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Abstract 
Purpose: To compare the ability of linear mixed models with different random effect distributions 
to estimate rates of visual field loss in glaucoma patients.  
Methods: Eyes with ≥5 reliable standard automated perimetry (SAP) tests were identified from 
the Duke Glaucoma Registry. Mean deviation (MD) values from each visual field and associated 
timepoints were collected. These data were modeled using ordinary least square (OLS) 
regression and linear mixed models using the Gaussian, Student-t, or log-gamma (LG) 
distributions as the prior distribution for random effects. Model fit was compared using 
Watanabe-Akaike information criterion (WAIC). Simulated eyes of varying initial disease severity 
and rates of progression were created to assess the accuracy of each model in predicting the 
rate of change and likelihood of declaring progression. 
Results: A total of 52,900 visual fields from 6,558 eyes of 3,981 subjects were included. Mean 
follow-up period was 8.7±4.0 years, with an average of 8.1±3.7 visual fields per eye. The LG 
model produced the lowest WAIC, demonstrating optimal model fit. In simulations, the LG model 
declared progression earlier than OLS (P<0.001) and had the greatest accuracy in predicted 
slopes (P<0.001).  The Gaussian model significantly underestimated rates of progression 
among fast and catastrophic progressors. 
Conclusions: Linear mixed models using the LG distribution outperformed conventional 
approaches for estimating rates of SAP MD loss in a population with glaucoma.  
Translational Relevance: Use of the LG distribution in models estimating rates of change among 
glaucoma patients may improve their accuracy in rapidly identifying progressors at high risk for 
vision loss. 
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Introduction 
Detection of disease progression is essential in caring for patients with glaucoma. 

Standard automated perimetry (SAP) is the main testing modality used to evaluate functional 
vision loss in this patient population. An accurate assessment of rates of SAP change is 
essential in clinical decision-making to determine aggressiveness of therapy and follow-up. 
Identifying patients who exhibit fast rates of progression as soon as possible is paramount, as 
these individuals are at greatest risk for developing visual disability. 

Estimation of rates of change has traditionally been made with ordinary least square 
(OLS) regression applied to global parameters such as mean deviation (MD) over time. 
However, OLS-derived estimates can be very imprecise in the presence of few measurements, 
a situation that is commonly seen in clinical practice. Previous studies have shown that, on 
average, clinicians end up obtaining less than one visual field test per year on glaucoma 
patients.1 With such low frequency of testing, OLS-derived rates of change would take more 
than 7 years to detect eyes progressing at moderate rate of visual field loss.2  

OLS-derived rates of change utilize only measurements of the individual patient without 
accounting for the overall population from which the patient comes from. Previous work has 
shown that estimates of rates of change can be improved using linear mixed models,3-5 which 
allow data regarding the overall population to influence these estimates; the accuracy of 
estimates can be increased by “borrowing strength” from the population when fewer data points 
are available for a particular patient. Mixed model estimates include a fixed-effect component 
which represent the overall rate of a population, and a random-effect component that reflects 
the degree of deviation of an individual eye from the population average. This process creates 
eye-specific intercepts and slopes. Although not yet incorporated in routine clinical practice, 
estimates of rates of change using linear mixed models have been widely applied in research 
settings.3-8  

A standard linear mixed model assumes that the random effects follow a Gaussian 
distribution. When applied to estimating rates of change this assumes that those rates are 
normally distributed in the population. However, it is known that only a relatively small proportion 
of glaucoma patients exhibit moderate or fast progression, which leads to a skewed distribution 
of rates of change in the population.9-11 Prior work has demonstrated that the assumption of 
normally distributed random effects may cause biased estimations of parameters when 
heterogeneity is present in a population, as would be expected in the rates of progression of 
glaucoma patients.12 Thus, fast progressors may not be properly identified due to shrinkage to 
the population mean in a Gaussian model.  

Given how ubiquitous the use of mixed models is in glaucoma research and their 
potential for clinical applications, it is essential to determine whether the use of a normal 
distribution of random effects is appropriate in this context. In the present work, we investigated 
the impact of the random effects distribution on the estimates of rates of visual field loss and we 
assessed whether different distributions, such as Student t and log-gamma, would allow for 
more accurate estimation of rates of change and detection of eyes exhibiting fast progression.  
 

