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Abstract

Background

Hepatocellular carcinoma (HCC) is amongst the cancers with highest mortality rates and is the

most common malignancy of the liver. Early detection is vital to provide the best treatment

possible and liquid biopsies combined with analysis of circulating tumour DNA methylation

show great promise as a non-invasive approach for early cancer diagnosis and monitoring with

low false negative rates.

Methods

To identify reliable diagnostic biomarkers of early HCC, we performed a systematic analysis of

multiple hepatocellular studies and datasets comprising >1,500 genome-wide DNA methylation

arrays, to define a methylation signature predictive of HCC in both tissue and cell-free DNA

liquid biopsy samples.

Results

Our machine learning pipeline identified differentially methylated regions in HCC, some

associated with transcriptional repression of genes related with cancer progression, that

benchmarked positively against independent methylation signatures. Combining our signature

of 38 DNA methylation regions, we derived a HCC detection score which confirmed the utility of

our approach by identifying in an independent dataset 96% of HCC tissue samples with a

precision of 98%, and most importantly successfully separated cfDNA of tumour samples from

healthy controls. Notably, our risk score could identify cell-free DNA samples from patients with

other tumours, including colorectal cancer.

Conclusions

Taken together, we propose a comprehensive HCC DNA methylation fingerprint and an

associated risk score for the early diagnosis and early relapse detection of HCC from liquid

biopsies.
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Introduction

Liver cancer is one of the deadliest types of cancer, with a 5-year overall survival rate lower than

20% and death rates increasing around 1.7% each year [1,2]. Hepatocellular carcinoma (HCC) is

the most common malignancy of the liver accounting for nearly 90% of all cases [1,3–5]. Major

risks of HCC include cirrhosis, viral infection with hepatitis B virus (HBV) or hepatitis C virus

(HCV), alcoholic liver, non-alcoholic fatty liver disease and inherited traits such as metabolic

diseases [1,6]. Current HCC diagnostic guidelines report the usage of invasive procedures, such

as tissue biopsies, followed by histological and/or contrast-enhanced imaging [7]. This

contributes to HCC being often detected in an advanced stage where it is estimated that 40% of

the cases are multinodular or expanded beyond the liver leaving patients with limited

therapeutic options [5,8]. Screening, surveillance and monitoring programmes are therefore

vital to diagnose and detect HCC as early as possible to provide patients with the best treatment

possible [9–11]. In addition, HCC patients surgically treated often experience relapses and early

detection could bring better management of the disease and increase patient’s life quality and

span [12].

Body fluids, for example plasma, serum and urine, contain circulating biomarkers that

can be measured non-invasively and inexpensively for diagnosis and monitoring of HCC

[5,13,14]. Among others, alpha-fetoprotein (AFP) is often proposed as a diagnostic biomarker

present in serum or plasma of high-risk individuals for HCC [7,13,15], nonetheless official

guidelines indicate that AFP has no diagnostic approved role [3,4]. High levels of AFP are

considered diagnostic of HCC with almost perfect specificity, although sensitivity (recall) rates

are frequently low, less than 45% [7]. Lower thresholds of AFP (20 ng/ml) comprises a balance

between specificity and sensitivity with both ranging around 79% [7]. Of note, in patients with

chronic liver disease, the population where screening methods are most needed, the precision of

AFP is significantly reduced and insufficient for robust diagnosis [7,16,17]. This is particularly

problematic since chronic liver diseases are the major risk factor for HCC, thus novel

non-invasive and accurate clinical approaches are needed to improve cancer detection.

Liquid Biopsies (LBs) have recently emerged as a promising approach for early detection

of tumours by characterising circulating tumour cells or circulating tumour free nucleic acids

[18]. LBs contain cell-free DNA (cfDNA) material evocative of cells from the entire body,

including varying levels of circulating tumour DNA (ctDNA) [19,20] that is estimated to range

between 0.1% and 10% in cancer patients [21–23]. Measurement of genetic markers in ctDNA,

such as mutations and methylation, can be used as a diagnostic and therapeutic tool

[13,18,20,24–32] and provide complementary information to tissue samples, for example

circumventing potential tissue heterogeneity which might result in sampling bias [33,34].
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DNA methylation plays an important role in cancer initiation and progression through

the repression of tumour suppressor genes by promoter hypermethylation and promoter

hypomethylation of many oncogenes [35–38]. Importantly, DNA methylation changes

characteristic of cancer cell formation are often observed in early stages of carcinogenesis

[39–42]. Hence, ctDNA methylation holds great promise for early cancer detection and

monitoring, with systematic studies showing it outperforms other genetic markers like

mutations and copy number alterations [26,43]. For example, promoter methylation of the gene

Septin 9 (SEPT9/ SEPTIN9) is a plasma derived biomarker for colorectal cancer and is being

studied for HCC [27,44]. Several studies have focused on the identification of DNA methylation

biomarkers for HCC [43,45–48], nonetheless these were limited to either tissue samples only,

focused on the identification of small sets of single CpG sites, and/or mostly compared to

healthy liver tissue samples. Relying on the accurate measurement of very specific and small

sets of methylation biomarkers mostly derived tissue samples may hinder the clinical

generalisation of these methylation signatures to LBs and other cohorts. Additionally, it is

fundamental to ensure that signatures can distinguish HCC patients from a background of

chronic liver diseases, where current non-invasive molecular markers perform worse [7,16,17].

