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ABSTRACT 

Intellectual disability (ID) is a highly heterogeneous disorder with hundreds of associated genes. 

Despite progress in the identification of the genetic causes of ID following the introduction of high-

throughput sequencing, about half of affected individuals still remain without a molecular diagnosis. 

Consanguineous families with affected individuals provide a unique opportunity to identify novel 

recessive causative genes. 

In this report we describe a novel autosomal recessive neurodevelopmental disorder. We identified 

two consanguineous families with homozygous variants predicted to alter the splicing of ATP9A 

which encodes a transmembrane lipid flippase of the class II P4-ATPases. The three individuals 

homozygous for these putatively truncating variants presented with severe ID, motor and speech 

impairment, and behavioral anomalies. Consistent with a causative role of ATP9A in these patients, a 

previously described Atp9a-/- mouse model showed behavioral changes. 
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INTRODUCTION 

Intellectual disability (ID) or delayed psychomotor development are common and highly 

heterogeneous phenotypes of genetic origin, affecting 1-3% of the general population 1,2 which pose a 

significant socio-economic burden on the affected families, the health care system, and society in 

general 3. Despite considerable progress in genetic diagnosis after the introduction of high throughput 

sequencing technologies, the genetic cause of more than half of ID cases remains undetermined 4. The 

leading genetic cause of ID in individuals from outbred populations is de novo variants 5,6; in contrast 

a substantial fraction of autosomal recessive (AR) disorders cause ID in families with multiple 

affected individuals that practice consanguinity 7. It is estimated that worldwide 10.4% of marriages 

occur among close relatives 8.  Consanguinity increases the extent of homozygous genomic regions 

and brings to homozygosity deleterious alleles resulting in birth defects and infant mortality 9,10. Large 

consanguineous families with (multiple) affected individuals thus provide a unique opportunity to 

identify novel recessive causative genes. 

P4-ATPases are transmembrane lipid flippases 11, that function in vesicles formation and trafficking. 

They regulate the asymmetric distribution of phospholipids in membranes of eukaryotic cells 11,12. 

There are 14 different P4-ATPases in humans that can be phylogenetically grouped in five classes13. 

ATP9A and its 75% similar paralog ATP9B are the unique members of class II. They are the only P4-

ATPase that do not require the CDC50 β-subunit for normal function and cellular localization 14. They 

show different intracellular and tissue distribution: ATP9A is found in early and recycling endosomes 

and at a lower level at the plasma membrane, while ATP9B is only found in the trans-Golgi network 

12,14–16. Similarly, the genes encoding ATP9A and ATP9B present with overlapping but different 

expression patterns with ATP9A mainly expressed in the brain (Human Protein Atlas, GTEx). 

Suggestive of an important role of ATP9A in intercellular communication, this P4-ATPase inhibits 

extracellular vesicles release 15,16.  

Here we report two consanguineous families with homozygous pathogenic variants predicted to alter 

ATP9A splicing and we propose ATP9A as a novel cause of a recessive neurodevelopmental disorder.   
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RESULTS 

CLINICAL REPORT 

We identified three affected individuals from two unrelated consanguineous families. The main 

clinical features of the affected individuals are reported in Table 1 and in Figure 1. Because rapid and 

automated nature of preprint posting are incompatible with verification of informed consent and that 

data in this section can potentially make patients identifiable, the clinical reports of the affected 

individuals are available upon request to the corresponding authors.  

 

EXOME ANALYSIS 

Homozygosity mapping of family 1 and whole exome sequencing (WES) of proband (IV:1) of family 

1 did not reveal any pathogenic or likely pathogenic mutation in genes previously reported to cause 

ID or developmental delay but allowed the detection of a homozygous splicing variant 

(NM_006045.3:c.799+1G>T) in ATP9A (Figure 1). The variant was not present in gnomAD17, Bravo 

(https://bravo.sph.umich.edu/freeze5/hg38/) or our local database of >500 controls from the same 

geographical region. Its segregation in the family was confirmed by Sanger sequencing, in particular 

the two affected siblings are homozygous for this variant (Figure 1). The change at the conserved first 

nucleotide of the donor splice site was predicted to cause abnormal splicing by SpliceAI 17 (score 

DS_DL = 0.99), MaxEntScan18 (MaxEntScan_diff = 8.504), and NNsplice19.  RNA samples from 

affected individuals were not available to assess RNA splicing.  