 
Methods 
Data Collection 

The dataset used in this study was derived from the Duke Glaucoma Registry developed 
by the Vision, Imaging and Performance (VIP) Laboratory of Duke University.13 Institutional 
Review Board (IRB) approval was obtained for this analysis, and a waiver of informed consent 
was provided due to the retrospective nature of this work. All methods adhered to the tenets of 
Declaration of Helsinki for research involving human participants. 

The database contained clinical information from baseline and follow-up visits, including 
patient diagnostic and procedure codes, medical history and imaging and functional tests. The 
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study included patients previously diagnosed with primary open-angle glaucoma (POAG) or 
suspected of glaucoma based on International Classification of Diseases (ICD) codes. Patients 
were excluded if they presented with other ocular or systemic diseases that could affect the 
optic nerve or visual field (e.g. retinal detachment, retinal or malignant choroidal tumors, non-
glaucomatous disorders of the optical nerve and visual pathways, atrophic and late-stage dry 
age-related macular degeneration, amblyopia, uveitis and/or venous or arterial retinal occlusion) 
according to ICD codes. Tests performed after treatment with panretinal photocoagulation 
(according to Current Procedural Terminology (CPT) codes) were excluded. ICD and CPT 
codes used to construct this database have been extensively detailed in a previous work.13 In 
addition, eyes that underwent trabeculectomy or aqueous shunt surgery were identified using 
CPT codes. For those eyes, only visual fields obtained before surgery were included, given the 
likely abrupt postsurgical alteration in the rate of change of SAP MD. 

Glaucomatous eyes were identified as having an abnormal visual field at baseline (i.e., 
GHT “outside normal limits” or pattern standard deviation (PSD) probability <5%). Eyes 
suspected of glaucoma were identified with a “normal” or “borderline” GHT result or PSD 
probability >5% at baseline. All eligible subjects had SAP testing completed using the 
Humphrey Field Analyzer II or III (Carl Zeiss Meditec, Inc., Dublin, CA). SAP tests included 24-2 
and 30-2 Swedish Interactive Threshold Algorithm (SITA) tests with size III white stimulus. 
Visual fields were excluded from this analysis if they had greater than 15% false-positive errors, 
greater than 33% fixation losses, greater than 33% false negative errors, or if the result of the 
glaucoma hemifield test (GHT) was “abnormally high sensitivity.” For this study, subjects were 
required to have ≥5 visual fields and ≥2 years of follow-up time.  

 
Model Formulation 

OLS regressions were completed using standard linear regression for each eye. 
Bayesian linear mixed models were subsequently constructed. Bayesian statistics provide a 
probabilistic framework to address questions of uncertainty, such as the true rate of change in a 
glaucomatous eye. Prior distributions, which reflect an initial belief, are used in conjunction with 
available data (referred to as the likelihood) in order to generate estimates of specified 
parameters (posterior distributions.) For these models, a random-intercept and random-slope 
Bayesian hierarchical model was fitted for the SAP MD data: 

 
Yit =  β0 + β0i + (β1 + β1i)*xit + εit,  
  
where Yit represents the SAP MD value at time t of eye i, β0 represents the fixed 

intercept for the overall population, β1 represents the fixed slope for the overall population, and 
β0i and β1i represent eye-specific random intercepts and slopes respectively. In all models, the 
prior distributions for β0, β1, and the error term (εit) were normally distributed. However, the prior 
distributions of the random effects differed as noted below. A correlation term with an 
unstructured correlation matrix was included in the model to account for associations between 
intercept and slope values. Of note, random effects were placed at the eye level; a more 
complex model with the eye nested within the patient did not provide additional improvement in 
the model, and thus the simpler model is described here. The correlation between intercept and 
slope was modeled using an unstructured covariance for the Gaussian and Student t models, 
while a covariance structure previously described was used for the log-gamma model.14 

Gaussian, Student t, and log-gamma (LG) distributions were used to model the random 
effects of intercepts and slopes. The LG distribution is a left-skewed distribution that is 
sufficiently flexible to allow for more extreme negative values while maintaining a peak close to 
zero.15 Recent work has suggested that the LG distribution may be a more appropriate 
distribution in estimating the intercepts and slopes of MD and VFI, given the inherent left-skew 
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of these data;16 the majority of eyes have values of intercepts and slopes near zero, but a 
smaller proportion of eyes have more extreme values. 