Here, we perform a systematic discovery of a HCC methylation signature by compiling

1,551 genome-wide DNA methylation arrays from 13 studies [1,31,45,46,49–58], including both

tissue and liquid biopsy samples from HCC, cirrhosis and healthy controls. We developed a

machine learning pipeline to harness this resource to identify differentially methylated regions

(DMRs) predictive of HCC in both tissue and liquid biopsies, from a background of cirrhotic

samples. Our approach benchmarked favourably against 12 independent HCC methylation

signatures and supported the development of a novel signature comprising 38 DMRs. Some of

the identified regions were associated with transcriptional repression of several members of the

Zinc Finger Proteins (ZFNs) family suggesting a potential role with cancer progression and early

onset. Lastly, we combined the information of the novel DMR signature into a single score which

successfully identified HCC tissue samples in an independent dataset (recall 96% and precision

98%), perfectly classified 13 healthy cfDNA samples, and identified 7 (out of 11) tumour cfDNA

samples. Of note, the DMR signature score successfully identified cfDNA from diverse tumours,

including colorectal and breast cancer, showing its potential as a diagnostic tool for multiple

cancers. Overall, we present a systematic discovery and benchmark of methylation biomarkers

for the early detection and monitoring of HCC using tissue and liquid biopsies and propose an

improved signature and risk score with the potential to be used for non-invasive clinical

diagnostics.
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Results

DNA methylation dataset for the discovery of HCC biomarkers

To systematically discover DNA methylation biomarkers for the detection of HCC from tissue and

plasma cfDNA samples we performed a comprehensive search of HCC-related studies and

datasets characterising genome-wide DNA methylation changes (Figure 1a). We queried

commonly used data repositories, GEO [59,60] and ArrayExpress [61], using the keywords

Hepatocellular Carcinoma, cfDNA and ctDNA. To ensure an exhaustive analysis of methylation

markers we focused on studies that provided high-throughput assays and specifically

Illumina-based, Infinium 450K and EPIC assays, as these have been broadly adopted by

large-scale studies. Additionally, to minimise potential undesired and technical batch effects

while integrating multiple data sources for model training, only studies that provided raw

unprocessed files were considered to allow the same processing pipeline to be applied to all

samples [62–64]. Matching the criteria defined above we assembled 859 samples from 6

different studies [31,45,46,56–58] covering: HCC and cirrhotic samples from tissue and cfDNA,

including cirrhotic tissue from multiple aetiologies; healthy controls from both liver tissue and

cfDNA; other non-HCC diseased tissue (e.g. liver obesity and Alpha 1 antitrypsin deficiency); and

cfDNA from non-HCC patients (e.g. sepsis and other cancer types) (Figure 1a and 1b and

Supplementary Figure 1a and 1b). A total of 452,567 methylation sites (CpG sites) are measured

and methylation levels represented using beta methylation values, ranging between 0,

hypomethylated, and 1, hypermethylated. Additionally, we compiled a Validation dataset

containing 692 tissue samples from 7 independent datasets [1,49–55] for which original data or

publication was not accessible but processed beta methylation values was available (Figure 1a,

Supplementary Figure 1c). This validation dataset comprises multiple studies with distinct

experimental and analytical pipelines and is intended to be used as independent validation of

the approaches adopted in this study. Overall, we assembled 1,551 whole-genome DNA

methylation samples (Supplementary Table 1) representing an heterogenous and

comprehensive resource to discover and benchmark DNA methylation biomarkers of HCC

(Supplementary Figure 1d and 1e) from clinically relevant diseased backgrounds, such as

cirrhosis.
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Figure 1. Data and workflow overview. a) diagram depicting the different datasets assembled to

discover Hepatocellular Carcinoma (HCC) DNA methylation biomarkers using machine learning

approaches and to construct a HCC risk score. b) principal component analysis (PCA) of the Train & Test

DNA methylation dataset highlighting HCC samples. Principal component explained variances is shown

within brackets. c) Feature, i.e. probes, CpG sites, CpG clusters and differential methylated regions (DMRs),

reduction steps across different stages in the processing and feature discovery pipeline.

Selection of high quality and informative DNA methylation regions

The assembled dataset measures >450,000 CpG sites which is several orders of magnitude

greater than the number of samples, thus posing a number of problems for training informative

models. To mitigate this and to focus on high quality and informative measurements we applied

several filtering steps to reduce the number of CpG sites in 14% to 390,445 (Figure 1c).

Secondly, while a single CpG site can be informative and have strong predictive power of HCC

status, due to the much larger number of CpG sites compared to the number of samples this can

lead to spurious associations that are unlikely to be functionally relevant and generalisable to

other cohorts, i.e. overfit. Considering that HCC patient samples showed distinct patterns of

multiple and clustered CpG sites with hypo and hyper methylation profiles [58], we searched for

CpG clusters, spanning at least 3 CpG sites, such that two consecutive sites are at most 500

base-pairs (bp) apart. This defined a total of 39,868 CpG clusters with a median size of 700bp

spanning all 22 autosomal chromosomes (Figure 1c, Supplementary Figure 2a). For each CpG

cluster we took the mean methylation of all CpG sites contained in it. Taken together, we

performed an unsupervised reduction of the number of features by excluding problematic CpG
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sites and to focus on genomic regions, instead of individual CpG sites, to reduce the impact of

potential confounder effects and help discover more generalisable biomarkers of HCC.

Discovery of methylation regions predictive of HCC

To identify HCC from a background of cirrhotic samples in tissue and cfDNA we set out to find

methylation regions predictive of HCC by training linear support vector machine classifiers

(LinearSVC) (Figure 2a). We applied a leave-one-out cross-validation strategy, where one sample

at a time was left out for testing the prediction, while the other 858 samples were used as a

training set. Considering there are many more tissue samples compared to cfDNA, this can

create potential biases when training the LinearSVC (e.g. classes with more samples will weigh

more on the importance of the features). To address this we balanced the number of samples of

each class by randomly under-sampling the tissue samples to obtain 22 HCC (HCC-T) and 22

cirrhosis (C-T) samples, complemented with 22 HCC cfDNA (HCC-CF) and 22 cirrhosis cfDNA

samples (C-CF). One balanced dataset per leave-one-out fold is generated ensuring that the

sample left out for testing is not considered.

Differentially methylated and predictive regions are discovered using the balanced

datasets in a two-step approach. Firstly, differentially methylated regions (DMR) are identified

by removing potential cofounder effects, i.e. sex, age, global methylation and tumour purity.

