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Abstract20

We investigate, through a data-driven contact tracing model, the transmission of21

COVID-19 inside buses during distinct phases of the pandemic in a large Brazilian22

city. From this microscopic approach, we recover the networks of close contacts within23

consecutive time windows. A longitudinal comparison is then performed by upscaling24

the traced contacts with the transmission computed from a mean-field compartmental25

model for the entire city. Our results show that the effective reproduction numbers26

inside the buses, Rebus, and in the city, Recity, followed a compatible behavior during27

the first wave of the local outbreak. Moreover, by distinguishing the close contacts of28

healthcare workers in the buses, we discovered that their transmission, Rehealth, during29

the same period, was systematically higher than Rebus. This result reinforces the need30

for special public transportation policies for highly exposed groups of people.31

Keywords: COVID-19. Public Transportation. Contact Tracing. Complex Networks. Compartmental32

Models33
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I. INTRODUCTION34

Human mobility is crucial to understanding the COVID-19 pandemic since the Severe35

Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is disseminated individual to36

individual via droplet and airborne transmissions [1]. Considering that non-pharmacological37

interventions, such as social distancing and isolation, still represent fundamental measures to38

control the COVID-19 outbreak, the nature of SARS-CoV-2 dissemination also unveils the39

need to understand the role of the space where interaction between people occurs. There40

is consensus that superspreading events, which are usually investigated through contact41

tracing models [2–7], are more likely to happen in indoor environment, as substantiated by42

previous studies of indoor contagion in hospitals [8, 9], restaurants [10], offices [11], and even43

on cruise ships [12, 13]. However, the relation between the microscopic level of contagion44

in indoor environments and the macroscopic observables, such as the numbers of cases and45

deaths at the city scale remains unclear.46

Public transportation is one of the main forms of commuting, playing an important role in47

the pace of life in cities [14], specially in epidemics [15–20]. In spite of the fact that some cities48

have adopted social distancing and sanitary protocols on public transportation to control the49

COVID-19 outbreak, it is common that buses or subways get crowded at rush hour, mainly50

in the developing countries. In recent months, some studies have been proposed to establish51

the safety of public transportation regarding the indoor COVID-19 contagion [21–27]. To52

the best of our knowledge, however, none of these studies have considered the possibility53

of a comparative analysis based on a two-fold perspective, namely, the dynamic of people’s54

movement in a city and the dynamic of the virus dissemination within vehicles of public55

transport.56

Here, using data about people’s movement on buses and COVID-19 infection in a large57

metropolis, we define two data-driven mathematical models based on concepts of complex58

networks and non-linear dynamics in order to foster the understanding of the role public59

transportation plays in the COVID-19 pandemic. At the microscopic scale, we define a60

contact tracing model to estimate the transmission within city buses and, at the macroscopic61

scale, a compartmental model is employed to estimate the transmission in the entire city.62

The main contribution of our study is a comparative analysis between these two distinct63

modeling approaches through the combination of daily epidemiological and mobility data64
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during the first 9 months of the local COVID-19 outbreak, and through different social65

distancing restriction regimes. One specially relevant aspect of this work is the fact that66

we are able to trace within the public transportation vehicles (i.e., indoor environments)67

two groups of people, one of them with a higher exposure to the virus in comparison to the68

other. This allows us to shed light on potentially dangerous superspreading events in public69

transportation.70

II. MODELING APPROACH71

A. Contact tracing model72

We propose a contact tracing model using two datasets that relate bus validations to73

COVID-19 confirmed cases during the periods of social isolation, lockdown, and economic74

reopening in the city of Fortaleza, Ceará, Brazil (see Methods). Our model is a network based75

on Potentially Infectious Contacts (PICs), in which bus passengers during their infectious76

period - according to subsequent diagnosis of COVID-19 - have shared the transport for77

a certain amount of time with other passengers, the latter in their exposed period - also78

according to subsequent COVID-19 diagnosis. Precisely, the proposed network is composed79

of vertices pi that represent the passengers diagnosed with COVID-19, and weighted directed80

edges ck = (pi, pj, τij) that represent PICs. For each edge, the direction is assigned from81

an infectious passenger pi to an exposed passenger pj, and the weight τij is defined as the82

estimated value of the ride time shared by pi and pj on the same bus, as shown in Fig. 1a.83