In each model, the same distribution was used to model the random effects for both the 
intercept and slope. All statistical analyses were performed using R 3.6.3 (R Core Team, 
Vienna, Austria). For Gaussian and Student t distributions, the brms package in R was utilized. 
This package computes estimates of the posterior distributions using Stan, which is a C++ 
probabilistic Bayesian programming interface using Hamiltonian Monte Carlo (HMC) sampling 
(Stan Development Team, open source, 2018). HMC sampling is thought to be superior to 
traditional Markov chain Monte Carlo sampling, as this method can achieve a more effective 
exploration of the posterior probability space without inducing high rates of autocorrelation.17 For 
the LG distribution, the prior distribution was directly coded into Stan via the rstan R package. 

 
Data Analysis 

Bayesian linear mixed models were compared using the Watanabe-Akaike information 
criterion (WAIC), a metric that reflects the overall fit of a Bayesian model. For each model, 
estimates of the posterior distributions of the parameters were obtained after running 4 chains 
with 8,000 iterations (burn-in of 1,000 iterations) per chain (i.e., a total of 28,000 iterations). 
These models were completed using high-performance computing servers on the University of 
Miami Triton supercomputer. Convergence of the generated samples was confirmed by 
evaluating trace plots and autocorrelation diagnostics. Summary measures, including posterior 
estimates of the fixed effects (β0 and β1), were calculated. Mean posterior estimated intercepts 
and slopes were calculated for each eye by adding the fixed and random effects of each draw 
and averaging these values for all draws corresponding to each eye. Eyes were defined as 
progressors if the one-sided Bayesian p-value was less than 0.05. OLS progressors were 
defined as those with a statistically significant negative rate of change (one sided p-value 
<0.05).  

For predictive modeling, OLS and Bayesian models were constructed using different 
numbers of visual fields and assessing their ability to predict future observations. For example, 
a model using the MD values from the first 3 visual fields was constructed. This model was then 
used to generate a predicted value for the MD of the fourth, fifth, sixth, seventh, and eighth 
visual field. This process was repeated using the first 4 visual fields to predict the MD of the fifth, 
sixth, seventh, and eighth visual field and so on, up to a model that used the first 7 visual fields 
to predict the MD of the eighth visual field. The mean square prediction error (MSPE) of all 
Bayesian models and OLS were compared at each visual field. Bootstrapped 95% confidence 
intervals were calculated for MSPE for each model and at each visual field visit using 200 
bootstrap samples. In addition to confidence intervals, we used analysis of variance (ANOVA) to 
perform a formal statistical hypothesis test that compared the MSPE across models. Tukey’s 
Honest Significant Difference test was used to test pairwise comparisons. 

 
Simulation Description 
 In preparation for simulations, the observed dataset from the Duke Glaucoma Registry 
was split in an 80%-20% fashion at the patient level. The 80% portion was used to train the 
Gaussian, Student t, and LG models that were subsequently used to evaluate the simulated 
eyes. The remaining 20% of the observed dataset was used to create a distribution of residuals 
for use in the simulations as detailed below. 

In order to evaluate the ability of the models to estimate a diverse range of potential 
rates of change in glaucomatous and stable eyes, a set of simulated eyes was created. A total 
of 15 different “settings” were then generated from the combination of 3 intercept categories 
(mild, moderate, and severe) and 5 slope categories (non-progressor, slow, moderate, fast, and 
catastrophic). An intercept corresponding to mild, moderate, and severe disease at baseline 
was defined as an eye with a baseline MD between 0 and -6 dB, -6 and -12 dB, and -12 and -18 
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dB respectively. These values were chosen to simulate patients with mild, moderate, and 
severe glaucoma at baseline using the Hodapp-Anderson-Parrish classification system.18 Non-
progressors were defined as those with a slope of 0 dB/year. Slow, moderate, fast, and 
catastrophic progressors were defined as eyes with a slope between 0 and -0.5 dB/year, -0.5 
and -1.0 dB/year, -1.0 and -2.0 dB/year, and -2.0 and -4.0 dB/year respectively. These 
categories have been previously defined,10, 13 and were chosen to simulate eyes with varying 
rates of disease progression. 