Considering that sex and age were not available for all samples, we estimated them from the

DNA methylation arrays [62,65,66]. Global changes in methylation affect large swaths of CpG

sites and thereby these do not represent optimal candidates for biomarkers due to their lack of

specificity (Supplementary Figure 2b and 2c). Lastly, the varying tumour purity of TCGA

samples, the biggest source of HCC tissue samples in our analysis, has been quantified and

represents a technical limitation that can affect molecular measurements, including DNA

methylation, and their interpretation [67]. Tumour purity estimation is only available for TCGA

samples. We observed from the PCA analysis of Train & Test dataset that PC5 is significantly

correlated with tumour purity (Pearson’s r=0.6, p-value=3.28e-37). Therefore we considered

PC5 as a proxy of tumour purity impact in the DNA methylation measurements (Supplementary

Figure 2d and 2e). A differential methylation analysis between HCC (HCC-T and HCC-CF) and

cirrhotic (C-T and C-CF) samples was performed taking the previous variables as covariates in

the linear model in order to discount their potential impact. Only significantly differentially

methylated CpG clusters (likelihood-ratio test FDR < 1%) were selected for model training, thus

reducing the number of features to a median of 1,355 DMRs, across all leave-one-out folds

(Figure 1c). Secondly, DMRs are then used to train LinearSVC models for each cross-validation

fold using a L1-regularization parameter to further reduce the number of DMRs to find the top
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predictive biomarkers of HCC. A median of 38 DMRs were selected per model (Figure 1c). Taken

together, this identified 150 DMRs that are present in at least 5% (n=43) of all trained models

(Supplementary Table 2) and the frequency of the DMRs in the optimal LinearSVC across the

leave-one-out cross-validation is positively associated with their absolute mean effect size

(Spearman rho=0.29 and p-value=1.9e-41, Supplementary Figure 2f).

In conclusion, the feature selection and model training steps performed in each

cross-validated train set avoids information leak between train and test sets, addresses the

problem of having many more features than samples and identifies the most predictive DNA

methylation biomarkers of HCC.

Evaluation, comparison and assembly of HCC methylation signature

Next, we set to define a DNA methylation signature predictive of HCC and compare it against

independently defined sets. We estimated the optimal number of DMRs to consider in the

methylation signature by sequentially testing the addition of DMRs into the feature set and

tested the increment in precision and recall of the LinearSVC models (Supplementary Figure 3a).

Recall and precision shows the steepest increase up to 10 DMRs, and from that point the test

and validation datasets show small but consistent increments in performance. Together with the

fact that frequency of each DMRs in the optimal models is positively correlated with its absolute

mean effect size, we selected the top 38 most frequent DMRs in the leave-one-out

cross-validation procedure (Supplementary Table 3). The selected DMRs encompass hyper and

hypo methylation events in HCC that are largely consistent across both Train & Test and

Validation datasets and unsupervised clustering separates most HCC from non-HCC samples

(Supplementary Figure 3b).

We then benchmarked our DNA methylation signature against other similar approaches,

assembling from the literature 12 sets of CpG sites proposed in 4 publications [1,31,47,68] and 7

patents [69–75]. Notably, the DNA methylation sets were largely non-overlapping

(Supplementary Figure 4a) suggesting a disparity among HCC biomarkers and possibility

indicating datasets-specific features which might not generalise well to other patient cohorts. To

avoid potential methodological bias, we used an ensemble model using logistic and linear

classification models, different from the support vector machine model we used previously to

identify informative regions, and iteratively predicted the HCC status of the sample that is

left-out for testing in a leave-one-out cross-validation (Figure 2a). The performance of all models

was estimated using multiple metrics, i.e. recall, precision, accuracy, Mathew’s correlation

coefficient (MCC) and balanced accuracy (Supplementary Figure 4b, 4c and 4d). It is important

to note that most of the feature sets were derived using part of the DNA methylation datasets

also utilised in this study, thus a complete independent validation of these feature sets was not
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possible, and it is expected that metrics will be overestimated. Overall precision and recall

scores across the tissue are greater than 80% (Figure 2b) and all models had a poorer

performance when predicting the subset of cfDNA samples, while precisions were less affected

(Figure 2b and 2c). We then used the Validation tissue samples dataset as an independent

benchmark, and observed that overall feature sets provided a mean precision of 96% and recall

rates of 86% (Figure 2d and Supplementary Figure 5), where our signature obtained the highest

recall (95%) while preserving precision (98%) (Figure 2d).

Collectively, our approach identifies a signature of hyper and hypo methylated regions

that successfully distinguishes HCC samples from cirrhotic, healthy and other non-HCC samples,

and benchmarks positively against other DNA methylation signatures, particularly showing low

false negative rates, i.e. high recall, both in tissue and cfDNA samples.

Figure 2. HCC biomarker discovery and benchmark pipeline. a) machine learning workflow to identify

DNA methylation regions predictive of HCC samples using balanced training sets and support vector

machines and then benchmark against other independent DNA methylation biomarkers using an

ensemble of logistic and linear regression classifiers. b) precision and recall rates calculated over the

leave-one-out test samples predicted using the logistic and ridge regression classifier ensemble. Similarly,

precision and recall rates are calculated using the same ensemble but trained with CpG sites from

independent HCC DNA methylation biomarkers and are compared. Here, only tissue samples of the Train

& Test dataset are considered for the calculation of the precision and recall metrics. c) similar to b),

instead precision and recall for cfDNA samples only are reported. d) precision and recall rates obtained

predicting the independent Validation set using the same ensemble trained with the multiple HCC

biomarker feature sets measured in the Train & Test dataset.
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Molecular characterisation of methylation biomarkers

Having assembled a methylation signature of HCC, we then set out to molecular characterise it in

more detail. The top 38 DMRs encompasses a total of 214 CpG sites out of which 118 and 74

showed significant hyper and hypo methylation in HCC, respectively (Figure 3a, Supplementary

Table 3). Reassuringly, inspecting the top DMRs showed that the methylation of the CpG sites

within each cluster is able to clearly separate between HCC and non-HCC samples in both tissue

and cfDNA samples (Figure 3b and 3c). We further explored this by taking advantage of the

availability of gene-expression datasets for 410 liver samples from the TCGA consortium [56,76],

and systematically tested associations between the 38 DMRs and 15,341 gene expression

profiles. We identified a total of 39 significant DMR-gene associations (linear regression

log-likelihood ratio test FDR < 10%, Supplementary Table 4). Among the top associations are

several positive associations between DMR Chr7:27144326-27145664 and multiple members of

the homeobox transcription factors (HOXA6, HOXA3, HOXA5, HOXA7 and HOXA4)

