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Abstract 

Background: The causal impact of excess adiposity on systemic metabolism is unclear. We used 

multivariable Mendelian randomization to compare the direct effects of total adiposity (using body 

mass index (BMI)) and abdominal adiposity (using waist-to-hip-ratio (WHR)) on circulating 

lipoproteins, lipids, and metabolites with a five-fold increase in sample size over previous studies. 

Methods: We used new metabolic data on 109,532 UK Biobank participants. BMI and WHR were 

measured in 2006-2010, during which EDTA plasma was collected. Plasma samples were used in 

2019-2020 to quantify 249 metabolic traits with high-throughput nuclear magnetic resonance 

spectroscopy including subclass-specific lipoprotein concentrations, apolipoprotein B, cholesterol and 

triglycerides, plus pre-glycemic and inflammatory metabolites. We used two-stage least squares 

regression models with genetic risk scores for BMI and WHR as instruments to estimate the total 

(unadjusted) and direct (mutually adjusted) effects of BMI and WHR on metabolic traits. We also 

estimated the effects of BMI and WHR on statin use, and examined interaction of main effects by sex, 

statin use, and age as a proxy for medication use.  

Results: Higher BMI (per standard deviation (SD) or 4.8 kg/m2) was estimated to moderately 

decrease apolipoprotein B and low-density lipoprotein (LDL) cholesterol before and after adjustment 

for WHR, whilst higher BMI increased triglycerides before but not after WHR adjustment. Estimated 

effects of higher WHR (per SD, or 0.090 ratio-unit) on lipoproteins, lipids, and metabolites were often 

larger than those of BMI, but null for LDL cholesterol, and attenuations were minimal upon 

adjustment for BMI. Patterns of effect estimates differed by sex, e.g., only BMI independently 

increased triglycerides among men, whereas only WHR independently increased triglycerides among 

women. Higher BMI and WHR (per SD) were each estimated to directly increase the relative odds of 

using statins (by 3.49 (95% CI = 3.42, 3.57) times higher for WHR). These patterns were most 

pronounced among women, and there was strong evidence that the effects of BMI and WHR on 

metabolic traits differed by statin use and age. Among the youngest adults (38-53 years, statin use 

5%), higher BMI and WHR (per SD) each modestly increased LDL cholesterol (0.04 SD, 95% CI = -

0.01, 0.08 for total effect of BMI and 0.10 SD, 95% CI = 0.02, 0.17 for total effect of WHR). This 
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estimate for BMI fully attenuated, and the estimate for WHR remained unchanged, upon mutual 

adjustment. These direct effects on LDL cholesterol were more inverse for BMI and less positive for 

WHR at intermediate ages (54-62 years, statins 17%) and older ages (63-73 years, statins 29%) where 

the mutually adjusted effects of BMI and WHR on LDL cholesterol had reversed to -0.19 SD (95% CI 

= -0.27, -0.11) and -0.05 SD (95% CI = -0.16, 0.06), respectively.  

Conclusions: Our results suggest that abdominal adiposity has a dominant role in driving the 

metabolic harms of excess adiposity, particularly among women. Our findings also suggest that 

apparent effects of adiposity on lowering LDL cholesterol are explained by an effect of adiposity on 

statin use. 

 

 

Introduction 

 

Obesity rates have tripled since the 1970s in many high-income countries (1, 2). This is a 

major public health concern because obesity likely causes the onset of numerous diseases including 

coronary heart disease (CHD), based on evidence triangulated from human biology plus conventional 

observational and Mendelian randomization (MR) studies (3-8). Once established, obesity is difficult 

to reverse via lifestyle (9, 10). It is therefore likely that the direct pharmacological targeting of causal 

factors that potentially lay between obesity and disease, such as low-density lipoprotein (LDL) 

cholesterol which raises CHD risk (11-15), will become an increasingly dominant strategy for disease 

prevention in the coming decades (16-18).  

The causal impact of excess adiposity on systemic metabolism – a gateway to numerous 

diseases including CHD – is unclear. Conventional observational and early MR evidence supports an 

effect of total adiposity, measured using body mass index (BMI), on raising levels of fasting insulin 

and glucose (6, 19, 20), plus numerous supporting traits including amino acids, fatty acids, and 
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inflammatory glycoprotein acetyls (GlycA) measured using high-throughput metabolic profiling (19, 

21, 22). Total adiposity also likely raises triglyceride levels, but only adipose tissue that is stored 

abdominally, measured using waist-to-hip ratio (WHR), appears to additionally raise LDL cholesterol 

(the target trait of statins (13)) (6, 19, 21, 23, 24). Population-based sample sizes for comprehensive 

metabolic profiling have so far been modest (N < 25,000). Whether abdominal adiposity has a 

dominant role in raising LDL cholesterol and related traits independent of total adiposity, or whether 

the total volume of adiposity is what predominantly drives these effects, is an open question.  

Conventional observational studies suggest that BMI, WHR, waist circumference (WC), and 

trunk fat mass index from dual-energy x-ray absorptiometry (DXA) scans all generate comparable 

estimates of effect on lipid, glycemic, and inflammatory trait levels (6, 21, 25). Mutual adjustment of 

adiposity measures to estimate the direct/isolated effect of each, i.e., the effect which does not operate 

via the other feature of adiposity being considered, is problematic, however, because of their co-

dependence. Such adjustments conventionally, e.g., when statistically adjusting BMI for WHR, are 

akin to conditioning on a likely mediator and could induce so-called collider bias via confounders of 

the mediator-outcome effect, yielding unreliable results (26-28). This is in addition to potential bias 

from residual confounding in observational studies by confounding factors which are unmeasured or 

poorly measured. Multivariable MR, an instrumental variable (IV) approach, should be less prone to 

confounding and collider bias because of its use of randomly allocated instruments and predicted 

rather than measured exposure values (29). Multivariable MR has not yet been applied to BMI and 

WHR to estimate the direct/isolated effect of each on an extensive metabolic trait profile, but this 

could help reveal the dominant causal driver of metabolic disease susceptibility.  