A total of 100 simulated eyes were generated for each setting, with the individual 
intercept and slope values randomly selected from the respective range of values. For each 
eye, a longitudinal sequence of visual field tests was simulated. Simulated timepoints of visual 
field testing were 0, 0.5, 1.5, 2.5, 3.5, 4.5, 5, 5.5 years. At each timepoint, the “true” MD value 
was based on the simulated intercept and slope. For example, assuming a “true” intercept of -4 
dB and a “true” slope of -1 dB/year, “true” MD values would be -4, -4.5, -5.5, -6.5, -7.5, -8.5, -9, 
and -9.5 dB at the simulated timepoints. As visual field data are affected by noise, we added a 
residual value to each “true” MD value, according to a previously described methodology.2, 19, 20  
As noted above, 20% of the observed data set was set aside and not used to train the models 
but rather was used to create a distribution of residuals binned to each dB value. This process 
constructs multiple distributions of residuals which reflect the heterogeneity in test variability that 
exists across the spectrum of disease severity. For each test in the sequence of visual fields, a 
residual value was randomly sampled from the distribution corresponding to the “true” MD. This 
noise component was then added to the “true” value. For example, for a “true” MD of -4 dB, the 
distribution of residuals corresponding to -4dB would be randomly sampled and a residual of 
+0.5 dB might be selected. This sampling would result in a simulated MD value of -3.5 dB. 
Using randomly selected residuals for the example above, a simulated set of values might be -
3.5, -3, -4.7, -7, -7.8, -9, -8.3, -11 dB. This simulated eye with these data points mimicking “real-
world” observations and their inherent variability was then evaluated by OLS and Bayesian 
models as described below. 
 
Evaluating the Simulated Data 
 These 1,500 simulated eyes were then independently evaluated by the OLS, Gaussian, 
Student t, and LG models (which had been trained on the observed dataset) to obtain estimates 
of the eye-specific intercepts and slopes. Performance of the models was assessed within each 
simulation setting using bias and by calculating the rates of declared glaucomatous progression. 
Bias was defined as the difference between the true and estimated posterior slope; negative 
values of bias indicate underestimation of slope, positive values indicate overestimation of 
slope, and values closer to zero reflects more optimal prediction. Bias values were pooled 
across the intercept groups and were compared at each timepoint and for each progressor 
group using the Kruskal-Wallis test with the Dunn test for pairwise comparisons with Šidák 
correction. Given multiple comparisons, Bonferroni correction was applied, and an alpha value 
of 0.05/24 = 0.0021 was used to determine statistical significance. 95% credible intervals of bias 
for each model at each setting were also calculated. These intervals reflect that there is a 95% 
probability that the true value of bias lies within the calculated range. 95% credible intervals that 
exclude zero indicate significant underestimation of the slope (e.g., a 95% credible interval of (-
2.5, -0.5) indicates that the model significantly underestimates the slope.) 

Rates of declaring progression were presented using cumulative event curves to 
compare the percentage of eyes that were declared to be progressing at each timepoint by the 
different models. To make these rates comparable, the p-value cutoff used for declaring 
progression in these simulated eyes was set to only allow 2.5% of non-progressor eyes to be 
erroneously identified as progressors (i.e., a false positive rate of 2.5%). P-value cutoffs were 
specified uniquely for each intercept range and time point. For each setting, the log-rank test 
was used to determine if the curves were significantly different. Finally, hazard ratios were 
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calculated to determine if the Bayesian models differed in time to declaring progression, using 
Cox proportional hazards regression. Median time to declared progression was calculated for 
the different settings as the timepoint at which ≥50% of simulated eyes were declared as 
progressors.  
 
Results 

The study included 6,558 eyes of 3,981 subjects with a mean age of 58.7±16.0 years at 
the time of the baseline visual field. A total of 52,900 visual fields were deemed reliable and 
evaluated. Mean follow-up period was 8.7±4.0 years, with an average of 8.1±3.7 visual fields 
per eye (range 5-34). Table 1 contains additional patient characteristics. Female subjects 
comprised 58.2% of the cohort, while 31.5% identified as black. A total of 4,615 eyes (70.4%) 
had glaucomatous disease at baseline, while 1,943 eyes (29.6%) were suspected of glaucoma. 
Mean MD at baseline was -4.23±5.29 dB in the overall cohort. There was large variation in 
baseline MD of the eyes, ranging from -31.72dB to 2.58 dB.   