(Supplementary Figure 6a) which are all genomically close to the DMR and have been suggested

to be involved in tumorigenesis and cell proliferation and migration [77,78]. While positive

associations, i.e. increase in methylation associated with increased gene expression, might be

related with potentially more complex regulatory mechanisms, negative associations might

capture decreased gene expression through repression of transcription due to

hypermethylation. We observed multiple negative associations with Zinc Finger Proteins

(ZNF518B, ZNF502 and ZNF132) (Supplementary Figure 6b). The role of the Zinc Finger

Proteins in cell adhesion and in cancer is well described [79,80] and could highlight some of the

biological mechanisms underlying hypermethylation of these regions in HCC (Supplementary

Figure 6c). In summary, the methylated DNA regions highlighted with our approach, are

potential useful biomarkers for HCC and may also reveal important biological information,

specifically ZNF518B and its associated DMR, Chr10:133445694-133446718, is among the most

important features and has been previously described with possible implications in cancer cell

invasion and metastatic potential [81].
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Figure 3. HCC DNA methylation biomarkers. a) genomic localisation of the significantly differentially

methylated CpG sites contained in the top 38 DMRs. Blue represents hypermethylation and red

hypomethylation in HCC. b) Top recurrent DMR in the optimal LinearSVC models. Distribution of DNA

methylation (beta) of CpG sites contained within 1,000 base-pairs up/down-stream of the DMR. In red are

labeled CpG sites that are contained in the DMR. DNA methylation is split and coloured by HCC and the

rest. Left panel shows the methylation of all tissue samples in the Train & Test dataset, and right-hand

side the DNA methylation of cfDNA HCC, cirrhotic and healthy samples. Above the plots are reported the

DMR associated chromosome and genomic coordinates. c) similar to b), instead showing the distribution

of a representative DMR that is highly predictive of HCC in both tissue and cfDNA samples.

Diagnostic score based on HCC methylation signature

Lastly, we defined a single metric that could encompass the information from a whole DNA

methylation signature to use as a diagnostic metric for early detection of HCC. First, we robustly

estimated the coefficients of each DMR in the signature by randomly generating 1,000 balanced

training datasets, as described before (Figure 2a), and training a regularised linear regression

classifier (Supplementary Figure 7a). Sorted in descending order of their absolute coefficients,

the top 8-10 DMRs in the signature contribute most to the recall of HCC in the Validation dataset

using the Train and Test dataset for training, while the remaining DMRs provide smaller but

consistent improvement (Supplementary Figure 7b). Secondly, we built an additive linear score

(DMR signature score) where each 38 DMRs of the methylation signature is weighted by their
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signed mean coefficients, i.e. DMRs with high absolute mean coefficients have higher

preponderance in the score. For all samples in the Test and Train and Validation dataset we

calculated their DMR signature score and ranked them into how probable they are from being

HCC (Supplementary Table 5). Similarly, we estimated a linear risk score for the other CpG site

signatures, and observed that in the independent Validation dataset the score based on our

DMRs signature outperformed and provided very accurate predictions of HCC (Supplementary

Figure 7c). Furthermore, in samples from the Train & Test dataset that were held out from the

training of the DMR signature and score could achieve a clear split between the HCC compared

to non-HCC samples with a recall (sensitivity) of 86% and precision of 83% (Figure 4a and 4b).

We also looked in particular to the cfDNA samples which have noisier backgrounds in

terms of methylation signals and are more relevant for non-invasive early-stage diagnostic

approaches based on blood liquid biopsies. In addition to the HCC and cirrhotic cfDNA samples,

we also considered cfDNA samples of healthy controls, sepsis and patients with cancers from

other tissues, including lung, breast and colon [57]. Not surprisingly our metric could separate

cfDNA HCC and cirrhotic samples, which are used for training of the signature and score. More

interestingly, it perfectly splitted independent healthy control samples and could identify cfDNA

samples from patients with other cancers (Figure 3c and 3d), supporting the capacity of our

signature and associated score.

Altogether, the linear risk score represents a metric for the diagnosis of HCC that showed

robust predictive power across many different datasets (Figure 4e) with heterogeneous

backgrounds and most importantly both in tissue and liquid biopsies (Supplementary Figure 7d

and 7e). While the recall and precision metrics reported here are limited to the amount of cfDNA

datasets available these results suggest that DNA methylation from plasma cfDNA is a promising

alternative to AFP-based approaches.
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Figure 4. HCC DMR signature score. a) precision-recall curve of the DMR signature linear risk score

ranking exclusively samples in the Train & Test dataset that were not used to identify and estimate the

HCC biomarkers and weights. Maximum F1-score along the curve is represented with “x” and used to

define the DMR signature score threshold at the given recall and precision. Random precision is drawn as

a dashed horizontal line. b) DMR signature score of Train & Test samples not used for HCC biomarker

discovery plotted against a representative top performing DMR. Vertical line represents the DMR

signature score threshold found at the maximum F1-score in a) and the associated recall and precision

rates are reported. c) precision-recall curve of all cfDNA samples of the Train & Test dataset including

samples from patients with other types of cancer (labeled as “Cancer” and coloured blue). d) similar to b),

DMR signature score threshold, vertical dashed line, is estimated from the maximum F1-score point along

the precision-recall curve in c). e) DMR signature score calculated for the Validation set samples plotted

against two highly predictive HCC DMRs and their methylation profiles. Precision and recall rates reported

are those estimated in the Validation dataset using the DMR signature score threshold calculated with the

Train & Test dataset.