In this study, we aimed to compare the direct effects of total and abdominal adiposity on 

markers of systemic metabolism, including non-HDL lipids and a set of supporting traits which are 

indicative of glycemic and inflammatory activity. We used new high-throughput metabolic data on 

~110,000 adults from the UK Biobank study to compare MR estimates of the direct effects of BMI 

and WHR, in addition to conventional observational estimates of effect, together enabling more robust 

causal inference. We examined whether effects differ importantly by sex, given conventional 
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observational evidence of a more adverse metabolic profile of total and abdominal adiposity among 

women in middle age (30). We also examined whether adiposity influences the use of statins, given 

that statins are commonly prescribed in middle age and they alter non-HDL lipids and metabolites 

(13, 31). Because this could distort the effects of adiposity on metabolic traits, we examined whether 

effects differ importantly by statin use and by age as a proxy for mediation use. 

 

 

Methods 

 

Study population 

UK Biobank is a prospective cohort study in which 502,549 adults aged 40-69 years were 

recruited between 2006-2010 via 22 assessment centres across England, Wales, and Scotland (32). 

This sample represents ~5% of the 9.2 million adults registered with the UK National Health Service 

who were invited to participate; potential biases from low representativeness are discussed elsewhere 

(33, 34) and in current limitations. Full descriptions of the study design, participants, and quality 

control (QC) are published (35). Participants provided written informed consent. Ethical approval was 

obtained from the North West Multi-centre Research Ethics Committee (11/NW/0382). Data were 

accessed via application numbers 30418 and 15825.  

Nearly all participants provided blood samples at the 2006-2010 assessment centre for 

genotyping and biochemistry analyses. Genotype was measured from serum samples using a genome-

wide array (UK Biobank Axiom Array) with imputation to the Haplotype Reference Consortium 

panel. Pre-imputation QC, phasing, and imputation are described elsewhere (36). Our analyses were 

restricted to autosomal variants using graded filtering with varying imputation quality for different 

allele frequency ranges (37). 814 individuals with a mismatch between genetic and reported sex, and 

with sex-chromosome aneuploidy, were excluded. We further restricted to individuals of ‘European’ 
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ancestry as defined by k-means clustering using the first 4 principal components (PCs) provided by 

UK Biobank (37). We included the largest cluster from this analysis (n=464,708). We further 

restricted our sample to those self-reporting as white British (3,130 excluded) to further reduce 

potential for confounding by population structure, leaving 461,578 genotyped participants for 

consideration. 

 

Exposures and instruments: BMI and WHR 

At the 2006-2010 assessment centre, standing height was measured without shoes using a 

Seca 202 device and body weight was measured using the Tanita BC-418 MA body composition 

analyzer with heavy outer clothing additionally removed. A non-stretchable Wessex tape measure was 

used to record waist circumference at the umbilicus and the circumference of the hip, both in cm. BMI 

was derived as weight in kg divided by height in squared meters. WHR was derived as waist 

circumference divided by hip circumference.  

Genetic risk scores (GRSs) were constructed for BMI and WHR (unadjusted for BMI) using 

single nucleotide polymorphisms (SNPs) that were independently associated with each exposure (at 

R2<0.001 and P<5x10-8) in a genome-wide association study (GWAS) meta-analysis of between 

221,863 and 806,810 adults of European ancestry from the Genetic Investigation of ANthropometric 

Traits (GIANT) consortium and UK Biobank (38). Separate sets of SNPs were used based on sex-

combined and sex-specific GWAS (outlined in Table 1). GRSs were constructed using PLINK 2.0, 

with GWAS effect alleles and beta coefficients as weightings. Standard scoring was applied by 

multiplying the effect allele count (or probabilities if imputed) at each SNP (values 0, 1, or 2) by its 

weighting, summing these, and dividing by the total number of SNPs used. The score therefore 

reflects the average per-SNP effect on the exposure. Estimates from separate two-stage least squares 

models with total cholesterol as an example metabolite outcome among participants eligible for ≥ 1 

analysis indicated that each GRS was strongly associated with its respective exposure measured in 

UK Biobank, particularly among women, with F-statistics from unadjusted and adjusted models far 
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exceeding recommended minimum levels of 10 (39) (Table 1). These high F-statistics indicate low 

potential for ‘winner’s curse’ and weak instrument bias from UK Biobank having been included in 

both the GWAS and applied MR samples (i.e., sample overlap). There was a modest positive 

correlation between the BMI GRS and WHR GRS among sexes combined (Pearson r = 0.25). This 

correlation was larger among men (r = 0.35) than women (r = 0.15) based on sex specific GRSs. 

 

 

 

 

 

Table 1 Estimated strength of genetic instruments among 

participants eligible for ≥ 1 current MR analysis in UK Biobank 

   

Unadjusted models SNPs F-value 

Overall, n=109,532   

BMI 312 4,469 

WHR 208 3,133 

Among men, n=50,235   

BMI 152 1,640 

WHR 63 551 

Among women, n=59,297   

BMI 184 2,029 

WHR 153 2,368 

   

Adjusted models   

Overall, n=109,532   

BMI 312 3,214 

WHR 208 2,716 

Among men, n=50,235   

BMI 152 422 

WHR 63 319 

Among women, n=59,297   

BMI 184 2,139 

WHR 153 2,706 

   

Sample defined as eligible for inclusion in ≥ 1 current MR 

analysis, i.e., with data on: genotype and were self-reported 

white British, BMI or WHR; age, sex, and genetic PC 1-10; and 

≥ 1 NMR-measured metabolic trait.  