Distributions of OLS slopes and the posterior estimated slopes of Bayesian models 
varied greatly (Figure 1 & Table 2). The Gaussian model demonstrated a substantial shrinkage 
of estimates with a smaller range of slopes. In contrast, the range of slopes of the Student t 
model included both extreme negative and positive values, while the range of slopes of the LG 
model captured extreme negative values without extreme positive slopes (Figure 2; “eye-
specific slopes” in Table 2). The LG model produced the lowest WAIC value, indicating that the 
LG model provided the optimal fit for the data compared to Gaussian and Student t models 
(Table 2). When comparing results of predictive modeling using a limited number of visual 
fields, Bayesian models consistently performed better compared to OLS, with lower MSPE 
values for each predicted visual field MD value (Figure 2). Overall mean MSPE values of the 
OLS, Gaussian, Student t, and LG predictions were 232.6±91.3, 5.2±0.3, 24.2±9.6, and 7.9±0.7 
respectively, with significant differences noted between each Bayesian model and OLS (p<0.01 
for pairwise comparisons) at each time point until 5 visual fields were utilized in the models. At 
this point, Student t predictions were no longer significantly different compared to those of OLS 
(p=0.84), but MSPE from the Gaussian and LG models remained significantly lower than those 
of OLS (p=0.01 and 0.02 respectively). Once 7 visual fields were utilized, all Bayesian model 
predictions were non-significant compared to OLS. Of note, differences in MSPE of the 
Gaussian, Student t, and LG predictions were not statistically significant at any time point.  

Distribution of slopes of all eyes and progressors from the various models are presented 
in Tables 3 and 4 respectively. Compared to the Gaussian model, the LG and Student t models 
identified a greater number of eyes with faster rates of MD loss among all eyes and 
progressors. For example, the Gaussian model only identified 8.0% of all progressors as having 
fast progression and only 0.5% as having catastrophic progression. The LG model identified 
almost 2 times more progressor eyes as having fast progression (15.2%) and over 5 times more 
as having catastrophic progression (2.7%) (Table 4).  
 Simulations demonstrated that the LG model was optimal in terms of accuracy as 
evidenced by the lowest degree of bias. Bias from the LG model was significantly lower than 
that of Gaussian and Student t models in all settings, most notably among fast and catastrophic 
progressors (Figure 3). Among fast and catastrophic progressors, mean bias from the LG, 
Student t, and Gaussian models was -0.51±0.49, -0.62±0.51, and -1.20±0.67 dB/year 
respectively (Kruskal-Wallis P=0.008). When evaluating 95% credible intervals of bias, 
Gaussian models persistently underestimated the true slope. Gaussian credible intervals 
excluded zero when using the first 3 visual fields among moderate progressors, when using the 
first 3, 4, or 5 visual fields among fast progressors, and when using the first 3, 4, 5, 6, or 7 visual 
fields among catastrophic progressors. In contrast, all 95% credible intervals of the Student t 
and LG models contained zero, indicating that these models did not severely underestimate the 
slope.  
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Cumulative event curves demonstrated a significant difference among the regression 
models (Figure 4; log-rank P <0.01). While all three Bayesian models performed similarly in 
terms of time to declaring progression (Cox hazard ratio P>0.05), they were significantly quicker 
to identify progression compared to OLS among moderate, fast, and catastrophic progressors 
(Cox hazard ratio P<0.001.) Median time to progression in the moderate, fast, and catastrophic 
progressors was consistently lower among Bayesian models compared to OLS (Table 5). The 
average median time to progression was lower in the LG model (2.8 years) compared to 
Student t (3.0 years), Gaussian (3.2 years), and OLS (4 years).  
 
Discussion 
 In this study, we compared the effect of various random effect distributions on estimating 
rates of visual field change using Bayesian linear mixed models with a large dataset of over 
6,000 eyes. Bayesian models provided significantly improved predictions compared to 
conventional OLS regression when only a limited number of visual fields were available. Among 
the distributions tested for Bayesian models, the LG was optimal in terms of overall model fit 
with the lowest WAIC value. In addition, simulations showed that the LG model had the lowest 
bias and was sufficiently flexible to rapidly identify fast progressors. These findings suggest that 
Bayesian models using the LG distribution may offer significant advantages compared to more 
traditional approaches in modeling rates of change in glaucoma. 