Discussion

Hepatocellular carcinoma (HCC) diagnosis is challenging and often misses early detection which

is vital to ensure curative options are available to the patient. Non-invasive diagnostic

approaches based on serum biomarkers, such as alpha-fetoprotein (AFP), AFP isoforms and

micro-RNAs, have shown sub-optimal sensitivity, leaving many patients undiagnosed. Tumour

cell-free DNA (cfDNA) from blood liquid biopsies holds great promise to transform clinical
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oncology diagnosis [26,43,82,83] with several studies reporting highly specific methylation

signatures for the diagnosis and prognosis of HCC [1,31,47,68]. Currently, most HCC methylation

signatures are small sets of single CpG sites (median n = 7) and overall show poor agreement

between them. This might indicate these signatures are potentially specific to the studies, which

could hinder generalisation to other cohorts and the utility for liquid biopsies as these are

noisier backgrounds with low available materials, thus affecting the detection of these very

specific features. To address this, we assembled >1,500 genome-wide DNA methylation arrays

from 13 independent datasets [1,31,45,46,49–58] making this one of the largest methylation

compendium to study HCC to date. We harnessed this rich dataset by implementing a machine

learning pipeline that searches, in an unbiased way, for significantly differentially methylated

regions (DMRs) in HCC presenting several improvements. Firstly, considering regions spanning

multiple CpG sites increases confidence as these can be more robustly measured in liquid

biopsies in clinical settings. This procedure reduces the impact of eventual CpG site misdetection

in the diagnosis and makes this more amenable for next-generation sequencing readouts, which

measure all sites within the specified region. Secondly, training machine learning predictors

with a training set equally representing tissue and liquid biopsies ensures the DMRs identified

are representative of HCC tumours that can also be measured in ctDNA. Moreover, making this

comparison against a cirrhotic background, instead of healthy liver samples, provides a more

relevant clinical comparison. Very often patients who develop HCC also suffer from chronic liver

disease and cirrhosis, and these are the backgrounds where existing non-invasive alternatives

underperform. Lastly, to reduce potential analytical artefacts in the DMR biomarker discovery

we processed the training dataset (859 samples from 6 different studies [31,45,46,56–58]) from

raw data with the same pipeline and applied stringent filters to remove problematic

measurements and account for potential confounders, such as sex, age, tumour purity and global

methylation, often not considered by other studies. Additionally, we validated our approach

using not only hold-out samples and cross-validated procedures, but also an assembled

validation dataset (692 samples from 7 independent datasets [1,49–55]), which was never used

for training and comprises differently and independently processed datasets, thus testing the

robustness of our DMRs to diverse processing pipelines.

Our machine learning approach compared favourably against 12 HCC methylation

signatures [1,31,47,68–75] across multiple datasets in both tissue and liquid biopsy samples. We

harnessed this to derive a novel methylation fingerprint comprising 38 DMRs and combined it

into a single diagnostic metric which detected HCC tissue samples in a validation dataset with

96% recall and 98% precision.

A limitation of our analysis is linked with the scarcity of cfDNA methylation samples.

While this is ubiquitous across other independent studies, it limits the estimation and
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extrapolation of evaluation metrics, recall and precision, to other cohorts. To mitigate this, we

thoroughly benchmarked our approach by assembling comprehensive and independent training

and validation DNA methylation datasets. Specifically, we aimed to integrate as many liquid

biopsy samples as possible, e.g. cfDNA analyses from healthy controls, sepsis and different

tumours [57], and while not directly related with HCC these samples supported the utility of out

approach, by for example showing it could correctly classify all healthy cfDNA samples. Of note,

the DMR signature score also successfully identified 7 cfDNA samples (out of 11) from other

tumours, including breast, lung and colorectal cancer.

This last point suggests that our ctDNA methylation signature and risk score have the

potential for pan-cancer early diagnostics. Indeed other studies have shown that DNA

methylation biomarkers can be used for the detection of different cancers, such as promoter

methylation of the gene SEPT9 in colorectal cancer and HCC [26,43,57,84]. Gene expression

analysis showed that several DMRs of our signature are significantly associated with

transcriptional repression of multiple Zinc Finger Proteins (ZFNs) supporting a potential role of

these regions in cancer progression and early onset [80,85]. Lastly, this approach can also be

proposed to monitor HCC patients that have undergone therapies, such as surgical resection,

radiofrequency ablation and chemoembolization, as a means of clinical follow-up to identify

residual disease and guide treatment [12,86].

Conclusions

In this study, we present an artificial intelligence pipeline that harnesses a comprehensive

genome-wide DNA methylation resource to build a signature and a diagnostic score for HCC that

benchmarks favourably against existing biomarkers. While further work to confirm the clinical

utility of this approach is ongoing, it addresses important challenges of the design of reliable

non-invasive diagnostic and monitoring approaches for HCC from liquid biopsies, to provide

long sought-after alternatives to current suboptimal approaches.
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Methods

DNA methylation datasets assembly and processing

DNA methylation samples from 6 different datasets [31,45,46,56–58] using Infinium

HumanMethylation EPIC and 450K assays were processed using the R package minfi (v1.32.0)

[62,64]. Datasets were integrated by considering the overlapping CpG probes between the two

Infinium HumanMethylation assays (n=575,130). All datasets were merged into a single matrix

containing signal intensities imported from the raw IDAT files and processed using the

functional normalisation pipeline [63]. Lastly, the ratio between the methylation and

unmethylated channels was calculated and exported as beta values (β) [EQ1] with an offset of

100 and rounded to 5 decimal places:

𝐸𝑄1[ ] β =  𝑀𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑒𝑑
𝑀𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑒𝑑+𝑈𝑛𝑚𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑒𝑑+𝑜𝑓𝑓𝑠𝑒𝑡

Altogether, we generated a single matrix of DNA methylation beta values spanning 452,567 CpG

sites measured across 859 samples, integrating multiple studies processed from the raw signals

using the same pipeline. For the downstream analyses several filtering steps were taken: (i)

probes containing a single nucleotide polymorphism (SNP) in the CpG site or in the single

nucleotide extension at a minor allele frequency (MAF) lower than 0.01 were excluded from

downstream analysis; (ii) using maxprobes R package (v0.0.2,

https://github.com/markgene/maxprobes) cross-reactive probes of the Illumina methylation

arrays were removed [87–90]; (iii) CpG sites with missing values were discarded; (iv) we

utilised an updated probe annotation mapped to the hg38 reference build and probes with no

available alignments were not considered; and (v) to focus on biomarkers that are sex agnostic

CpG sites mapping to sex chromosomes X and Y were removed from downstream analyses. The

final filtered DNA methylation matrix covered a total of 390,445 CpG sites without any missing

value across all samples.