 

F-statistics are from Sanderson-Windmeijer weak instrument 

tests; R-squared and P values are not estimated from these and 

are not considered informative at F-statistics orders of 

magnitude higher than 10 (40). Unconditioned models are two-

stage least squares models of the adiposity measure on its GRS, 

age, sex, and genetic PC 1-10. Conditioned models are two-stage 

least squares models with adjustment for the alternative 

adiposity measure and its GRS.  
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Outcomes: lipoproteins, lipids, and metabolites 

EDTA plasma samples from 117,121 participants, a random subset of the original ~500,000 

who provided samples at the 2006-2010 assessment centre (N=113,474) or at a subsequent assessment 

centre in 2012-2013 (N=3,647), were additionally analysed in 2019-2020 for levels of 249 metabolic 

traits (168 concentrations plus 81 ratios) using high-throughput proton nuclear magnetic resonance 

(1H-NMR) spectroscopy (data pre-processing and QC steps are described previously (22, 41). These 

included the cholesterol and triglyceride content of various subclasses of high-density lipoprotein 

(HDL), LDL (size-specific direct measure and Friedewald-equivalent/clinical direct measure), 

intermediate density lipoprotein (IDL), and very-low density lipoprotein (VLDL) particles, plus the 

concentrations and diameter/size of these particles; apolipoprotein B (apoB) and apolipoprotein A-1 

(apoA-1) concentrations; in addition to various classes of fatty acids and their ratios to total fatty acid 

concentration, branched chain and aromatic amino acids, glucose and pre-glycemic factors including 

lactate and citrate, fluid balance factors including albumin and creatinine, and inflammatory GlycA.  

We additionally examined several metabolic traits that were measured using conventional 

biochemistry (non-NMR) on serum samples from the 2006-2010 assessment centre from the wider 

UK Biobank participant group for the purpose of comparing effect estimates for those same traits 

when derived using the NMR platform. These included total cholesterol, LDL cholesterol, HDL 

cholesterol, total triglycerides, apoB, apoA-1, glucose, albumin, and creatinine. If values from the first 

assessment centre were missing but values from the subsequent 2012-2013 assessment centre were 

not missing, then values from this second occasion were used (between 1,206 and 2,199 missing 

values replaced across traits).  

 

109,532 participants were considered eligible for inclusion in ≥ 1 current MR analysis 

because they had data on: genotype and were self-reported white British; BMI or WHR; age, sex, and 

genetic PC 1-10; and ≥ 1 NMR-measured metabolic trait. Analyses were conducted on non-complete-

case samples (N varying between models and across traits) to make full use of measured data.  
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Main analyses: MR estimates of effect 

Exposures and outcomes were internally standardised using z-scores (by subtracting the mean 

and dividing by the standard deviation, among sexes combined) to enable the comparison of effect 

sizes given different measurement units. To estimate the total effects of BMI and WHR on each 

metabolic outcome, separate two-stage least squares (2SLS) regression models were used, with robust 

standard errors (to accommodate potentially skewed outcome distributions), adjusting for sex, age, 

and genetic PCs 1-10. In the first stage of these models, the exposure is regressed on its GRS and 

covariates, and in the second stage, the outcome trait is regressed on the predicted values of exposure 

and the actual values of covariates from this first stage regression. To estimate the direct effects of 

BMI and WHR on each metabolic outcome, these 2SLS models were additionally adjusted for the 

other adiposity measure and its GRS instrument, such that, e.g., BMI is instrumented by the BMI GRS 

as well as the WHR GRS (plus covariates), and those predicted values are then used in second stage 

models in relation to outcomes; and likewise, for WHR. Initial evidence for interaction of BMI and 

WHR with sex in relation to outcomes was tested via P-values for product terms included as 

covariates in 2SLS models. Main models were then repeated among men and women separately, 

using sex-specific GRSs for BMI and WHR.  

We estimated the prevalence of statin use based on medication codes for self-reported use of 

any of 13 drugs (atorvastatin, crestor, eptastatin, fluvastatin, lescol, lipitor, lipostat, pravastatin, 

rosuvastatin, simvador, simvastatin, zocor, zocor heart-pro) as defined in previous genetic analyses of 

UK Biobank (42). We used this composite statin variable (yes/no) to estimate the effects of BMI and 

WHR on statin use using 2SLS models with logistic regression as the second stage, and evidence for 

interaction of BMI and WHR with statin use via product terms of genetically predicted BMI or WHR 

with observed statin use in relation to outcome traits, expecting interactions to be most evident for 

LDL cholesterol. We planned sensitivity analyses whereby 2SLS models were repeated with statin 

users excluded to re-estimate the total and direct effects of BMI and WHR on metabolic outcomes. 

This was considered preferable to applying an adjustment factor to LDL cholesterol concentration 
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because numerous LDL-related metabolites are examined (not one summary measure), and this 

enables a uniform approach across lipid subclasses and comparisons with HDL lipids which should be 

less altered by stratification. To further examine the potential for statins to distort estimated effects of 

BMI and WHR on metabolic traits, we tested interaction of BMI and WHR with age in relation to 

outcomes and repeated analyses with stratification by age tertile (instead of statin use). Use of statins 

and other medications increases markedly with age and estimates at younger ages are expected to be 

less distorted by medication use. Age is also not influenced by adiposity and so stratifying on age 

should be less prone to collider bias than stratifying on statin use itself.    

 

Additional analyses: conventional observational estimates of effect 

For comparison with MR results, we conducted conventional observational analyses using 

multivariable linear regression models with robust standard errors to examine associations of BMI and 

WHR with differences in the same 249 metabolic traits (plus non-NMR measures for comparison). 

These models initially adjusted for sex, age at assessment, highest educational qualification, smoking 

status (‘never’, ‘former’, or ‘current’), and alcohol frequency (‘never’, ‘former’, ‘special occasions 

only’, ‘once/month to twice/week’, or ‘thrice/week to daily’). Models were then additionally adjusted 

for the alternative adiposity measure (WHR or BMI) to examine attenuation of BMI and WHR upon 

mutual adjustment. As done for MR, initial observational evidence for interaction of BMI and WHR 

with sex in relation to outcome traits was tested via P-values for product terms in linear regression 

models; models were then repeated among men and women separately. The same interaction tests of 

BMI and WHR with statin use and age, and the same model stratifications, were conducted as prior. 