We calculate τij by superimposing the estimated ride times from pi and pj, considering84

the different moments of their boarding. Here, the epidemiological profile for COVID-1985

transmission is characterized by the dates of the passengers’ Onset of Symptoms (OS). The86

infectious period corresponds to the days in which a passenger diagnosed with COVID-1987

can transmit the virus, initiating 2 days before OS and ending 12 days after OS. The exposed88

period refers to the time window during which the passenger can get the virus and maintain89

it latent until the infectious period. In this context, the exposed period begins 14 days90

before OS and ends 2 days before OS, i.e., the infectious and the exposed periods have a91

width of 14 and 12 days, respectively, and they do not overlap [28–30]. Furthermore, if92

there is more than one PIC related to an exposed passenger pj, we consider solely the edge93
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with the largest value of τij. It is important to notice that, by crossing the datasets of bus94

validations and confirmed cases of COVID-19 in Fortaleza during the period from March to95

December 2020, we are able to identify 5, 159 pairs of infectious and exposed passengers that96

rode the same bus on the same day. However, their associated values of τij could only be97

computed for 3, 023 (58.6%), due to missing information in the dataset of bus validations.98

From these pairs, we obtain that the network of PICs corresponds to a forest composed of99

213 trees with a total of 530 vertices (infectious passengers) and 317 edges (PICs). From100

all vertices found, 97 were identified as healthcare workers (see Methods). The Centers for101

Disease Control and Prevention (CDC) recommends that any contact tracing strategy for102

COVID-19 should consider the concept of Close Contacts (CCs) [31], i.e., anybody who103

has been for at least 15 minutes within 6 feet (≈ 2 meters) of an infectious person. Since104

buses are small, enclosed, and they have a great tendency to get crowded at rush hours, we105

define the CCs in the network of PICs only considering the time condition τij > τc, where106

the threshold τc = 15 minutes. Applying this criterion to the network of PICs, we find107

that the network of CCs is composed of 154 trees with a total of 360 vertices (infectious108

passengers) and 206 edges (CCs). In this case, 75 vertices were identified as healthcare109

workers. In order to understand the COVID-19 spreading in public transportation, we110

define the effective reproduction number for the contact tracing model, Rebus, as the expected111

number of secondary cases produced by a single (typical) infection. Precisely, it accounts for112

two contributions in relation to who is spreading the disease: one due to reported infectious113

individuals, Rebusr , and another due to unreported infectious individuals Rebusu . Here, we114

assume that the fraction of newly reported to newly unreported cases generated by a typical115

reported infectious individual remains invariant during time. This is equivalent to consider116

the value of Rebusr proportional to the average number of outdegrees from the vertices in the117

network of CCs during a given time window, 〈dCCsout 〉,118

Rebusr = χ〈dCCsout 〉. (1)

The constant of proportionality χ involved in this relation will be explicitly computed119

through the calibration between the contact tracing and the compartmental models. Each120

consecutive time window has a width of 22 days and a step size of 5 days. We emphasize that121

our model has an intrinsic time delay regarding the consolidation of Rebusr that can reach122

