Our data-driven models produced projections of COVID-19 cases and deaths
following the reopening of California’s economy. The real-time Bayesian data
assimilation modeling approach provides a more realistic method that lever-
ages historical data. This model takes into account time dependence of con-
tact rates, effective population size, and vaccination rates resulting from the
implementation of containment strategies and other factors that have fluctu-
ated throughout this pandemic. We investigated several scenarios to provide
insight into the effects of the potential consequences of easing mask-wearing
restrictions, decreased social distancing, and the growing threat of coron-
avirus variants in the changing landscape of vaccine uptake. The baseline
scenario in which vaccination rate, transmission rate, and the effective sus-
ceptible population stays roughly constant through July, and we found that
state-aggregate case and death rates will steadily decrease. However, if re-
moval of restrictions leads to increases in transmission rate or increases in
the effective susceptible population, then the current decreasing trend of case
rates and death rates is liable to reverse itself, and these rates will persist
at a low level. This is especially true if vaccination rates continue to slow
from estimates in May. A combination of increase in transmission rates (or
effective population) due to relaxing mitigation measures and a decrease in
vaccination rates will likely lead to another surge of cases. Our findings sug-
gest that preventive measures with the capacity to impact transmission and
the effective susceptible population should be considered, at least until vac-
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cination rates across California reach equitable levels of protection.

Based on data from the current pandemic and information on other re-
lated betacoronaviruses, the current dominant strains of SARS-CoV-2 are on
track to ultimately become a mild, endemic disease [20]. Unfortunately, that
process could take years. A steady but low rate may not initially draw much
concern, but the aggregate nature of such data (and derived predictions) can
hide some important dynamics. Vaccines have not been equitably dispensed
across the state [17], and some counties have consistently had higher case
and death rates than others. A stable observed aggregate could very well
hide a local outbreak, especially in chronically underserved areas with less
robust disease surveillance capabilities. The greater the number of outbreaks
and the greater their severity, the more likely a new strain is to emerge.

We assumed that neither natural immunity nor pharmaceutical immunity
waned over the analysis window, meaning someone who recovered in April
will not have lost any protection by the middle of July. While this fits obser-
vations that reinfection is rare in the months after recovery [15], longer-term
natural immunity is still unknown. While antibodies for similar betacoro-
naviruses, such as SARS-CoV-1, become undetectable within a matter of
months, T cells remain detectable for a decade or more [21]. There may
also be significant cross reactivity with other betacoronaviruses, including
the four human coronaviruses that cause the common cold [21] [9], though
the SARS viruses seem to create a more specific secondary immune response
than the other betacoronaviruses tested [21]. Developing this long-lasting
immune response from exposure to a mild disease in childhood can lead to
low-impact infections in old age, even if the disease continues to spread [20].

Any exit strategy that aims to push an active infection into an endemic
state must account for the possibilities discussed here. There are still situ-
ations that lead to consistent low rates of infections, and some that lead to
localized or even statewide resurgence. Beyond that, there are key warning
signs that this strategy is failing, such as rising reinfection rates, increasing
vaccine failure, and rising severity among children. Active monitoring of the
situation will be required beyond the date of opening, possibly for years to
come.

This work represents the forecast of a dynamic model with eight epidemio-
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logical classes and vaccination that aims to simulate the disease transmission
process to provide projections of cases and deaths in California after the re-
opening of its economy. We have demonstrated the potential of a Bayesian
data assimilation method to capture the temporal evolution of the param-
eters involved in the transmission model through a trade-off between the
complete history of the outbreak and its latest behavior. This model allows
us to capture changes in human behavior, virus dynamics, and restriction
measures through the time dependence introduced into the parameters in-
volved in the model each time the prediction is updated. This method uses
a data window that moves each time new data is updated using the same
number of data for each forecast as well as the number of parameters to es-
timate. We found that the contact parameters and the effective susceptible
population are the most critical parameters that influence the projections of
cases and deaths, post reopening.