 

Because MR models estimate the effects of exposures on outcomes using genetically 

predicted exposure values, under standard IV assumptions (29, 43), we describe MR estimates in 

results text using causal language (‘association’ is not considered an appropriate term because models 

are based on predicted effects, not directly associated variable values). Conventional (multivariable 
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regression) models are based on direct tests of association between variable values, under standard 

regression assumptions, and we use causal language to describe these estimates in results text for 

consistency with MR analyses. Our aims involve effect estimation in each instance, and so we focus 

our interpretations of results on the direction, magnitude, and precision of estimates and provide exact 

P-values, as recommended (44, 45). Analyses were conducted using Stata 16 (StataCorp, College 

Station, Texas, USA).  

 

 

Results 

 

Sample characteristics 

Eligible participants had a mean (SD) age of 56.7 (8.0) years, which was similar between 

sexes (Table 2). A college or university education was common, at 39.1%, and slightly more so 

among men. 53.9% reported never having smoked, and this was more common among women than 

men (58.5% vs 48.5%, respectively). Current smoking was more common among men (12.2% vs 

9.0%, respectively). Nearly half reported drinking alcohol at least thrice/week, this again was more 

common among men. Overall, mean (SD) BMI was 27.4 kg/m2 (4.8) which was similar between the 

sexes, and mean (SD) WHR was 0.87 (0.090) which was higher among men than women (at 0.94 

(0.065) and 0.82 (0.069), respectively). The overall prevalence of stain use was 16.4%; this was twice 

as common among men than women (21.8% vs 11.9%, respectively).   

 

 

 

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 3, 2021. ; https://doi.org/10.1101/2021.05.29.21258044doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.29.21258044
http://creativecommons.org/licenses/by/4.0/


 

12 
 

 

Table 2 Characteristics of participants eligible for ≥ 1 current MR analysis in UK Biobank 

    

 Overall 

N=109,532 

Men  

N=50,235 

Women 

N=59,297 

    

Age at assessment centre – mean (SD) 56.7 (8.0) 57.0 (8.1) 56.6 (7.9) 

Highest education attained – % (n)    

     College or university 39.1 (35,158) 40.6 (16,697) 37.9 (18,461) 

     A or AS levels  13.7 (12,280) 12.7 (5,216) 14.5 (7,064) 

     O levels or GCSEs 26.2 (23,545) 23.2 (9,553) 28.7 (13,992) 

     CSEs 6.5 (5,858) 6.7 (2,761) 6.4 (3,097) 

     NVQ 8.1 (7,249) 11.2 (4,598) 5.4 (2,651) 

     Other professional 6.4 (5,726) 5.6 (2,283) 7.1 (3,443) 

Smoking status – % (n)    

     Never 53.9 (58,821) 48.5 (24,282) 58.5 (34,539) 

     Former 35.6 (38,885) 39.4 (19,698) 32.5 (19,187) 

     Current 10.5 (11,420) 12.2 (6,081) 9.0 (5,339) 

Alcohol frequency – % (n)    

     Never 3.1 (3,438) 1.7 (870) 4.3 (2,568) 

     Former 3.5 (3,847) 3.3 (1,646) 3.7 (2,201) 

     Special occasions only 10.6 (11,554) 6.6 (3,312) 13.9 (8,242) 

     Once/month to twice/week 37.6 (41,155) 35.1 (17,629) 39.7 (23,526) 

     Thrice/week to daily 45.2 (49,434) 53.3 (26,729) 38.3 (22,705) 

BMI – mean (SD) 27.4 (4.8) 27.8 (4.2) 27.01 (5.1) 

Genetic risk score for BMI – mean (SD) 0.0081 (0.00032) 0.0096 (0.00054) 0.0090 (0.00047) 

WHR – mean (SD) 0.87 (0.090) 0.94 (0.065) 0.82 (0.069) 

Genetic risk score for WHR – mean (SD) 0.0082 (0.00038) 0.0090 (0.00071) 0.0081 (0.00045) 

Uses statin drugs – % (n) 16.4 (17,995) 21.8 (10,949) 11.9 (7,046) 

    

‘Eligible’ defined as having data on genotype and being of white British ethnicity, plus: BMI or WHR, 

age, sex, genetic PC 1-10, and ≥ 1 NMR-measured metabolic trait. Genetic risk score values reflect the 

average per-SNP effect on BMI or WHR. 
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MR estimates of the effects of BMI and WHR on metabolic traits measured using NMR 

Higher BMI (per SD, or 4.8 kg/m2) was estimated to increase concentrations of VLDL 

particles, but to decrease concentrations of apoB and other lipoprotein types. These estimates were of 

small magnitude and not greatly altered upon adjustment for WHR, except for VLDL concentration 

which became negative/inverse (Figure 1; full results in Supp Table 1). The same pattern was seen 

for BMI with cholesterol in each particle type, e.g., -0.12 SD (95% CI = -0.15, -0.08) lower LDL 

cholesterol after adjustment for WHR. In contrast, higher BMI was estimated to increase triglycerides 

in each lipoprotein type, and these effect estimates were fully attenuated upon adjustment for WHR. 

Negative effect estimates of BMI with fatty acid ratios and positive effect estimates of BMI with 

amino acids were each also strongly attenuated with adjustment for WHR (Figure 2; Supp Table 1).  