≈ 53 days. This value is associated to the time delay in the consolidation of COVID-19123
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dataset (≈ 15 days) and to the superposition of the maxima of two infectious periods and124

one exposed period.125

B. Compartmental Model126

We also adopt a compartmental model to describe the transmission of COVID-19 in order127

to estimate the levels of infection of the pathogen in Fortaleza. Here, we propose a SEIIR128

model that distinguishes the populations of Susceptible, Exposed, Infectious (reported or129

unreported), and Removed (recovered or deceased) individuals, as shown in Fig. 1b. Our130

model is inspired by the SEIIR model proposed by Li et al. [32]. The reported infectious131

population Ir corresponds to the number of individuals that had the SARS-CoV-2 infection132

confirmed by the health system. The unreported infectious population Iu comprises the com-133

plement of Ir, i.e., individuals that were infected with COVID-19 but remained unknown to134

health authorities. We assume that the large majority of the reported infectious individuals135

are symptomatic cases, in contrast to the population of unreported infectious individuals -136

of which the large majority is assumed to be of asymptomatic cases. Given this fundamental137

assumption and considering the recent finding that asymptomatic people are 42% less likely138

to transmit the SARS-CoV-2 than symptomatic ones [33], we define that the transmission139

rate for the unreported infectious population Iu is reduced by a factor of µ in relation to the140

parameter β that represents the transmission rate for the reported infectious population Ir.141

In this context, the time-dependent rate at which the susceptible population S becomes the142

exposed population E is given by143

λ(t) = β
(Ir + µIu)

N
, (2)

where N is the total population of Fortaleza, taken as constant, being approximately equal to144

2.67 million people. A fraction α of the exposed individuals is presumed to become reported145

infectious at a rate σ, and the complementary fraction (1 − α) to evolve to unreported146

infected at the same rate. Also, both reported and unreported infectious population are147

assumed to become part of the removed population at the same rate γ. We also keep track148

of the fraction φ of the removed reported infectious population evolving to death, so that149

the reported deceased population Dr increases at a rate of φγIr. The following system of150

coupled differential equations rules our model:151
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dS

dt
= −λS, (3)

dE

dt
= λS − σE, (4)

dIr
dt

= ασE − γIr, (5)

dIu
dt

= (1− α)σE − γIu, (6)

dR

dt
= (1− φ) γIr + γIu, (7)

dDr

dt
= φγIr. (8)

The total population N = S + E + Ir + Iu + R + Dr is conserved. Furthermore, it can be152

readily shown [32] that the effective reproduction number Recity is given by153

Recity =

[
α
β

γ
+ (1− α)µ

β

γ

]
S

N
. (9)

From Eq. (9), we can identify Recityr = (β/γ)(S/N) as the average number of secondary in-154

fections due to contagion with reported infectious individuals, while Recityu = µ(β/γ)(S/N)155

is the effective reproduction number due to contagion with unreported infectious individu-156

als. Finally, the SEIIR model is used here as a core model within the Iterative Ensemble157

Kalman Filter (IEnKF) framework (see Methods). This approach allows us to investigate158

the time evolution of the effective reproduction number Recity by inferring the SEIIR model159

parameters and their populations (see Figs. S1 and S2 of the Supplementary Information).160

The IEnKF framework is systematically applied to running windows of 22 days, with step161

size of 5 days, starting from March 24 to November 9, 2020. We use as observable the162

cumulative number of deaths by SARS-CoV-2 reported daily by the health authorities. For163

the first and subsequent windows, the guesses for the initial populations of exposed, E0, and164

deceased individuals, D0, are obtained from the daily number of COVID-19 confirmed cases165

and the daily cumulative number of COVID-19 confirmed deaths. As the cumulative num-166

ber of deaths by SARS-CoV-2, both quantities are calculated from the dataset of COVID-19167

confirmed cases and deaths (see Methods). In the particular case of the initial guess for the168

exposed population, E0 = Ci/(ασ), where Ci is the reported number of daily cases. This169

corresponds, for example, to 4, 982 individuals in the first window. After using IEnKF to170

estimate the values of all model parameters for the first window, the factor Recity is calcu-171

lated at its center. These parameters and all populations obtained by numerical integration172

of Eqs. (3)-(8), except for E0 and D0, as previously explained, are used as initial guesses173
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for the second window. The same procedure is then repeated for the third and subsequent174

windows.175

III. RESULTS AND DISCUSSION176

Figure 2a shows the normalized moving averages of bus validations of individuals that177

got COVID-19, including healthcare workers. We note that healthcare workers that came178

into contact with SARS-CoV-2 during the studied period did not reduce their bus rides as179

much as other passengers. In addition, their normalized moving averages of bus validations180

are getting closer to each other again as the economic reopening progresses. The inset of181