DNA methylation regions, CpG clusters

To identify DNA methylation regions, CpG clusters, we utilised a similar approach to the one

described in Jaffe et al. [91]. Using the clusterMaker function from Bump Hunter R package

(v1.30.0) [62,91] we identified CpG clusters with a maximum of 500 base-pairs (bp) distance

between any 2 genomically consecutive CpG sites. Then we overlapped the CpG clusters with the

filtered CpG sites defined previously and only considered CpG clusters with at least 3 CpG sites

with measurements. A final CpG cluster matrix was defined by taking the mean of all filtered
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CpG sites within each cluster region, generating a DNA methylation matrix spanning 39,868 CpG

clusters.

Dimension reduction analyses

Dimension reduction analysis was performed using Principal Component Analysis (PCA)

implemented in scikit-learn Python module (v0.24.0) [92].

Balancing training samples sets

Considering the number of samples in each class, i.e. HCC, cirrhotic, cfDNA and tissue, the Train

and & Test is highly unbalanced and this can generate artefacts that can limit an unbiased

discovery of HCC biomarkers (Supplementary Figure 1a). Thus, we balanced the number of

samples in each type for the training of the machine learning models. Since the limiting number

of samples are from cfDNA samples, all samples available for HCC (n=22) and cirrhotic (n=22)

from cfDNA are used for training. Then an equal number of samples (n=22) for HCC and

cirrhotic are randomly sampled from the tissue samples, specifically Primary Tumour – Liver for

HCC class, and Cirrhosis + HBV, Cirrhosis + HCV, Cirrhosis + AATD and Cirrhosis + EtOH for the

cirrhotic class. Some cirrhotic tissue samples from the same dataset showed very distinct

profiles diverging from other cirrhotic samples, thus we excluded them from the generation of

the balanced dataset by considering only those cirrhotic samples from the GSE60753 dataset

[58] with a Principal Component (PC) 2 lower than 200 (Supplementary Figure 8a and 8b).

Taken together, a total of 88 samples, evenly separated by HCC and cirrhotic and cfDNA and

tissue, are used for model training (Figure 2a). Within the leave-one-out cross-validation

procedure, see below, in the cases where the test sample is a cfDNA sample this sample is not

used for training and the total number of samples in each class is therefore reduced to 21, hence

a total of 84 evenly distributed samples are used instead.

Discovery of HCC biomarkers using support vector machine classifiers

The systematic search of DNA methylation biomarkers of HCC and benchmark against other

independent sets of biomarkers [1,31,47,68–75] was performed within a leave-one-out

cross-validation procedure across the 859 samples contained in the Train & Test dataset. In this

procedure one sample at a time is left out for testing and the rest are used to build a balanced

dataset (undersampling of the HCC and cirrhotic tissue samples) to identify differentially

methylated regions (DMRs) predictive of HCC.

17

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 2, 2021. ; https://doi.org/10.1101/2021.06.01.21258144doi: medRxiv preprint 

https://paperpile.com/c/dPipfM/yiyo
https://paperpile.com/c/dPipfM/PAF76
https://paperpile.com/c/dPipfM/f57wY+tiUWg+D5K2z+wvMLi+Grx8O+lpXPZ+N5ZS1+MuSrj+vlcra+ZTVrB+7evCh
https://doi.org/10.1101/2021.06.01.21258144
http://creativecommons.org/licenses/by-nc/4.0/


Firstly, with the balanced train dataset we defined DMRs using a multivariate linear

regression model, LinearRegression class from scikit-learn (v0.24.0), that takes as dependent

variables the mean methylation values of the 39,868 CpG clusters contained in the balanced

dataset (Samples x CpG clusters) and as independent variable (Samples x 1) the binary

classification if a sample is HCC (1) or not (0). Additionally, multiple potential confounding

factors, covariates, are included in the model as independent variables: (i) binary variable

representing sex (female), since this information in incomplete, we accurately estimated the

sample sex using the methylation profiles and the R package minfi (v1.32.0) [62,64]; (ii) patient

age, this is also largely unavailable and therefore we used [65,66] the R package wateRmelon

[93] (v1.0.0) to estimate methylation age of the sample using their methylation profile and

considered the Hannum [65] and Horvath [66] approaches; (iii) sample global methylation, to

mitigate potential biases mediated by the sample overall methylation levels we calculated the

sample mean methylation levels and considered it as another independent variable; (iv) tumour

purity, this information is only available for the TCGA samples [56,76], CPE purity [67], and the

varying levels of tumour purity affect the molecular measurements and thereby we included

Train & Test PC5 in the model as a proxy to tumour purity estimations (Spearman’s rho 0.59,

p-value 9.6e-37); and lastly (v) we included an intercept term. The full model is fitted and a beta

coefficient is estimated for each independent variable. To statistically assess those CpG clusters

that are significantly differentially methylated in HCC we also trained a smaller model (null

hypothesis) that excludes the HCC status to test the hypothesis that the CpG cluster methylation

status provides a significant increase in the classification power of HCC over the covariates. This

is estimated using the log-likelihood ratio test for every CpG cluster and the p-values are then

adjusted for multiple-hypothesis testing using the Benjamini-Hochberg False Discovery Rate

(FDR). We complement this with a ANOVA differential CpG cluster methylation analysis

performed with the f_classif function from the scikit-learn (v0.24.0) [92] module and statistical

assessment using the F-scores associated p-values after adjusting for multiple hypothesis with

FDR. Lastly, DMRs are defined as those CpG clusters with a ratio test and ANOVA FDR lower than

1%. This identified a median of 1,355 DMRs across the leave-one-out procedure.

Secondly, having identified DMRs in HCC we then estimate the most important DMRs to

predict HCC by training linear support vector machines (LinearSVC) using a L1 regularization,

with penalty parameter (C) set to 1.5, to reduce the number of DMRs considered in the model.