Estimated effects of WHR (per SD, or 0.090 ratio-unit) on lipoproteins, lipids, and 

metabolites were generally of a larger magnitude than seen for BMI, including a positive estimate of 

effect on apoB, but a small negative-to-null estimate of effect on cholesterol in LDL. Notably, these 

effect estimates were not altered by adjustment for BMI, with similarly large effects still estimated for 

triglycerides, e.g., point estimates for VLDL triglycerides were 0.62 and 0.63 SD before and after 

BMI adjustment, respectively (Figure 1; Supp Table 1). This pattern for WHR of larger effect 

magnitude and lack of attenuation when adjusting for BMI was also seen in relation to numerous 

metabolites including fatty acid ratios, branched chain amino acids, glucose, and GlycA (Figure 2).  

The same patterns of effect estimates were seen for metabolic traits including LDL 

cholesterol based on conventional clinical/biochemistry (non-NMR) measures (Supp Table 1).
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Figure 1 MR estimates of the total (unadjusted) and direct (adjusted) effects of BMI and WHR on lipoproteins, cholesterol, and triglycerides measured using 

NMR among 109,532 UK Biobank participants  

 

 

 

Estimates are standardised betas and 95% confidence intervals. ApoB: Apolipoprotein B. ApoA-1: Apolipoprotein A-1. VLDL: Very-low-density lipoprotein. 

IDL: Intermediate-density lipoprotein. LDL: Low-density lipoprotein. HDL: High-density lipoprotein.   
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Figure 2 MR estimates of the total (unadjusted) and direct (adjusted) effects of BMI and WHR on selected metabolites measured using NMR among 109,532 

UK Biobank participants  

 

 

 

Estimates are standardised betas and 95% confidence intervals. 
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Sex-specific MR estimates of the effects of BMI and WHR on metabolic traits measured using NMR 

Strong evidence was seen for the interaction of BMI and WHR with sex in relation to most 

metabolic traits (Supp Table 2). Among men, higher BMI (per SD) was estimated to modestly 

decrease cholesterol in non-HDL particles including LDL, but to increase triglycerides in each 

lipoprotein type (Figure 3; Supp Table 3). Upon adjustment for WHR, effect estimates were 

moderately attenuated for non-HDL cholesterol, but minimally attenuated for triglycerides. Effect 

estimates were also negative for BMI with several fatty acid ratios and consistently positive for BMI 

with amino acids, glucose, and GlycA; none of these estimates attenuated upon adjustment for WHR 

(Figure 4; Supp Table 3). Among women, patterns of estimated effects of BMI on lipids and 

metabolites were highly consistent with patterns previously seen among sexes combined: higher BMI 

was estimated to modestly decrease non-HDL particle concentrations and cholesterol, whilst 

increasing triglycerides. These estimates were largely attenuated with adjustment for WHR, 

particularly for triglycerides which showed full attenuation (Figure 3; Supp Table 4).  

Among men, higher WHR (per SD) was estimated to modestly decrease levels of non-HDL 

particle concentrations and cholesterol, whilst modestly increasing triglycerides. These effect 

estimates showed large attenuations upon adjustment for BMI, particularly for non-lipid traits 

including fatty acids, amino acids, and glucose (Figures 3-4; Supp Table 3). Among women, the 

estimated effects of higher WHR were of a generally larger magnitude, including estimated effects on 

increasing levels of VLDL concentration, apoB, and triglycerides; none of these effect estimates were 

attenuated upon adjustment for BMI. Attenuation of WHR effects by adjustment for BMI was more 

apparent but still modest for metabolites including several fatty acid ratios, branched chain amino 

acids, and GlycA (Figure 4; Supp Table 4).  

Sex-specific effect estimates for metabolic traits including LDL cholesterol were again 

similar when measured using the conventional biochemistry (non-NMR) assay (Supp Tables 2-4).
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Figure 3 Sex-specific MR estimates of the total (unadjusted) and direct (adjusted) effects of BMI and WHR on lipoproteins, cholesterol, and triglycerides 

measured using NMR among 109,532 UK Biobank participants  

 

Estimates are standardised betas and 95% confidence intervals. ApoB: Apolipoprotein B. ApoA-1: Apolipoprotein A-1. VLDL: Very-low-density lipoprotein. 

IDL: Intermediate-density lipoprotein. LDL: Low-density lipoprotein. HDL: High-density lipoprotein.   
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Figure 4 Sex-specific MR estimates of the total (unadjusted) and direct (adjusted) effects of BMI and WHR on selected metabolites measured using NMR 

among 109,532 UK Biobank participants 

 

Estimates are standardised betas and 95% confidence intervals. ApoB: Apolipoprotein B. ApoA1: Apolipoprotein A1. VLDL: Very-low-density lipoprotein. 

IDL: Intermediate-density lipoprotein. LDL: Low-density lipoprotein. HDL: High-density lipoprotein.   

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 3, 2021. ; https://doi.org/10.1101/2021.05.29.21258044doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.29.21258044
http://creativecommons.org/licenses/by/4.0/


 

19 
 

MR estimates of the effects of BMI and WHR on statin use: sex-combined and sex-specific 

Higher BMI (per SD) was estimated to increase the relative odds of using statins by 1.76 

(95% CI = 1.68, 1.83) times higher, which increased further when adjusting for WHR (Supp Table 

5). Higher WHR (per SD) was estimated to increase these odds more strongly, by 2.48 (95% CI = 

2.32, 2.66) times higher, which increased further when adjusting for BMI. Effect estimates were also 

positive within each sex separately, with similar estimates of total and direct effects of BMI among 

men and women. In contrast, the estimated total and direct effects of WHR on relative odds of using 

statins were larger among women, e.g., the direct effect estimate was 3.86 (95% CI = 3.74, 3.99) 

times higher odds versus 2.91 (95% CI = 2.84, 2.99) times higher odds among men.  

 

MR estimates of the effects of BMI and WHR on metabolic traits measured using NMR, excluding 

statin users: sex-combined and sex-specific 

Evidence was strong for interaction of BMI with statin use in relation to several metabolic 

traits, including LDL cholesterol (interaction P = 2.6x10-6), VLDL lipids, and apoB (Supp Tables 6). 