Fig. 2a shows the daily bus validations, which gradually started to increase in the economic182

reopening. Figures 2b and 2c show the daily numbers of cases and deaths, respectively,183

following the same previous normalization and stratification.184

The representativeness of the dataset of COVID-19 confirmed cases on buses is assessed185

comparing the daily numbers of infectious individuals within those vehicles and in the entire186

city, as shown in Fig. 3. The daily number of infectious individuals is computed taking187

into account the 14 days that the individuals remain infectious, i.e., each individual who188

tested positive for COVID-19 counts up to 14 times, once per day, for the infectious curve.189

Figures 3a and 3b show the daily numbers regarding all infectious passengers and those190

infectious passengers who are healthcare workers, respectively. Similarly, the daily numbers191

of infectious individuals and infectious healthcare workers of the entire city are shown in192

Figs. 3c and 3d, respectively. While the first and second waves of the epidemic can be clearly193

identified in both curves shown in Fig. 3a (infectious passengers) and Fig.3c (infectious194

individuals), only highly attenuated peaks during the second wave period can be visualized in195

the corresponding curves for healthcare workers, as shown in Figs. 3b and 3d. We conjecture196

that the explanation for this behavior may be twofold. First, due to the high contagion of197

healthcare workers during the first wave, this group of people may have achieved a large198

percentage of immunity, as compared to the rest of the population. Second, efficient Personal199

Protective Equipment (PPE) became more available in hospitals after the first wave. The200

results in Fig. 3e show that the percentage of infectious passengers with respect to all201

infectious individuals in Fortaleza was higher than 1% during most of the epidemic period.202

Finally, the evolution in time of the fraction between infectious passengers and infectious203
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individuals in the city who are both healthcare workers is shown in Fig. 3f.204

The histogram of the values of τij for the network of PICs is shown in Fig. 4a. The205

obtained distribution is characterized by the average 〈τij〉PICs ≈ 28 minutes. We find that206

CCs, defined by τij > τc = 15 minutes, represent about 62% of the PICs, as shown by207

the Complementary Cumulative Distribution Function (CCDF) in the inset of Fig. 4a. For208

the network of CCs, the average of the shared ride times is 〈τij〉CCs ≈ 39 minutes. Fig. 4b209

shows the network of CCs taking into consideration the periods of social isolation, lockdown,210

and economic reopening. As depicted, it is composed of several trees, where the vertices211

represent bus passengers that were diagnosed with COVID-19 and the edges correspond to212

CCs. Bus passengers identified as healthcare workers in the network are highlighted in red.213

The size of the vertices is proportional to their outdegrees.214

At this point, we show that it is possible to perform a direct comparison between the215

computed values of Rebusr obtained from the contact tracing model for different time windows216

and the corresponding effective reproduction numbers Recity estimated from the compart-217

mental model. First, it is reasonable to assume that Rebusr = Recityr , as long as the population218

traveling by public buses can be considered as statistically equivalent, from an epidemiologic219

point of view, to the rest of the city. As a consequence of this assumption and using Eq. (9),220

we can write that221

Rebusr = ψRecity, (10)

where the parameter ψ = [α + (1 − α)µ]−1 depends on the time window used for model222

inference with the IEnKF technique. We now proceed with the comparison between contact223

tracing and compartmental models. In practical terms, this is achieved by upscaling 〈dCCsout 〉224

to the numerical values obtained for Recity during the early period of the SARS-CoV-2225

epidemic, before the restrictions of isolation and social distancing imposed by the State226

Government took effect. Considering Eqs. (1) and (10), we use the relation χ〈dCCsout 〉 =227