DMRs with non-zero weights in the trained model are then defined as the most predictive DMRs

to classify HCC samples. A median of 38 HCC predictive DMRs are identified per model across

the 859 folds of the leave-one-out procedure, where 150 unique DMRs are found in at least 5%

of all trained models (n=43).
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Benchmarking DMRs against other DNA methylation signatures

Within each fold of the leave-one-out cross-validation, the top predictive DMRs (DMRs with

non-zero coefficients in the LinearSVC model) are used to train an independent ensemble model.

The ensemble model includes Logistic and Ridge Linear classifiers both independently

cross-validated to estimate the regularization parameter C and alpha, respectively. This is

implemented using the VotingClassifier class from scikit-learn (v0.24.0) [92] using a soft voting

modality, i.e. taking the argmax of the estimated probabilities to be HCC, and the

LogisticRegressionCV and RidgeClassifierCV for the cross-validated logistic and linear classifiers,

respectively. For training the ensemble all samples from the Train & Test dataset are used, apart

from the one left out for testing. In contrast to the DMR discovery, training of the ensemble is not

restricted to the balanced sample set. Lastly, the trained ensemble model is used to make a

prediction of the HCC status of the test sample using the soft-voting.

A similar procedure is performed for the 12 independent HCC DNA methylation

signatures, training an ensemble model per signature restricted to the CpG sites contained in the

signature, and then a prediction is made about the HCC status of the test sample. All predictions

on the test sample are stored and multiple evaluation metrics are calculated compared to the

true label: confusion matrices, recall, precision, sensitivity, balanced accuracy, and Mathew

correlation coefficients (MCC).

Sequential feature selection

A forward greedy sequential feature selection procedure to iteratively find the optimal number

of DMRs from the Train and Test dataset was performed using the SequentialFeatureSelector

function implemented in the python module scikit-learn (v0.24.0) [92]. For this analysis only

DMRs that were found in more than 5% of the leave-one-out optimal models (n = 43 models)

were considered (n = 150 DMRs). Considering that 38 is the median optimal number of features

in the leave-one-out cross-validated models (Figure 1c) and that the frequency of the DMRs is

positively correlated with its absolute effect size (Supplementary Figure 2d), we train and tested

LinearSVC models with a ranging number of CpG clusters from 1 to 38. For each LinearSVC we

utilised a balanced dataset (see methods) for training and repeated this 30 times for each

number of DMRs. In each model, predictions for the train, test and validation samples were

performed and evaluated with precision and recall metrics (Supplementary Figure 3a).

Linear regression models between gene expression and methylation

To identify potential associations between DMRs methylation and gene expression we utilised

transcriptomics measurements [56,76] available for the liver TCGA samples contained in the
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Train & Test dataset (n=410). Within this subset we systematically tested linear associations

between methylation profiles of the top 38 DMRs and 15,341 gene expression profiles using

linear regression models implemented in the python module limix (v3.0.4) [94]. We defined the

following linear mixed model [EQ2]:

[𝐸𝑄2]: 𝑦
𝑚

 = 𝑏
1
𝑀 + 𝑏

2
𝑥

𝑒
+ 𝑏

3
𝐾 + ψ 

where y represents a vector of a single DMR methylation profile, M represents a matrix of

covariates, x a gene expression vector of a single gene, K is the random effects term represented

by the Kinship matrix of all the samples estimated using a linear kernel, and is the noise term.ψ

The covariate matrix, M, contains several factors that might confound associations, similar to

before: (i) global methylation; (ii) predicted patient sex; (iii) predicted patient age using both

Hannum and Horvath methods; (iv) tumour purity, Train & Test PC5 used as a proxy; and (v) an

intercept term. Gene expression measurements were standardized by subtracting the mean and

dividing by the standard deviation. For each DMR and gene association a [EQ2] linear mixed

model was fitted by minimising the residual sum of squares to estimate the parameters ,𝑏
1

𝑏
2

and . Statistical significance was assessed by performing a log likelihood ratio test between the𝑏
3

full model [EQ2] and the null model which excludes the gene expression term ( ), p-value𝑏
2
𝑥

𝑒

was derived using a chi-square distribution with one degree of freedom and correction for

multiple testing using FDR. A total of 582,958 DMR and gene expression associations were

tested and 39 were found to be significant at a FDR < 10%.

HCC DMR signature score

HCC linear risk score (DMR signature score) is a weighted sum of the methylation of the top 38

DMRs recurrently present with non-zero weights in the linear support vector machines

(LinearSVCs) trained with the balanced sample sets in the leave-one-out cross-validation. The

preponderance (weight) of each DMR is estimated using 1,000 permutations of the balanced

dataset which are used to train a Ridge classifier with an alpha parameter set to 1. This ensured

a regularisation of the model’s feature coefficients, while preserving them non-zero. The mean

and standard deviation of each DMR is then calculated across all 1,000 iterations. The mean

coefficients are then used in a weighted additive score where features with larger absolute

coefficients have larger preponderance in the linear DMR signature score. Based on this feature

set and weights a score is calculated for each sample using the sample-specific DMR methylation

values. Recall and precision curves are generated using the risk score and the HCC status of the

samples. Optimal threshold and precision and recall rates are estimated based on the best F1
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metric possible along the curves. A similar approach is taken for the other 12 independent DNA

methylation signatures, where CpG sites are used as features instead.