Limitations

There are several limitations within our modeling framework that are im-
portant to address. Our models do not explicitly capture forms of social
influence and individual level behavior which may influence virus spread.
Our model assumed homogeneous host mixing which assumes that all par-
ticipants have identical rates of contacts leading to disease transmission. To
mitigate the restrictiveness of this assumption, we included the effective pop-
ulation parameter to our model, which allows for added flexibility in our
assumed proportion of individuals susceptible to being infected due to dif-
ferent restrictions, openings, and social behavior. In addition, our model is
time dependent allowing the estimated model parameters to vary according
to historical data. However, our current model is unable to fully capture the
dynamics with specific or localized restrictive measures, or super-spreader
events. Another limitation is the absence of age and other risk factors, such
as comorbidities, that may impact both infections and hospitalizations. Some
of these aspects can be included, as well as more detailed transitions of the
dynamics of the virus. However, for practical purposes, our transmission
model has made a large number of simplifying assumptions mostly driven
by the inability to access data with the appropriate spatio-temporal resolu-
tion and coverage. Another limitation in our model is our assumption of the
infectivity rate, although currently based on historical data for California,
it is likely that it is dynamically changing over time as new variants arise.
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Another important limitation in this study pertains to the quality and avail-
ability of the data used. The reliability of the projections made by our model
depends on the quality of the input data. Our model uses both records of
confirmed cases and deaths of COVID-19 due to a belief that the records of
deaths are less subject to sampling bias. The case count data depends on
the test protocol used in each locality. In most cases, the tests are performed
when symptoms appear, introducing a bias due to the growing evidence that
asymptomatic individuals are infectious and individuals who eventually be-
come symptomatic and infectious before the onset of any symptoms. In our
model, we postulate a value for the proportion of observed and unobserved
infectious that depends on the local practices of applying tests and data re-
porting.

Data reporting

The databases necessary for the estimation of parameters and code imple-
mented for the study are available in the github repository https://github.

com/mdazatorres/Vaccination-Model-for-COVID-19. Analyses were car-
ried out using Python version 3.

Supporting information

Daily average vaccination rates in California

The average weekly doses of COVID-19 vaccines administered in California
have been decreasing since April 11, 2021, coincidentally the week with the
highest number of doses administered (Fig S1). In April 11, 2021, the average
daily total doses of vaccine administrated were 400,358. The daily average
in May 18, 2021, was 222,218. This represents a 44.5% reduction in vaccine
uptake compared with the highest rate documented. In the week of April 11,
a daily average of 253,785 new doses and 211,898-second doses were admin-
istered. In May 18, 2021, the average of first doses administrated decreased
by 64% and second doses decreased by 34%, compared to the vaccine rates
on April 11. Based on this vaccination trajectory for California, we proposed
scenarios on the reduction and uptake of vaccination rates of 30%.
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Figure S1: Moving average of administrated doses in California. We
use a 7-day moving average to visualize the number of administrated doses.
This average is calculated for each day by averaging the values of that day
and the six days before. This approach helps prevent significant events (such
as changing reporting methods) from skewing the data.

Bayesian analysis

To conduct parameter estimation, we work with a decoupled model, ex-
plained below. Once the parameters are estimated, the model described in
the main text (Eq 1) is used to simulate the different scenarios.

Vaccine coverage model

To model future vaccination coverage, we proposed a compartmental model
that includes the dynamics between the not vaccinated population, those
who got the first vaccine dose and those who are fully vaccinated. Let W be
the not vaccinated people at time t. We assume that no vaccines have been
administered at t = 0, which implies W (0) = N . Then, by assuming that we
vaccinate individuals at a constant rate for both first dose and second dose
proportional to the current population, we have W (t), V1(t) and V2(t) that
satisfy,
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Ẇ = −λv1W
V̇1 = λv1W − λv2V1
V̇2 = λv2V1

(4)

where W (0) = N , V1(0) = 0, and V2(0) = 0. We stored the cumulative
vaccinated population with at least one dose as:

Ȧ = λ1W.

Since real-world vaccination rates (λv1 , λv1) have changed since the start of
the vaccination, we used the prior 30 days of real-world vaccination data to
adjust our model rates. Information on fully vaccinated people and people
with at least one dose is required to find the value of λv1 and λv2 .