ψRecity and the numerical values of 〈dCCsout 〉, ψ and Recity on the day that corresponds to228

the maximum of Recity during the first wave (April 8, 2020) to calculate χ ≈ 37. This229

constant combined with the values of ψ from the inference with the compartmental model,230

and the values of 〈dCCsout 〉 from the contact tracing, both calculated for all time windows,231

are then used to obtain the entire curve of Rebus = (χ/ψ)〈dCCsout 〉 (see the time evolution of232

χ/ψ in Fig. S3 of the Supplementary Information). The value of χ can be understood as233

the product of two factors, χ = χrrχru. Assuming the equality between the proportions of234
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CCs in the pairs of infectious and exposed passengers with existing and missing values of235

τij, we estimate χrr ≈ 1/0.586 ≈ 1.70 as a balance factor for possible missing CCs. The236

value of the remaining factor χru ≈ 21.76 expresses the sub-notification of the confirmed237

cases as well as our lack of knowledge on the transmission from reported to unreported238

infectious passengers, for which the factor (1 − α)/α could be a lower bound (see Fig. S2239

of the Supplementary Information for a sensitivity analysis of the model with parameter240

α), approximately between 5 and 9 [32]. In an entirely similar fashion, by considering only241

reported infectious passengers that can be identified as healthcare workers, we can estimate242

their particular effective reproduction number as Rehealth = (χ/ψ)〈dCCsout 〉health with the same243

upscaling factor χ/ψ used for all infectious passengers and 〈dCCsout 〉health is the average of the244

vertices outdegrees for healthcare workers.245

In Figure 5, we show the comparison between the estimates ofRebus andRecity from March246

to November 2020. Although the contact tracing and compartmental models are defined on247

different scales, the former on a microscopic scale and the latter on a macroscopic scale,248

the two curves capture the same decreasing trend associated to both social isolation and249

lockdown periods. We note that Rebus consistently follows Recity during the local COVID-250

19 outbreak, except for a three-month period between the first and the second waves of251

daily cases. In this period, the Rebus decayed to undetectable standards despite the fact252

that the number of daily bus validations has increased (see Fig. 2a). As also shown in253

Fig. 5, Rehealth was systematically higher than Rebus, which unveils that the healthcare254

workers played an important role in the transmission within buses during the first wave of255

COVID-19 in Fortaleza. Furthermore, Rehealth remained undetectable even in the beginning256

of the second wave, in contrast to Rebus and notwithstanding the increase of the number257

of daily bus validations of healthcare workers, as shown in Fig. 2a. As shown in the inset258

of Fig. 5, the maximum ratio Rehealth/Rebus occurred soon after the lockdown period, since259

the hospitals were still overloaded due to the peak of cases at the beginning of May and the260

new daily infections were low in the beginning of the reopening period. We emphasize that261

the complement of Rehealth, due to non-healthcare workers, behaves similar to Rebus.262
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IV. CONCLUSIONS263

In summary, two epidemiological models have been used in this work to understand the264

transmission on public transportation during the COVID-19 outbreak in Fortaleza, Ceará,265

Brazil. Whilst the compartmental model accounts for the transmission in the entire city266

(macroscopic scale), the contact tracing model has been used to estimate the transmission267

inside city buses (microscopic scale) through the concept of CCs. Both models were fed268

with real data of bus validations and of COVID-19 confirmed cases and deaths. Our results269

show that Rebus consistently follows Recity during the local COVID-19 outbreak, except for a270

three-month period between the first and the second waves of daily cases. Furthermore, the271

transmission from healthcare workers within buses until the end of July is characterized by a272

value of Rehealth persistently greater than Rebus. Healthcare workers, even the non-frontline273

professionals, are more likely to get and, consequently, spread the pathogen because their274

social network distances to individuals that tested positive for COVID-19 are very short275

compared to non-highly exposed workers. Despite being more tested, healthcare workers276

may not even know that they are infectious when they board a bus due to eventual time277

delays of the result of a COVID-19 test. Other groups of highly exposed people may affect278

the dynamics of dissemination of the virus in a similar way, e.g., education workers and279

police officers. Therefore, our results reinforce the worldwide claim that it is imperative to280

propose special policies to support displacement (or to avoid it) of highly exposed groups of281

people. Finally, we suggest that the intensity and the necessity of using public transportation282

by highly exposed groups must be seriously considered as a criterion to prioritize their283

vaccination.284

V. METHODS285

A. Datasets286

1. Bus validations287

Most part of bus passengers in Fortaleza (≈ 94%) pay their bus fares with a smart card.288