Such evidence was weak for HDL cholesterol (interaction P = 0.81). Evidence for interaction was also 

weak between WHR and statin use for LDL cholesterol (P = 0.36), but stronger for lipids in VLDL, 

IDL, and HDL. When MR models were repeated among adults who reported not using statins (Supp 

Table 7), higher BMI was still estimated to have a small direct effect on decreasing LDL cholesterol 

(by -0.07 SD, 95% CI = -0.11, -0.03, adjusted for WHR), whereas higher WHR was still estimated to 

have larger direct effects on increasing LDL cholesterol (0.14 SD, 95% CI = 0.07, 0.20) and apoB 

(0.24 SD, 95% CI = 0.18, 0.30).  

These statin-exclusion effect estimates differed substantially by sex, with BMI estimated to 

have a modestly positive direct effect on LDL cholesterol and apoB among men (Supp Table 8), yet 

these were slightly negative among women (Supp Table 9). Higher WHR was estimated to 

substantially decrease LDL cholesterol and apoB among men (Supp Table 8), yet substantially 

increase these trait levels among women (Supp Table 9). The large direct effects of WHR on 
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triglyceride levels that were previously estimated also appeared to remain specific to women when 

excluding statin users. 

Sex-combined and sex-specific effect estimates following statin user exclusions were similar 

for LDL cholesterol based on the conventional clinical/biochemistry assay (Supp Tables 6-9). 

 

MR estimates of the effects of BMI and WHR on metabolic traits measured using NMR, stratified by 

age group as a proxy for medication use: sex-combined and sex-specific 

Evidence was also strong for interaction between adiposity measures and age in relation to 

most metabolic traits, particularly non-HDL lipids (Supp Table 10). Within the youngest age group 

(38-53 years, where statin use was 5%), higher BMI and WHR were each estimated to modestly 

increase LDL cholesterol (0.04 SD, 95% CI = -0.01, 0.08 for total effect of BMI and 0.10 SD, 95% CI 

= 0.02, 0.17 for total effect of WHR). This estimate for BMI fully attenuated, and the estimate for 

WHR remained unchanged, upon mutual adjustment (Supp Table 11). These direct effects on LDL 

cholesterol were estimated to become more negative for BMI and less positive for WHR in the 

intermediate age group (54-62 years, statin use 17%), and more so in the oldest age group (63-73 

years, statin use 29%) where the direct effects of BMI and WHR on LDL cholesterol had reversed to -

0.19 SD (95% CI = -0.27, -0.11) and -0.05 SD (95% CI = -0.16, 0.06; Figure 5; Supp Tables 11-13), 

respectively.  

Striking differences by sex were also seen in these age stratified estimates of direct effects: 

among men in the youngest age group (statin use 8%), higher BMI was estimated to directly increase 

LDL cholesterol, apoB, and other non-HDL traits, e.g. 0.23 SD (95% CI = 0.05, 0.40) for LDL 

cholesterol (Figure 6; Supp Tables 14-16). These effect estimates were directionally reversed among 

men in the intermediate age group (statin use 23%) and in the oldest age group (statin use 36%), e.g., 

the LDL cholesterol estimate was -0.24 SD (95% CI = -0.43, -0.05) among the eldest men. In contrast, 

higher WHR appeared to directly decrease LDL cholesterol in the youngest men, and these estimates 

appeared null or slightly positive in men of older ages. Among the youngest women, however, the 
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direct effect estimates for BMI were null, and these were negative among women in older age groups 

where statin use was higher (Figure 6; Supp Tables 17-19). Higher WHR was estimated to directly 

increase LDL cholesterol among the youngest women where statin use was lowest, and these 

estimates appeared less positive among women in older age groups where statin use was higher (Supp 

Tables 14-19). Estimates for HDL cholesterol, triglycerides, and metabolites appeared to be less 

affected by age stratifications.  

Once again, sex-combined and sex-specific effect estimates following age stratifications were 

similar for LDL cholesterol based on conventional biochemistry measures (Supp Tables 10-19). 
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Figure 5 MR estimates of the direct (mutually adjusted) effects of BMI and WHR on non-HDL cholesterol measured using NMR, by age tertile as a proxy 

for medication use among 109,532 UK Biobank participants 

 

 

 

Estimates are standardised betas and 95% confidence intervals. HDL: High-density lipoprotein. VLDL: Very-low-density lipoprotein. IDL: Intermediate-

density lipoprotein. LDL: Low-density lipoprotein. ApoB: Apolipoprotein B.
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Figure 6 Sex-specific MR estimates of the direct (mutually adjusted) effects of BMI and WHR on non-HDL cholesterol measured using NMR, by age tertile 

as a proxy for medication use among 109,532 UK Biobank participants 

 

Estimates are standardised betas and 95% confidence intervals. HDL: High-density lipoprotein. VLDL: Very-low-density lipoprotein. IDL: Intermediate-

density lipoprotein. LDL: Low-density lipoprotein. ApoB: Apolipoprotein B.
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Comparison of effect estimates using conventional observational models 

Higher BMI (per SD) was estimated to increase levels of numerous lipid traits, most notably 

higher concentrations of, and lipids in, VLDL particles and their subclasses, and higher triglycerides, 

LDL cholesterol, and apoB (Supp Figures 1-2; Supp Table 20). These estimates showed modest 

attenuation upon adjustment for WHR, with attenuations appearing greatest for triglycerides. Effect 

estimates for WHR were of a similar pattern but often larger magnitude, including more positive 

effect estimates with triglycerides which showed modest attenuation when adjusting for BMI. 

Evidence was strong for interaction of BMI and WHR with sex in relation to most metabolic traits 

(Supp Table 21). Among men, effect estimates indicated that higher BMI increased VLDL lipids and 

triglycerides, but modestly lowered LDL cholesterol which remained apparent when adjusting for 

WHR (-0.05 SD, 95% CI = -0.06, -0.04; Supp Figures 3-4; Supp Table 22). Higher WHR was 

estimated to slightly increase LDL cholesterol (0.03 SD, 95% CI = 0.01, 0.04 adjusted for BMI). 