Observational model and data

The observed data used to fit the model (4) are based on the records of people
with at least one dose and people fully vaccinated. We consider daily data
from the first dose of vaccines administered ai and its theoretical expectation
that is estimated in terms of the dynamical model as

µA = A(ti)− A(ti−1).

Analogously, we consider daily second doses administered ui, and its theo-
retical expectation given by

µV2 = V2(ti)− V2(ti−1).

Estimation of model parameters with MCMC

To carry out a likelihood-based analysis, we postulate that the number of
both at least one dose and fully vaccinated doses administered follows a
Poisson distribution, Pois. For data, yi, we let

yi ∼ Pois(µ(ti)).

We assume conditional independence in the data, therefore from the Poisson
model, we obtain a likelihood. Our parameters are λv1 and λv2 . Regarding the
elicitation of the parameters prior distribution, we use a Gamma distribution
with scale 3 and shape parameter 10. To sample from the posterior, we resort
to MCMC using ”t-walk” generic sampler [11].
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Posterior distribution and vaccine coverage model results

Estimation of vaccination rates is used to predict vaccine coverage as well
as the dynamics of SARS-CoV-2. We displayed the results using the data
reported 30 days prior of May 18, 2021. We ran 10,000 iterations of the
t-walk and after a burn-in period of 1,000 iterations, the chain seems to be
sampling from the equilibrium distribution (i.e., the posterior distribution)
(Fig S2(c)-(d)). Fig S2(a)-(b) correspond to the marginal posterior distri-
bution for λv1 and λv2 . The histograms are reported with 9,000 samples since
the first (burn-in) 1,000 are discarded.

(a) (b)

(c) (d)

Figure S2: Marginal posterior. After 10,000 MCMC samples, (a) the
marginal posterior distribution for the vaccinate rates (b) λv1 , λv2 and its
prior distribution (red). (c) Trace plot of the logarithm of the posterior
distribution and (d) Trace plot of the logarithm of the posterior distribution
without a burn-in of 1,000 iterations.
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(a) (b)

(c) (d)

Figure S3: Vaccine coverage model trajectory with median posterior
values. (a) people not vaccinated, (b) people with at least one dose, (c)
fully vaccinated, and (d) cumulative total of people taking at least one dose
at time. t.

Transmission model

To have more realistic scenarios, we estimate the parameters involved in the
dynamical of the SARS-CoV-2 transmission using the Bayesian Sequential
Forecasting Method (BSFM) proposed in [13].

Bayesian Sequential Forecasting Method

The BSFM updates the evolution of the dynamic system from the posterior
distribution of both model parameters and state variables as new epidemic
records become available. New prior models are defined from the current pa-
rameters and state variables posterior distributions on a sliding time window.
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Within each sliding window, posterior distributions are computed beyond the
available epidemic records to produce the forecasts.

Let x(t) = (S(t), E(t), I(t), ...)T denote the time–dependent vector of state
variables. We shall assume that the epidemic and transmission models are
coded in a dynamic system

ẋ(t) = f(x(t), θk)

x(tk) = xk,
(5)

where tk and xk denote the initial time and state in the forecasting win-
dow [tk, tk + L + D + F ] respectively, θk is a vector of model parameters
(e.g., contact rate β, effective population size ω, etc.) used to calibrate the
model (5), L is the learning period size, F is the number of days to forecast,
n is the number of days to move the forecasting window, and D is the number
of the delays days. We denoted p(k) := (xk, θk) as the joint vector of initial
conditions and model parameters to be inferred.
The initial forecasting, k = 0, is done as a usual Bayesian inference problem,
we postulate

• A prior distribution, πP (k)(p(k)).

• A likelihood, πZ(k)|P (k)(z(k)|p(k)), where zk represents epidemic records
in tk to tk+1 + L (e.g., confirmed cases, deaths, etc.).

• We use equation (5) and samples obtained through Markov Chain
Monte Carlo of the corresponding posterior distribution, πP |Z(p(k)|z(k))
to make a probabilistic prediction of x(t) in the forecasting period
t ∈ [tk + L+D, tk + L+D + F ].