Availability of data and materials

Data and source code used to perform the analyses described in this study are provided as

supplementary materials.
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Supplementary Figures

Supplementary Figure 1. Overview of the DNA methylation datasets assembled. a) number

of samples across different types, i.e. HCC, healthy, cirrhotic and other diseased liver samples. b)

number of samples per study constituting the Train & Test dataset. c) similar to b), number of

samples per study constituting the Validation dataset. d) principal component analysis (PCA) of

the Train & Test dataset, plotting the first 3 principal components against each other

(off-diagonal) and the distribution (diagonal). HCC samples are highlighted from the rest. e)

similar to d), PCA of the Validation dataset.
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Supplementary Figure 2. Information of DNA methylation features. a) distribution of the

length of the CpG clusters. Median size of all clusters is represented as a vertical line. b)

distribution of Pearson’s correlation coefficient (R) between all CpG sites contained in the Train

& Test dataset and the overall sample mean methylation. c) top correlated CpG site with mean

DNA methylation. HCC samples from the Train & Test dataset are highlighted in orange from the

rest. d) Pearson’s correlation coefficients between the first 10 principal components (PCs) of the

Train & Test methylation dataset with estimated tumour purity [67] for the HCC samples from

the TCGA dataset [56]. PCs explained variance is reported next to the corresponding bar. e)

Scatter and linear regression of top correlated Train & Test methylation PC, PC5, with TCGA HCC

samples estimated tumour purity. f) number of times a DMR is present in the optimal LinearSVC

model in the leave-one-out cross-validation procedure plotted against the mean absolute

coefficient. Dashed vertical line represents the frequency cut-off of the top 38 DMRs.
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Supplementary Figure 3. Top DNA methylation HCC biomarkers. a) greedy sequential DMR

selection of the best DMR is selected to be added to the LinearSVC model. For each number of

DMRs, 30 balanced train sets were generated and benchmarked. Models were trained with

balanced train sets and used to predict the train, the test and the validation datasets. The

number of features to be selected ranges from 1 to 38, where the latter represents the median

number of features in the LinearSVC models. Error margins represent the 95th confidence

interval. b) DNA methylation heatmap of top 38 DMRs across Train & Test and Validation

datasets. Row colour annotations identify, in order: HCC samples (red) from the rest (gray); the

different datasets used; and the samples that correspond to the Train & Test dataset (blue) from

the Validation dataset (gray).
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Supplementary Figure 4. Train & Test dataset trained models performance. a) UpSet plot

showing the intersection of the multiple independent HCC DNA methylation biomarker sets.

Horizontal bars represent the total number of unique features in the respective signature.

Vertical bars represent the number of features unique to the dataset, or in case of multiple

signatures the number of overlapping features. The signatures selected to draw the barplots are

identified with black circles. b) evaluation of the leave-one-out cross-validation procedure in the

Train & Test dataset using the Recall, Precision, Specificity, Mathew’s Correlation Coefficient

(MCC) and the balanced accuracy metrics. Each HCC DNA methylation feature set is coloured

differently as in c). c) Precision-recall curves obtained by each feature set using the confidence

scores of each sample belonging to the HCC class. Confidence scores are proportional to the

sample distance to the hyperplane. Optimal F1-scores along the curves are marked with a “x”.

Number of features in each dataset overlapping with the Train & Test dataset is specified in the

label, as well as the area under the precision-recall curve and the MCC. Random precision is

represented as a dashed horizontal line. d) confusion matrices of the predictions of each HCC

DNA methylation biomarker set.
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Supplementary Figure 5. Validation dataset prediction performance. a) evaluation of the

Validation dataset using an ensemble of logistic and linear ridge classification models trained

with the Train & Test dataset. Recall, Precision, Specificity, Mathew’s Correlation Coefficient and

balanced accuracy metrics are presented. b) Precision-recall curves obtained by each feature set

using the confidence scores of each sample belonging to the HCC class. Confidence scores are

proportional to the sample distance to the hyperplane. Optimal F1-scores along the curves are

marked with a “x”. Number of features in each dataset overlapping with the Validation dataset is

specified in the label, as well as the area under the precision-recall curve and the MCC. Random

precision is represented as a dashed horizontal line. c) confusion matrices of the predictions of

each HCC DNA methylation biomarker set.
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Supplementary Figure 6. DNA methylation distribution of representative top CpG clusters

predictive of HCC biomarkers. a) significant associations between DMR

Chr7:27144326-27145664 and gene expression of multiple HOXA members. b) similar to a), but

instead showing significant associations between multiple Zinc Finger Proteins and DMRs

Chr10:133445694-133446718, Chr5:175796221-175797719 and Chr7:1368998-1369581. c)

DNA methylation (beta) of CpG sites contained in a range of 1,000 base-pairs of the DMRs

presented in b). Genomic information of the location of the DMR to genes and CpG islands is

provided below. Left panel shows the distribution of the DNA methylation in the tissue samples

of the Test & Train datasets, while the right panel shows the distribution in the cfDNA samples of

the same CpG sites. CpG sites are sorted in ascending order according to their genomic location.

In red are CpG sites that are contained in the DMR.
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Supplementary Figure 7. HCC DNA methylation risk score. a) distributions of DMR

coefficients across the 1,000 permutations of the balanced datasets. b) Recall and precision

metrics of the predicted HCC labels in the Validation dataset using an iterative addition of the

top N DMRs ranked descendingly according to their absolute mean coefficients reported in a).

Train & Test dataset is used to train a cross-validated ensemble of logistic and linear classifiers

to predict HCC samples in the Validation dataset. c) Precision-recall curves of the Validation

samples calculated using linear risk score estimated from the mean coefficients obtained in the

1,000 permutation analysis. d) HCC DMR signature score calculated for all the samples in the

Train & test dataset which were not used for the identification of the DMR signature and score

nor their weights. DMR signature score plotted against three representative HCC DNA

methylation biomarkers. HCC classification threshold is represented by a dashed vertical line

and precision and recall rates are reported. e) Similar to d), instead only cfDNA samples are

utilised and cfDNA samples from patients with other cancers (marked as blue and labeled as

“Cancer”) are also considered as a positive event. cfDNA samples from healthy controls are

marked in green (“Healthy”).
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Supplementary Figure 8. Train and Test PCA analysis. First and second principal component

of the Train & Test dataset samples coloured by a) original dataset, and b) sample type.
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Supplementary Information

Supplementary Table 1. List of samples and original studies that comprise the Train & Test and

Validation datasets.

Supplementary Table 2. DMRs present in the optimal LinearSVC across the leave-one-out

cross-validation procedure, frequency and effect sizes are reported.

Supplementary Table 3. Genomic information for all CpG sites mapping to the top 38 DMRs.

Supplementary Table 4. Significant CpG cluster - Gene expression associations.

Supplementary Table 5. HCC linear risk scores for the Test & Train and Validation datasets.

Supplementary File 1. Analyses source code.
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