Our search for more cases led to the identification of a second family. The WES of proband IV:1 from 

family 2 also revealed the presence of a homozygous splicing variant in ATP9A, a base pair 

substitution in intron 3 of ATP9A (NM_006045.3:c.327+1G>T;). This variant is absent from the 

gnomAD17 and Bravo databases, and from a database of hundreds of healthy individuals and our local 

database of >250 controls from the same geographical region. Multiple predictions tools indicated a 
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likely loss of the canonical donor splice site (NNsplice, SpliceAI score DS_DL=0.95, 

MaxEntScan_diff = 8.504). The abnormal splicing could either result in the skipping of the inframe 

exon 3, leading to the deletion of 38 amino acid residues, or utilization of an alternative donor site 

resulting in partial intronic retention and the appearance of a premature stop codon. Testing of the 

aberrant RNA splicing was not possible due to unavailability of patient’s RNA or cells. Sanger 

sequencing confirmed the segregation of the potentially causative variant (Figure 1), i.e. the variant is 

heterozygous in the proband’s parents (III:2 and III:3). Homozygosity mapping of the proband 

revealed that the ATP9A variant is embedded in a putative 6.83 Mb region of homozygosity (ROH) 

(chr20[GRCh37]: 45358223-52192534). While we did not find any likely-pathogenic variants in 

known ID genes in proband IV:1 of family 2 (based on the Panelapp gene list for intellectual 

disability 20; Supplementary Table 1), we cannot exclude that variants beside the ATP9A one might 

play a role in the patient’s phenotype. In particular, we identified homozygous variants in CCDC88C 

(NM_001080414.4: c.1126C>T, p.Arg376Trp) and ZNF407 (NM_017757.3: c.5497>T, 

p.Pro1833Ser), two genes previously implicated in neurodevelopmental disorders but associated with 

phenotypes different than the one found in our proband. Bi-allelic variants in CCDC88C were 

associated with a form of congenital hydrocephalus 21–23, while variant in ZNF407 have been recently 

implicated in a autosomal recessive form of ID with microcephaly, short stature, hypotonia and ocular 

anomalies 24,25.  

 

DISCUSSION  

Autosomal recessive ID is characterized by extensive genetic heterogeneity. Still, many patients do 

not receive a molecular diagnosis, suggesting that a considerable number of causative genes have not 

yet been identified 4,27. We described three individuals from two consanguineous families with 

different homozygous splicing variants in canonical splice sites of the ATP9A gene. All three patients 

present with severe ID, motor delay, speech and fine motor impairment and behavioral anomalies. 

Both affected siblings (IV:1 and IV:7) of family 1 had an attention deficit hyperactivity disorder-like 
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phenotype combined with aggressiveness, whereas proband IV:1 from family 2 presented with autistic 

features, including prominent stereotypic movements, and lack of eye contact.  

ATP9A is under constraint (intolerance to missense variants z-score = 4.15; pLI = 1; LOEUF = 0.2) 

according to gnomAD26. Its yeast homolog, NEO1, was shown to be an essential gene 28, while 

absence of the C. elegans orthologous TAT-5 resulted in disrupted cell adhesion and morphogenesis in 

worms’ embryos 29. Whereas ablation of the mouse orthologous Atp9a did not diminish survival, the 

Atp9a-/- mice engineered and phenotyped by the International Mouse Phenotyping Consortium were 

hyperactive and showed a significant increased exploration in new environment reminiscent of the 

behavioral symptoms of our patients 30,31. Depletion of ATP9A were lethal in human hepatoma HepG2 

cells but not in other cell lines including HeLa, HEK293T, MCF-7, and THP-1, suggesting that the 

absence of ATP9A could be tolerated in certain tissues but not in others 12,15. ATP8A2, another P4-

ATPase highly expressed in the brain, has been implicated in a recessive disorder characterized by 

cerebellar ataxia, ID, and disequilibrium syndrome (CAMRQ, MIM 615268), or severe hypotonia, ID, 

and optic atrophy with or without encephalopathy 32–36. A de novo balanced translocation leading to 

haploinsufficiency of this gene has been also proposed as the cause of moderate ID and hypotonia 37. 