To the next forecasting k > 0, we update the forecasting window by setting
tk+1 = tk + n. The new forecasting window is [tk+1, tk+1 + L+D + F ]. The
prior distribution of p(k) = (xk, θk) is set using the MCMC output of the
period k − 1:

• For the k−initial state (xk), the MCMC output of the state variable
x(t) at time t0 + nk obtained with equation (5) is fitted with a known
distribution.
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tk tk +1 = tk + n tk + L + D tk + L + D + F

training period delay period forecasting period

new training period

Figure S4: Bayesian Sequential data assimilation.

• For the model parameters θk, the MCMC output of θk−1 is fitted a
known distribution.

• Finally, we set k ← k+ 1 and repeat the above process to create a new
forecast.

The central part of BSFM is that the time dependence of the transmission
model parameters is introduced by updating sequential forecasts reported on
the history of the outbreak using the posterior distributions as prior distri-
butions for the parameters in the current forecast. Thus, our transmission
model becomes a non-autonomous dynamic system, with the same amount
of parameters in time and data, capable of capturing changes in outbreak
behavior produced by human and virus trend changes.

The Bayesian filtering method predicts along the dynamical system (5)
evaluated in sample points of the posterior distribution πP (k)|Z(k)(p(k)|z(k)) in
the current forecasting window [tk, tk + L+D + F ].

Application to California Data

The parameter estimation is carried out with model [6], without the vacci-
nation transitions.
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Ṡ = −λS
Ė = λS − fσE − (1− f)σE

Ȯ = fσE − γoO − (1− g)γoO

U̇ = (1− f)σE − γuU
Ṙ = (1− g)γoO + γuU

Ḋ = γogO.

(6)

Using data of confirmed cases and deaths, we estimate the contact rate
(β), the proportion of the effective population (ω), the fraction of indi-
viduals infected that are deceased (g), and the initial conditions for all
compartments, except for the susceptible ones, which are set as S(t0) =
ω ·N − (E(t0) +O(t0) + U(t0) +R(t0)) + V1(t0) + V2(t0).

We consider records of confirmed cases and deaths from January 25, 2020,
until May 10, 2021. These data are smoothing using a weekly moving aver-
age, which is calculated for each day by averaging the values of that day and
the six days before. This approach helps prevent significant events (such as
changing reporting methods) from skewing the data.
Using the BFSM for California data, we forecast every eight days with the
most recent data. Fig S5 shows the forecasts from December 6 to May 18,
2021, for both confirmed cases and deaths. Fig S6 shows the trajectory of
ω, θ, and g for the pandemic period. The public response to long-term mit-
igation measures for the pandemic is reflected in the evolution of β and ω
parameters.

The β contact rate takes a high value at the beginning of the pandemic
but declines after the first intervention in California (March 12, 2021) and
stabilizes around 0.35. The value of ω has shown greater variability over
time. Like β, it takes high values at the beginning of the pandemic and
declines with the first intervention carried out in California in March. In
July and December, we observed an increase in the values of this parame-
ter that coincides with the waves that California had in the same months.
The proportion of observed deaths (g) decreases with time, probably due to
experience gained over time in caring for patients and expanding hospital
capacity. After a while, this value stabilizes and remains close to 0.03.
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For the vaccination model (Eq 4 main text), we use the posterior median
in the last forecast for initial conditions, contact rate β, effective population
ω, and proportion of deaths g. We take the initial condition for vaccination
like the current vaccine and redefine S(t0) = ωN0−V0−E0−U0−O0−R0−D0.

(a) (b)

(c) (d)

Figure S5: California outbreak analysis. Data from April 8 to May 18,
2021 is used. (a) Confirmed cases (b) Confirmed deaths. Central red lines
indicate the median incidence forecast. The darker shaded region indicates
the interquartile forecast range, and the lighter shaded region indicates the
5–95th percentile range. All displayed forecast duration’s are ten days from
the point of prediction. California total population 39,512,223.