Every time a passenger passes their card on a ticket gate of a bus, a validation record is289

created. The Fortaleza City Hall compiled and made available an anonymized dataset of290

11
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bus validations with the following information: a citizen’s ID (a hash code), a vehicle ID291

(another hash code), the date and time of the validation record and the estimated ride time.292

The dataset ranges from March to December 2020, totaling 107, 488, 528 validation registers293

that refers to 1, 426, 569 different passengers.294

2. COVID-19 confirmed cases and deaths295

The dataset of COVID-19 confirmed cases and deaths is an anonymized list of all in-296

dividuals diagnosed with the disease in Fortaleza from March to December 2020. These297

data were also processed and made available by the Fortaleza City Hall. Such dataset is298

organized in columns as follows: a citizen’s ID (the same hash code used in the previous299

dataset), the date of OS, a confirmed death flag, the date of death and a healthcare worker300

flag. In the period of time ranged by the data, there are 85, 553 confirmed cases (5, 960 of301

healthcare workers) and 3, 075 confirmed deaths (227 of healthcare workers). We emphasize302

that these healthcare workers are not only the frontline professionals but also people whose303

jobs are related to the health field. Finally, we found that 9, 032 people (721 healthcare304

workers) were diagnosed with COVID-19 and used their smart card on buses at least once305

from March to December 2020.306

B. Iterated Ensemble Kalman Filter307

We use the Iterated Ensemble Kalman Filter (IEnKF) framework [32, 35–37] to infer the308

compartmental model parameters and initial subpopulations. The algorithm is based on309

comparing predictions of the model f(.) obtained by the numerical integration of Eqs. (3)-310

(7) of the main text with a set of T observations O1, . . . ,OT taken at discrete times t1, . . . , tT311

within an observation window (see Fig. S4 of the Supplementary Information). The inference312

framework starts from an initial state vector X(0) = {S,E, Ir, Iu, R,Dr}(0), and an initial313

parameter vector θ(0) = {β, µ, σ, γ, α, φ}(0). To these vectors, uncertainties are attributed in314

terms of the variance matrices σX and σθ, respectively. For each iteration m, an ensemble315

of P “particles” is generated such that each particle has the initial state at time t0 drawn316

from a multivariate normal distribution with mean X(m−1) and variance a(m−1)σX , where317

0 < a < 1 is a “cooling factor”. The initial state vector for particle i is denoted by318
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X(t0, i) = N (X(m−1), a(m−1)σX). These states are also used to set XF (t0, i) which define319

the posterior distribution at time t0. Analogously, each particle i has an initial parameter320

vector θ(t0, i) = N (θ(m−1), b(m−1)σθ), where 0 < b < 1 is another cooling factor. The321

inference proceeds by numerically integrating the model from these initial conditions, such322

that the predicted vector state for each particle i at time tn is obtained from the following323

distribution, XP (tn, i) = f(XF (tn−1, i), θ(tn−1, i)). Based on these predictions, a weight324

W (tn, i) is assigned to each particle i, such that325

W (tn, i) = exp

(
−|O(tn, i)−On|

Θ

)
, (11)

where O(tn, i) is the predicted value for the observed quantities at time tn for particle i,326

and Θ is a “temperature”. In our case, O(tn, i) is the prediction for the cumulative number327

of daily reported deaths Dr(tn, i). The filtering process is accomplished by keeping the328

particles with the largest weights with probability P = W (tn, i)/
∑

jW (tn, j). The states of329

the filtered particles will set the posterior distribution at time tn, XF (tn, i) = XP (tn, ibest),330

where ibest is the index of the filtered particles [36]. The parameter vector is updated at331

time tn using θ(tn, i) = N (θ(tn−1, ibest), b
(m−1)σθ). This filtering process continues until332

all the observations O1, . . . ,ON are compared. The iterative process continues by setting333

the initial state vector X(m) and parameter vector θ(m) for the next iteration. The next334

parameter vector is given by [35]:335

θ(m) = θ(m−1) + V (t1)
N∑
n=1

V −1(tn)
(
θ̄(tn)− θ̄(tn−1)