Mutually adjusted estimates among men tended to be larger for BMI than for WHR, particularly for 

fatty acid ratios and amino acids. Among women, BMI and WHR were each estimated to increase 

LDL cholesterol and apoB, but with magnitudes tending to be higher for WHR, particularly in relation 

to triglycerides, fatty acid ratios, and GlycA, which were robust to adjustment for BMI (Supp Figures 

3-4; Supp Table 23).    

Consistent with MR results, higher BMI (per SD) was estimated to increase the relative odds 

of using statins by 1.61 (95% CI = 1.60, 1.63) times higher, which attenuated to 1.40 (95% CI = 1.39, 

1.42) times higher when adjusting for WHR (Supp Table 24). These estimates were higher for WHR, 

particularly among women. Evidence was strong for interaction of BMI and WHR with statin use in 

relation to most metabolic traits including LDL cholesterol (interaction P < 6.7x10-20; Supp Table 

25). When excluding statin users, BMI and WHR were each estimated to raise LDL cholesterol 

(mutually adjusted estimates for BMI and WHR were 0.04 SD (95% CI = 0.03, 0.05) and 0.12 SD 

(95% CI = 0.11, 0.13), respectively), and similarly for apoB (Supp Table 26). These were more 

pronounced among women than men, particularly for WHR (Supp Tables 27-28). Evidence was also 

strong for interaction of BMI and WHR with age in relation to most metabolic traits, and more so for 
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LDL than for HDL traits (Supp Table 30). Within the youngest age group (statin use 5%), higher 

BMI and WHR were each estimated to increase LDL cholesterol before mutual adjustment (0.08 SD, 

95% CI = 0.07, 0.09 for BMI and 0.16 SD, 95% CI = 0.15, 0.18 for WHR) and both estimates 

remained positive after mutual adjustment, with a larger estimate for WHR at 0.14 SD (95% CI = 

0.13, 0.16; Supp Figure 5; Supp Table 31). These estimates for LDL cholesterol became negative 

with BMI and less positive with WHR at intermediate ages (statin use 17%), and more so in the oldest 

age group (statin use 29%; Supp Figure 5; Supp Tables 32-33). These were more pronounced 

among women, particularly for WHR (Supp Figure 6; Supp Tables 34-39). These patterns were 

similar for other LDL-related traits including apoB, whilst estimates for HDL cholesterol and 

metabolites were less affected by statin user exclusions and age stratifications.  

The same pattern of results was seen for biochemistry-derived (non-NMR) metabolic traits 

including LDL cholesterol (Supp Tables 20-39). 

 

 

Discussion 

 

In this study, we aimed to better compare the direct/isolated effects of total and abdominal 

adiposity on markers of systemic metabolism. We used new high-throughput metabolic data on 

~110,000 adults from the UK Biobank, representing at least a five-fold increase in sample size over 

previous studies (19, 21, 30, 46), and we applied both MR and conventional observational approaches 

to enable more robust causal inference. Our results suggest that abdominal adiposity has a dominant 

role in driving the metabolic harms of excess adiposity – by raising harmful lipoprotein, lipid, and 

metabolite levels – particularly among women. Such direct impact of abdominal adiposity may be 

underestimated by conventional observational approaches. Our findings also suggest that apparent 

effects of adiposity on lowering LDL cholesterol are explained by an effect of adiposity on statin use. 
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We estimated causal effects using one-sample MR in individual-level data which uses GRSs 

as instruments and should be less prone to confounding and reverse causation bias than conventional 

multivariable regression models. MR evidence was strongest for an adverse total (unadjusted) effect 

of WHR on most metabolic traits, also seen with conventional models, in contrast to more comparable 

estimates seen between BMI and WHR in previous studies with much smaller sample sizes (19, 21, 

46). Current patterns of attenuation upon mutual adjustment for adiposity measures also differed 

greatly by method. MR estimates supported almost complete attenuation of the total effects of BMI 

when adjusting for WHR, most notably for lipoprotein triglycerides. These attenuations of the total 

effects of BMI when adjusting for WHR were only modest based on conventional models.  

In some cases, the direct effects of BMI (on inclusion of WHR in multivariable MR) appeared 

to be slightly beneficial for non-HDL lipids, suggesting a relatively harmless role of peripheral 

adiposity. This supports earlier genetic findings of greater insulin sensitivity from higher adiposity 

stored in body limb and gluteofemoral compartments (47, 48), and findings on ‘favourable adiposity’ 

alleles which raise body fat percentage whilst improving metabolic risk factor profiles (47, 49, 50). 

These support the theory of impaired expandability of peripheral adipose tissue which results in lipid 

‘spill over’ into visceral and ectopic compartments and ultimately metabolic dysfunction (51-53); this 

process may be proxied by direct effects of higher BMI (total adiposity) which do not operate through 

WHR (abdominal adiposity). Likewise, whilst conventional observational estimates suggested that 

WHR only partially alters lipids and glycemic and inflammatory metabolites, MR estimates supported 

larger total effects of WHR and further suggested that these effects are largely independent of BMI, 

i.e., there was no attenuation in multivariable MR models. Together, this suggests that conventional 

observational methods may underestimate the direct metabolic impact of abdominal adiposity. This 

was especially apparent for triglycerides which appeared exclusively tied to WHR based on MR. 