Prediction interval coverage

We have the probabilistic one-, two-, three-, and four-week ahead forecasts of
the total number of confirmed cases and deaths due to COVID-19 from Jan-
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(a) (b)

(c)

Figure S6: The trajectory of the parameters during the pandemic
period From left to right, contact rate after lockdown (β), proportion of the
effective population (ω), and the fraction of infected dying (g). Central red
lines indicate median incidence forecast. Darker shaded region indicates fore-
cast interquartile range, and lighter shaded region indicates 5–95th percentile
range.

uary 13, 2020, to May 18, 2021, and every eight days after that for California.
We evaluated our forecast error with the calibration of the prediction interval
coverage (80% and 50%). The prediction interval coverage is calculated by
determining the frequency with which the prediction interval contained the
eventually observed outcome. We do this for all prediction intervals calcu-
lated from January 13, 2020, to May 18, 2021, and calculate the average of
these. In a model that accurately characterizes uncertainty, the prediction
interval level will correspond closely to the frequency of eventually observed
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Table S1: Observed prediction interval coverage.
Cases Deaths

Observed Prediction Interval Observed Prediction Interval
Forecast Horizon (weeks ahead) Forecast Horizon (weeks ahead)

Measure week 1 week 2 week 3 week 4 week 1 week 2 week 3 week 4
50% Coverage 0.60 0.56 0.52 0.49 0.59 0.64 0.66 0.67
80% Coverage 0.83 0.80 0.76 0.73 0.94 0.94 0.93 0.91

The observed prediction interval coverage for confirmed cases / deaths from January 28,
2020 to May 18, 2021 in California was calculated by taking the average coverage of the
prediction intervals observed in the sequential prediction for California.

outcomes that fall within that prediction interval. For example, finally ob-
served values should be within the 50% prediction interval approximately
50% of the time.

The forecasts were well-calibrated, with prediction intervals covering the
observed data with the expected frequency (Table S1). The 50% prediction
intervals captured 48-60% of observations for all forecast horizons for con-
firmed cases and 58-66% for deaths. The 80% prediction intervals captured
only 73-83% of confirmed cases and 91-94% for deaths. The intervals were
better calibrated for confirmed death due that the record of Covid-19 deaths
is more reliable than records of confirmed cases. The last one depends di-
rectly on the number of tests applied.

Other Results

These results are similar to the results described in the main text, but instead
of reducing the current vaccination rate by 30%, we consider the scenario
where this value decreases by 60%.
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(a) (b)

(c) (d)

Figure S7: Scenarios. The dashed vertical line indicates the opening day,
June 15. Reported data are shown in gray (bars). The black line corre-
sponds to the baseline scenario, the cyan line corresponds to the projection
assuming a 60 % decrease in the current vaccination rate, and the magenta
line corresponds to the projection assuming a 30% increase in the current
vaccination rate. After June 15, the red, blue, and black lines correspond to
the projection with the different values of ω, cases (a) and deaths (b) and
changes in β (c) cases and (d) deaths, with the current vaccination rate.
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Table S2: Parameters values for the baseline scenario correspond to the pos-
terior median value βbase = 0.31, ωbase = 0.12, λv1 = 0.00598, λv2 = 0.032;
β = 0.4, 0.5, and ω = 0.3, 0.5 were selected according to historical data in
CA (Fig. S6).

Vaccination rate assumptions
Current

vaccination rate
Current

vaccination rate
decrease 60%

Current
vaccination rate

increase 30%

Current
vaccination rate

Current
vaccination rate

decrease 60%

Current
vaccination rate

increase 30%
Increase or prevention percentage in cases Increase or prevention percentage in deaths

Parameters 15 days after opening 15 days after opening
βbase = 0.31 11429∗ 80.4 -26.1 429∗ 50.7 -17.9
β1 = 0.4 21.8 122.6 -10.5 4.4 61.1 -14.6
β2 = 0.5 48.5 172.5 8.4 9.6 73.5 -10.8

ωbase = 0.12 9829∗ 77.5 -25.6 402∗ 52.0 -16.4
ω1 = 0.3 51.5 139.1 22.7 12.2 65.8 -5.1
ω2 = 0.5 68.9 159.9 37.6 15.6 69.2 -2.7

∗Base scenario values (total cases and deaths between June 15 and June 30, 2021). All
percentages are calculated based on these values.
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