Our results showed the value of the Bayesian models compared to OLS regression 
when estimating rates of change in the presence of relatively few observations. Bayesian 
models consistently outperformed OLS in quickly declaring progression, especially among fast 
and catastrophic progressors. For example, after only 1.5 years (3 visual fields) in the “mild / 
catastrophic” setting (Figure 4), LG and Gaussian models declared progression in over 80% of 
true progressors, while OLS only detected 18% of progressors. Wu et al previously 
demonstrated that using OLS, 80% of eyes progressing at -2 dB/year would be identified as 
progressors only after 2.1 years if 3 visual fields were performed per year (i.e., after 6 visual 
fields were completed).2 While the benefit of Bayesian linear mixed models over OLS appeared 
to decline once 7 tests were available (Figure 2), obtaining visual fields at a sufficiently high 
frequency to procure such a large number of tests is often challenging in clinical practice. The 
reduction in time to progression using a minimal number of visual fields with Bayesian modeling 
may be of great value to the clinician. Median time to progression was lower among Bayesian 
models, especially with the LG model (Table 5). 

The LG model demonstrated the greatest accuracy with the lowest amount of bias 
among different progressor groups (Figure 3). Zhang et al previously demonstrated the value of 
the LG model, as it provided a better fit for SAP data derived from 203 patients in a prospective 
study compared to a Gaussian model.16 The authors also constructed a joint longitudinal model 
using functional SAP and structural optical coherence tomography data, which demonstrated a 
stronger correlation between functional and structural rates of change when the LG model was 
utilized. Our work confirms the better fit of the LG model in a much larger dataset.  

We found it interesting that the Bayesian models identified fewer eyes as progressors 
compared to OLS. Prior studies had indicated that OLS identified fewer progressors compared 
to Bayesian models, although these studies evaluated smaller datasets of eyes with fewer 
number of tests.3, 4 We believe that this discrepancy is due to the greater number of tests that 
were available in the current dataset (mean of 8.1 visual fields per eye). When evaluating those 
eyes identified as progressors by OLS but not by the Gaussian, Student t, and LG models, the 
average OLS rate of change was -0.30±0.25 dB/y (IQR -0.35 to -0.14), -0.31±0.26 dB/y (IQR -
0.38 to -0.14), and -0.28±0.21 dB/y (IQR -0.34 to -0.14) respectively. These values are reflective 
of slow rates of change, which would not be as worrisome to the clinician and would be unlikely 
to lead to severe vision loss. In contrast, when evaluating eyes identified as progressors by 
Gaussian, Student t, and LG models but not by OLS, the average OLS rate of change was -
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0.64±0.57 dB/y (IQR -0.78 to -0.30), -0.62±0.57 dB/y (IQR -0.76 to -0.26), and -0.68±0.58 dB/y 
(IQR -0.86 to -0.31) respectively. OLS was unable to confirm progression among these eyes 
displaying a faster rate of change, which would be of greater concern and clinical importance. 
Although the Bayesian models may have identified fewer progressors, the clinical relevance of 
the progressors identified by these models appears to be greater. 

Given the higher percentage of eyes with faster rates of change in the LG model (Table 
4), one might also be concerned about overestimation of slopes. However, bias data from the 
simulations demonstrated that 95% credible intervals of the LG model never included 0, 
indicating that this model did not significantly overestimate rates of change. Although MSPE 
values were comparable between LG and Gaussian models (Figure 2), the LG model was able 
to estimate the rate of fast and catastrophic progressors more accurately. In contrast, the 
Gaussian model underestimated these rates, with bias values twice as large on average. In the 
observed data, the Gaussian model was more likely to shrink estimates closer to the population 
mean (Tables 3 and 4). These findings serve as a warning that linear mixed models using the 
Gaussian distribution to describe visual field data will likely underestimate the rates of change 
among this subset of patients. These individuals are arguably the most important to identify 
since they are at high risk for visual disability. Although most glaucoma patients will progress if 
followed for a sufficient amount of time, rates of change vary greatly.3 The magnitudes of these 
rates are crucial to clinical care; while slow progressors may be carefully observed, fast 
progressors may need to be treated more aggressively in order to prevent vision loss. 
Therefore, accurate estimation of rates of change is essential to characterizing the nature of a 
patient’s disease. The LG model was able to accurately identify fast progressors while still 
characterizing the majority of eyes as slow or non-progressors.  