)
, (12)

where θ̄(tn) is the sample mean of θ(tn, ibest) and V (tn) is the variance [35, 36]. The next336

state vector is given by the sample mean,337

X(m) =
1

P

P∑
jbest=1

X(t0, jbest). (13)

After each iteration m, the initial state vector X(m) and parameter vector θ(m) are used338

to compute the evolution of the model for the whole observation window 1, . . . , tT . The339

performance of the inferred model is computed by evaluating the error340

ε(m) =
1

T

T∑
n=1

∣∣O(m)
n −On

∣∣2 . (14)
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The iteration continues until
∣∣ε(m) − ε(m−1)

∣∣ < εmax, where the threshold used here is εmax =341

0.01. In Table S1 of the Supplementary Information, we report the values of the estimated342

parameters for consecutive time windows.343

VI. ACKNOWLEDGMENTS344

We gratefully acknowledge CNPq, CAPES, FUNCAP, the National Institute of Science345

and Technology for Complex Systems in Brazil and the Edson Queiroz Foundation for fi-346

nancial support.347

VII. CONTRIBUTIONS348

C.P., H.A.C., E.A.O., C.C., A.S.L., J.S.A. and V.F. designed research; C.P., H.A.C.,349

E.A.O., C.C., A.S.L., J.S.A. and V.F. performed research; C.P., H.A.C., E.A.O., C.C.,350

A.S.L., J.S.A. and V.F. analyzed data; and C.P., H.A.C., E.A.O., C.C., A.S.L., J.S.A. and351

V.F. wrote the paper. All authors reviewed the manuscript.352

VIII. COMPETING INTERESTS353

The authors declare no competing financial interests.354

IX. DATA AVAILABILITY355

This study was approved by the Institutional Review Board (IRB) at Universidade de356

Fortaleza (UNIFOR). Two datasets were used with the approval and consent obtained by357
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Fig. 1. Proposed Models for COVID-19 and Spreading Scenarios. (a) Potentially Infec-

tious Contacts (PICs). We define a PIC when an infectious passenger pi (in red) and an exposed

passenger pj (in yellow) share the same bus. The weight τij is the estimated value of the ride

time shared by pi and pj . The time lines show the infectious (in red) and the exposed periods (in

yellow) of each passenger, where each square represents one day. The time lines are built based on

the Onset of Symptoms (OS). Precisely, the infectious period begins 2 days before OS and ends

12 days after OS, while the exposed period begins 14 days before OS and ends 2 days before OS.

Other passengers (in gray), even though they have shared the same bus with pi, either were not

notified as COVID-19 cases or, however notified, they were not considered as PICs because they

were not in their exposed period. (b) The SEIIR model. The total population of size N provides

the susceptible population S (in blue). The susceptible individuals become exposed E (in yellow)

at a time-dependent rate λ(t). The exposed individuals become infectious at a time rate σ. A

fraction α of the infectious population is reported Ir (in red), while a fraction (1−α) is unreported

Iu (in purple). The infectious individuals that recover, reported or not, become recovered R (in

green) at a time rate γ. Finally, it is assumed that a fraction φ of the removed population γIr

deceases Dr (in dark gray).
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Fig. 2. Time series and moving averages of bus validations, COVID-19 cases, and

COVID-19 deaths. Time evolutions of the normalized moving averages of (a) bus validations,

(b) COVID-19 cases, and (c) deaths, for healthcare workers (in red) and all individuals (in black).