Downregulation of ATP9A has been associated with a significant increase of extracellular vesicles 

release, in particular the exosome 15,16. Extracellular vesicles release is an important form of 

intercellular communication that enables the transport of several different signaling molecules - 

including proteins and RNA – without the need of direct cell-to-cell contacts. It is involved in a wide 

range of biological processes, such as blood coagulation and immune response 38,39. Different 

physiological roles in the central nervous system have been proposed for extracellular vesicles, 

including neurite outgrowth and neuronal survival 38,40. Synaptic glutaminergic activity regulates the 

exosome release, pinpointing a role in maintenance of synaptic physiology 41. Interestingly, an 

increase of neuronal-derived exosome has been documented in individuals with Down syndrome as a 

compensatory mechanism for alterations in the endosomal pathway 42,43. Alteration in the recycling 

endosomal processes have been associated with Christianson syndrome (MIM 300243), a 

neurodevelopmental disorder characterized by ID, speech impairment, epilepsy, postnatal 
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microcephaly, truncal ataxia, and hyperactivity 44,45. This syndrome is caused by pathogenic variants 

in the endosomal sodium hydrogen exchanger SLC9A6 44,46–48. Suggestive of neuronal degeneration, 

primary hippocampal neurons of Slc9a6-/- mouse or expressing a deleterious mutation in this gene 

presented with an increase of caspase activation and a decrease in dendrites’ lengths, size, and in 

dendritic arborization 44,46,49. ATP9A is known to be involved in the endosomal recycling pathway 

12,15,16. For instance, depletion of ATP9A reduces the plasma membrane expression of the glucose 

transporter  GLUT1 and increases its level in endosome, altering its recycling 12. Deficiency of 

GLUT1 has been associated with a neurological disorder with a variable phenotype including 

epilepsy, movement disorders, mild to severe intellectual disability, and acquired microcephaly in 

some cases 50,51. Furthermore, a gene expression microarray analysis performed on knockdown 

ATP9A HepG2 cells has shown that the differentially expressed genes are involved in endocytosis 15.  

Using the data of the Bravo database, we have attempted to estimate the number of individuals 

affected by ATP9A-related neurodevelopmental disorder. There are 624 deleterious alleles in Bravo 

(Loss of function and non-synonymous variants with CADD>25). Thus, the allelic frequency of likely 

pathogenic ATP9A variants is estimated to be 1 in 424 and the frequency of heterozygous carriers 1 in 

212. Using these frequencies, we estimated births per year in outbred population and consanguineous 

marriages to be approximately 722 in 130,000,000 and 958 in 6,500,000 births, respectively. The total 

estimated number of new patients per year if 1680. 

In conclusion, we describe a novel autosomal recessive neurodevelopmental disorder. In two 

unrelated consanguineous families, we identified variants predicted to affect the splicing of ATP9A. 

The three individuals homozygous for these putatively truncating variants presented with severe ID, 

motor and speech impairment, and behavioral anomalies. Consistent with a causative role of ATP9A 

in the patients’ phenotypes Atp9a-/- mouse model showed behavioral changes. 

    

METHODS 
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The current study was approved by the IRBs of the Khyber Medical University, Peshawar, Pakistan, 

and the University Hospitals of Geneva, Switzerland (Protocol number: CER 11-036). Informed 

consent forms were obtained from guardians of all affected individuals who participated in this study. 

The proband IV:1 of family 1 was subjected to exome sequencing (ES). DNA was enriched using 

SureSelect Human All Exon v6 capture kit (Agilent Technologies, Santa Clara, CA, USA) and 

sequenced on an Illumina HiSeq 4000 platform, with an average coverage of 120x at each nucleotide 

position. ES data were analyzed with an in-house customized pipeline8 that is based on published 

algorithms including BWA, SAMtools 52, PICARD (http://broadinstitute.github.io/picard/) and 

(GATK) 53. Initial screening for known or novel pathogenic mutations in the reported ID genes was 

performed. The 720K SNP array was performed in parents (III:3 and III:4), affected (IV:1 and IV:7) 

and unaffected individuals (IV:3 and IV:5) of family 1 to identify Runs of Homozygosity (ROH) 

using PLINK as described previously 54–56. ROH and exome sequencing data were analyzed with 

CATCH 57 to determine variants that were present in ROHs of patients (IV:1 and IV:7) but not in 

normal individuals of family 1. Subsequently the variants were filtered manually by using the criteria 

described in published studies 55,56. 