Limitations of this study include the assumption that eyes exhibit a linear rate of change 
over time. Although it is likely that visual field losses are non-linear over the full course of the 
disease,21-23 a linear approximation is likely a reasonable approximation within the limited 
timeframe used to make most clinical decisions. We also assumed a constant correlation 
between intercept and slope regardless of disease severity. In clinical practice, severe 
glaucoma patients are often aggressively monitored and treated, leading to a reduction in 
correlation between baseline disease (i.e., the intercept) and rate of change (the slope). In 
addition, the retrospective data collection does not provide insight into augmentation of medical 
therapy, which could affect rate of progression. It is possible that additional medical or laser 
therapies may have occurred between visual field tests. The censoring protocol described 
above only pertained to surgical glaucoma cases. Finally, other potential distributions exist to 
model random effects which were not evaluated in the present study. We empirically chose 
Gaussian, Student t, and LG for comparison given clinical knowledge regarding the distribution 
of SAP MD in large populations. Further studies should investigate whether other distributions 
may provide advantages compared to the ones assessed in our work.  

In summary, we have demonstrated that a Bayesian hierarchical model using the LG 
distribution provides the optimal model fit for a large SAP dataset compared to Gaussian and 
Student t distributions. The LG model is sufficiently flexible to accurately characterize non-
progressors, slow progressors, and fast progressors. While Gaussian and LG models are 
comparable in predicting future SAP MD values, Gaussian models tend to underestimate fast 
progressors. The LG model was optimal in predicting the rates of change with greatest accuracy 
while rapidly identifying progressors. These findings may have significant implications for 
estimation of rates of visual field progression in research and clinical practice.  
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Figure Legends 
 
Figure 1. Quantile-quantile plots describing the distributions of the estimated slopes from (A) 
ordinary least square (OLS) regression and posterior estimated slopes from the (B) Gaussian, 
(C) Student t, and (D) log-gamma Bayesian linear mixed models. Deviations from the line 
indicate that the distributions are non-normal. OLS and Student t models demonstrated a wider 
range of slopes with more positive and negative extreme values, while the Gaussian model 
demonstrated a more normal distribution of slopes with shrinkage to the mean. The log-gamma 
model demonstrated more extreme negative values, indicating a left-skewed distribution. 
 
Figure 2. Mean squared prediction error (MSPE) of ordinary least square (OLS) regression and 
Bayesian linear mixed models in predicting the mean deviation of subsequent visual fields. 
MSPE values for the models constructed using the first (A) 3 visual fields, (B) 4 visual fields, (C) 
5 visual fields, (D) 6 visual fields, and (E) 7 visual fields of an eye are shown. The x-axis 
represents the predicted visual field. Error bars represent bootstrapped 95% confidence 
intervals. 
 
Figure 3. Comparison of bias in posterior estimated slopes of all Bayesian linear mixed models 
by number of visual fields used in the model to assess simulated eyes. Different progressor 
groups are shown: (A) slow, (B) moderate, (C) fast, and (D) catastrophic progressors. The 
asterisk (*) indicates a statistically significant difference between the LG model and the 
respective model using the Kruskal-Wallis and Dunn tests. 
 
Figure 4. Cumulative event curves demonstrating cumulative probability of declaring 
glaucomatous progression in various simulation settings. The first term of each setting refers to 
the baseline disease severity, while the second refers to the rate of change. The curves of the 
three Bayesian linear mixed models and ordinary least squares (OLS) regression were 
compared with the log-rank test, and the respective p-values are presented for each setting. Of 
note, the third visual field occurred at 1.5 years and the fifth visual field occurred at 3.5 years in 
these simulations.  
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Table 1. Demographics and clinical characteristics at baseline of the subjects included in the 
study. 
 

Characteristic n = 6,558 eyes of 
3,981 patients 

Baseline age (years), 
 Mean ± SD 

 
58.7 ± 16.0 

Sex, female (%) 2,356 (59.2) 

Race, (%) 
 Black or African American 

 
 1,254 (31.5) 

SAP 

Number of tests, n 52,900 
Follow-up time (years), 
 Mean ± SD 
 Median (IQR) 

 
8.7 ± 4.0 

8.1 (5.6; 11.2) 
Number of tests per eye, n (%) 
 Mean ± SD 
 Median (IQR) 

 
8.1 ± 3.7 

7.0 (6.0; 9.0) 
Baseline SAP MD (dB), 
 Mean ± SD 
 Median (IQR) 

 
-4.23 ± 5.29 

-2.47 (-5.84; -0.71) 

Baseline HAP glaucoma severity, 
 Mild, n (%) 
 Moderate, n (%) 
 Severe, n (%) 
 Glaucoma suspect, n (%) 

 
1,390 (21.2) 
1,801 (27.5) 
1,424 (21.7) 
1,943 (29.6) 

 
 
HAP = Hodapp-Anderson-Parrish; IQR = interquartile range; MD = mean deviation; SAP = standard 
automated perimetry; SD = standard deviation.  
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Table 2. Bayesian linear mixed model characteristics using varied random effect distributions. 
Eye-specific intercepts and slopes are estimates derived from the posterior distributions. 
 