The insets show their corresponding daily numbers. In (a), we note that healthcare workers that

came into contact with SARS-CoV-2 during the studied period did not reduce their bus rides

as much as other passengers. In addition, the normalized moving averages of bus validations of

healthcare workers and of all individuals are getting closer to each other again as the economic

reopening progresses. In (b) and (c), we find that both the normalized moving averages of cases

and of deaths, respectively, for healthcare workers increased before those of all individuals until

the lockdown regime. The windows of moving averages have 5 days of width for all curves. We

normalized each moving average by its maximum. The vertical dotted lines represent the beginning

of social isolation (State Decree 33,519), lockdown (State Decree 33,574), and economic reopening

(State Decree 33,608) regimes imposed on March 20, May 8, and June 1, 2020, respectively. We

also highlight, in light red, the lockdown period in the city of Fortaleza.
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Fig. 3. Representativeness of the dataset of COVID-19 confirmed cases on buses. The

daily numbers of (a) all infectious passengers, (b) infectious passengers who are healthcare workers,

(c) all infectious individuals in the entire city, and (d) infectious individuals who are healthcare

workers in the entire city. For healthcare workers, we highlight an unexpected emergence of a

single peak in the daily numbers of infectious individuals within buses and in the entire city, which

contrasts to the first and the second waves of COVID-19. We conjecture that the explanation for

this behavior may be the lack of Personal Protective Equipment (PPE) in hospitals during the first

wave or the herd immunity of healthcare workers during the second wave. (e) The fraction of all

infectious passengers. (f) The fraction of infectious passengers who are healthcare workers. These

results show that the percentage of infectious passengers with respect to all infectious individuals

in Fortaleza was higher than 1% during most of the epidemic period (dashed gray line). All solid

lines represent moving averages with windows of 7 days.
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Fig. 4. Shared Ride Time Histogram τij and Network of Close Contacts (CCs). (a)

We show the weight distribution τij of the network of Potentially Infectious Contacts (PICs) in

15-minute-width bins. The average of the shared ride times of PICs is 〈τij〉PICs ≈ 28 minutes.

Applying the threshold τc = 15 minutes in the network of PICs, we define a network of Close

Contacts (CCs). For the network of CCs, the average of the shared ride times is 〈τij〉CCs ≈

39 minutes. The inset shows the Complementary Cumulative Distribution Function (CCDF) of

τij . We find that the percentage of the edges with τij greater than τc = 15 minutes is ≈ 62%

(dashed line), i.e., most part of PICs are CCs. (b) The vertices represent the bus passengers that

were diagnosed with COVID-19 and the edges corresponds to the CCs each passenger had using

the public transportation system in Fortaleza. The healthcare and non-healthcare workers are

represented by red and gray vertices, respectively. The size of the vertices is proportional to their

outdegrees.
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Fig. 5. Time evolution of the effective reproduction numbers. Moving averages of the

effective reproduction number for the entire city, Recity (blue ◦), for buses, Rebus (gray ×), and for

healthcare workers in the buses, Rehealth (red +). We find that Rebus consistently follows Recity

during the local COVID-19 outbreak, except for a three-month period between the first and the

second waves of daily cases. We also show that Rehealth was systematically higher than Rebus,

which unveils that the healthcare workers played an important role in the transmission within

buses during the first wave of COVID-19 in Fortaleza. The inset shows that the maximum ratio

Rehealth/Rebus occurred soon after the lockdown period. The windows of moving averages have

22 days of width with step size of 5 days for all curves. In the period indicated by the shaded

regions in the main plot and its inset, both Rebus and Rehealth decayed to undetectable standards,

i.e., no CCs could be identified under the framework of our contact tracing approach. The vertical

dotted lines represent the beginning of social isolation (State Decree 33,519), lockdown (State

Decree 33,574), and economic reopening (State Decree 33,608) regimes imposed on March 20, May

8, and June 1, 2020, respectively. We also highlight, in light red, the lockdown period in the city

of Fortaleza.
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