The exome of IV:1 from family 2 was captured using the xGen Exome Research Panel v2 (Integrated 

DNA Technologies) and sequenced using the Illumina HiSeq4000 platform according to the 

manufacturer’s protocols. The overall mean-depth base coverage was 153-fold and 97% of the 

targeted region was covered at least 20-fold. Read mapping and variant calling were performed as 

described 58 using the Varapp software 59. Homozygous and hemizygous variants with a MAF < 1% in 

the general population (1000genome, EVS, gnomAD) were retained and screened for variants in 

reported ID genes (Supplementary Table 1). Homozygosity mapping was performed with AutoMap, 

which uses Variant Call Format (VCF) files from WES 60. 

DATA AVAILABILITY  

The data that support the findings of this study are available from the corresponding authors upon 

request.  
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FIGURE 1: Pedigrees and Sanger sequencing  

The pedigrees and the available genotypes of family 1 (top) and family 2 (bottom) are depicted on the 

left. Sanger sequencing chromatograms confirming the segregation of the ATP9A 

NM_006045.3:c.799+1G>T (six top traces) and NM_006045.3:c.327+1G>T variants (bottom five 

traces) are shown on the right.   
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Table 1: Clinical features of patients with homozygous ATP9A splicing variants 

Family  1 2 
Individual IV:1 IV:7 IV:2 
Consanguineous parents yes yes Yes 

Age at last evaluation (bracket of years) 25-30 20-25 10-15 

ATP9A variant (gDNA) Chr20:50305602 C>A Chr20:50305602 C>A Chr20:50342357 C>A 

General characteristic       

Head circumference (cm) <1st percentile 39th percentile 50th percentile 

Height (cm) <3rd percentile 50-75th percentile 50-75th percentile 

BMI (range) 25-29 20-24 20-24 

Microcephaly + - - 

Strabismus  + + - 

Facial dysmorphism  + +  + 

Neurodevelopment       

Severe Intellectual Disability + + + 

Motor delay  + + + 

Speech delay/ dysfunction + + + 

Fine motor impairment + + + 

Epilepsy - - + 

Brain MRI anomalies n.d. n.d. - 

Behavioral anomalies       

ADHD + + n.d. 

Stereotypic movement n.d. n.d. + 

Autistic features - - + 

Aggressiveness + + n.d. 
n.d. = not determined; ADHD = Attention Deficit Hyperactivity Disorder   
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Supplementary Table 1: Homozygous variants identified by WES in proband IV:1 of family 2 
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Family 1

Family 2

c.[799+1G>T;=]

I:1 I:2

II:1 II:2 II:3 II:4

III:1 III:2 III:3 III:4

IV:1
c.[327+1G>T;327+1G>T]

c.[327+1G>T;=]c.[327+1G>T;=]c.[327+1G>T;=]c.[=;=]

III:4III:3

c.[799+1G>T;=]

c.[799+1G>T;799+1G>T]c.[799+1G>T;799+1G>T] c.[=;=]c.[799+1G>T;=]
IV:1 IV:2 IV:3 IV:4 IV:5 IV:6 IV:7

T A C T G G G T T C C C C T G K T A A G T T A A T C G G C A T T

T A C T G G G T T C C C C T G G T A A G T T A A T C G G C A T T

T A C T G G G T T C C C C T G K T A A G T T A A T C G G C A T T

T A C T G G G T T C C C C T G K T A A G T T A A T C G G C A T T

T A C T G G G T T C C C C T G T T A A G T T A A T C G G C A T T

III:2

III:1

III:3

III:4

IV:2

C A A A A C G G C G C C T C A M C T G A T G C G A C C A C A

C A A A A C G G C G C C T C A A C T G A T G C G A C C A C A

C A A A A C G G C G C C T C A C C T G A T G C G A C C A C A

C A A A A C G G C G C C T C A M C T G A T G C G A C C A C A

C A A A A C G G C G C C T C A A C T G A T G C G A C C A C A

C A A A A C G G C G C C T C A M C T G A T G C G A C C A C A

III:4

IV:1

IV:5

III:3

IV:7

IV:3
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