 Population 
intercept (ß0) 

(dB) 

Eye-specific 
intercepts (dB) 

Population 
slope (ß1) 
(dB/year) 

Eye-specific  
slopes (dB/year) 

WAIC 

Gaussian -3.93 ± 0.06 -2.24 (-5.37; -0.66) 
[-26.38; 5.07] 

-0.15 ± 0.01 -0.09 (-0.26; 0.01) 
[-2.89; 1.55] 

218,562 

Student t -1.87 ± 0.04 -2.15 (-5.15; -0.79) 
[-27.75; 5.87] 

-0.07 ± 0.01 -0.07 (-0.19; -0.01) 
[-6.93; 6.01] 

215,711 

Log-gamma -3.80 ± 0.06 -2.10 (-5.19; -0.66) 
[-27.47; 3.40] 

-0.29 ± 0.01 -0.07 (-0.29; 0.07) 
[-6.35; 1.86] 

214,188 

Data displayed as mean ± standard error, or median (IQR) [range] 
Boldface indicates lowest WAIC, demonstrating best model fit. 
Eye-specific intercepts and slopes include both the fixed and random effect components. 
dB = decibel; WAIC = Watanabe-Akaike information criterion 
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Table 3. Distribution of slopes estimated by ordinary least square (OLS) regression and 
Bayesian linear mixed models of all eyes. Slopes of the Bayesian models are estimates derived 
from the posterior distributions. 
 

 < 0 to < -0.5 
dB/year 

< -0.5 to -1 
dB/year 

< -1 to -2 
dB/year 

< -2  
dB/year 

OLS 3,046 
(46.4%) 

678 
(10.3%) 

266 
(4.1%) 

60 
(0.9%) 

Gaussian 3,960 
(60.4%) 

552 
(8.4%) 

117 
(1.8%) 

8 
(0.1%) 

Student t 4,553 
(69.4%) 

419 
(6.4%) 

164 
(2.5%) 

38 
(0.6%) 

Log-gamma  3,181 
(48.5%) 

642 
(9.8%) 

222 
(3.4%) 

39 
(0.6%) 

Data presented as n (%) or mean ± standard deviation. 
dB = decibels 
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Table 4. Distribution of slopes estimated by ordinary least square (OLS) regression and 
Bayesian linear mixed models of eyes identified as progressors. Slopes of the Bayesian models 
are estimates derived from the posterior distributions. 
 

 Number of 
progressors 

Mean Slope 
(dB/year) 

< 0 to < -0.5 
dB/year 

< -0.5 to -1 
dB/year 

< -1 to -2 
dB/year 

< -2 
dB/year 

OLS  1,679 -0.62 ± 0.55 907 
(54.0%) 

510 
(30.4%) 

212 
(12.6%) 

50 
(3.0%) 

Gaussian 1,466 -0.55 ± 0.32 792 
(54.0%) 

549 
(37.5%) 

117 
(8.0%) 

8 
(0.5%) 

Student t 1,452 -0.58 ± 0.54 850 
(58.5%) 

400 
(27.5%) 

164 
(11.3%) 

38 
(2.6%) 

Log-gamma 1,463 -0.69 ± 0.51 639 
(43.7%) 

563 
(38.4%) 

222 
(15.2%) 

39 
(2.7%) 

Data presented as n (%) or mean ± standard deviation. 
dB = decibels 
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Table 5. Median time to declared progression (in years) among different progressor groups with 
ordinary least squares (OLS) regression and Bayesian linear mixed models. None of the models 
reached 50% in declared progression after 5.5 years for slow progressors. The third, fourth, 
fifth, sixth, and seventh visual fields occurred at 1.5, 2.5, 3.5, 4.5, and 5.0 years respectively.  
 
 

 Slow Moderate Fast Catastrophic 
OLS  N/A 5.0 4.2 3.2 
Gaussian N/A 4.5 2.8 2.2 
Student t N/A 4.8 2.5 1.8 
Log-gamma N/A 4.3 2.5 1.8 
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