Our results also suggest that men and women do not experience the metabolic harms of 

adiposity equally. Among men, MR estimates suggested that BMI has a dominant role in most 

metabolic traits, with minimal attenuation of BMI effects upon adjustment for WHR (including those 

effects on triglycerides), yet nearly full attenuation of WHR effects upon adjustment for BMI. Among 
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women, however, MR estimates suggested a dominant role of WHR in these effects with virtually no 

attenuation upon adjustment for BMI, yet nearly full attenuation of BMI effects upon adjustment for 

WHR. This dominant pattern for WHR with lipids and metabolites closely resembled the pattern seen 

for WHR among sexes combined. Men are recognised to typically store more fat abdominally, 

potentially as a result of a lower capacity for peripheral adipose tissue to expand (52). WHR is 

expected to proxy impaired adipose expandability among both sexes, but higher WHR may better 

mark the ‘extremeness’ of impaired expandability among women since higher WHR would only be 

expected when peripheral compartments are greatly overwhelmed. The apparent exclusivity of these 

direct effects of WHR to women is unexpected, however. This could be a reflection of stronger 

genetic instruments among women (particularly for WHR) rather than genuine biological differences, 

or sex-specific selection biases, e.g., higher BMI is known to reduce the likelihood of participating in 

population-based studies and genetic estimates from UK Biobank suggest that this likelihood is lower 

for women (54). Representative samples would be valuable for replicating these findings.  

Total and abdominal adiposity are expected to be co-dependent, such that one influences the 

other. It is thus important not to dismiss total effects of BMI in either sex since attenuation here would 

likely reflect mediation rather than confounding. BMI has proven useful as a non-invasive and cost-

effective indirect measure of total adiposity which correlates highly (r > 0.8) with total fat mass as 

well as trunk fat mass measured using DXA scans, and which generates similar estimates of effect (as 

DXA measures) on markers of systemic metabolism in childhood, young adulthood, and middle 

adulthood (21, 30, 55). Such ‘BMI effects’ are expected to be underpinned by a higher volume of 

adiposity stored abdominally, viscerally, and ectopically.   

LDL cholesterol is an established cause of CHD (13), but whether adiposity raises LDL 

cholesterol has been surprisingly unclear. Four previous MR studies based mostly on indirectly 

measured LDL cholesterol found either slightly positive, slightly inverse, or null effects of BMI (6, 

23, 56, 57), yet a moderately positive effect of WHR-adjusted-for-BMI in the one study examining 

this (6). In contrast, two other MR studies based on LDL cholesterol measured directly by NMR 

spectroscopy supported a positive effect of BMI (19, 46) (WHR was not examined). Our current MR 
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estimates suggested a small inverse effect of BMI on LDL cholesterol among men and women, yet a 

small positive effect of WHR among women only. These inconsistencies may be partly attributable to 

statin use, which was common in our sample (22% of men and 12% of women). We also found MR 

evidence that BMI and WHR each directly raise the relative odds of using statins. Since statins lower 

LDL cholesterol (13), this could explain apparent ‘protective effects’ of adiposity on LDL cholesterol.  

Indeed, we found strong evidence that the effects of BMI and WHR on numerous lipids and 

metabolites differed by statin use, more so for LDL and VLDL than for HDL cholesterol, as expected. 

When repeating analyses with statin users excluded, MR estimates of BMI (total and direct) appeared 

to remain negative/inverse and WHR appeared to be positive. This analysis could be prone to collider 

bias, however, since statin use could be a mediator between adiposity and metabolites (or a common 

effect of adiposity and metabolites), and stratifying on colliders can induce non-causal associations 

via mediator-outcome confounding or selection-induced correlations (58). Age, in contrast, would not 

be a collider since it is not influenced by adiposity, and age may proxy for broad exposure to statins 

(and other medications) since their use increases markedly with age. We found strong evidence of 

interaction by age to support this, and, when stratifying analyses of adiposity and metabolic traits by 

age tertile, we found that apparent effects of higher adiposity on lowering LDL cholesterol and other 

non-HDL traits were specific to older ages where statin use was most common (29% in the oldest 

group). BMI and WHR each raised LDL cholesterol and other non-HDL traits including apoB at the 

youngest ages when statin use was rare (5% in the youngest group), with direct effects appearing 

specific to WHR. These findings, together with those of adiposity influencing statin use, strongly 

suggest that apparent effects of adiposity on lowering LDL cholesterol are explained by medication 

use. They also highlight the challenge of isolating the effects of exposures which influence the use of 

common medications, even with MR. This could help explain inconsistencies in results for adiposity 

and conventionally-measured LDL cholesterol across previous MR studies, which typically included 

adult samples and did not interrogate the role of statins or other medications (6, 23, 56, 57). 

Stratifying by age in such instances may be one simple approach to reveal and overcome these 

distortions. 
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Study limitations 

We used WHR as an indirect measure of abdominal adiposity because this is feasibly 

measured at large scale and has an available set of strong genetic instruments, but this is less precise 

than DXA or more advanced body scanning devices. WHR is likely preferable to WC as an indicator 

of abdominal fatness since WHR shares a weaker phenotypic correlation with BMI than does WC 

(25). Another notable limitation of this study is the unrepresentative nature of UK Biobank (response 

rate ~5% (33). The distribution of BMI in UK Biobank closely matches its distribution in the more 

representative Health Survey for England, however, and the majority of effect estimates for common 

lifestyle risk factors with CVD mortality do appear consistent in terms of direction and magnitude 

(59). The impact of selection bias may be greatest for socioeconomic and behavioural risk factors 

which are prone to high measurement error and instability over time (60); these should be less 

problematic for adiposity exposures. In practice, robust conclusions and recommendations do not 

come from a single cohort study but rather are assembled via consistency of results from across 

multiple cohorts and, importantly, from across multiple study designs which carry distinct sources of 

bias (61). We encourage such triangulation of evidence using observational and MR estimates (62), as 

done previously for BMI and metabolites (19) and for statins and metabolites (31), which can in turn 

be compared with randomised controlled trial estimates. It would be valuable to re-estimate the effects 

investigated here in other settings, in diverse ancestries, and with other approaches. It would also be 

valuable when data exist at scale to examine more precise adiposity measures in relation to 

metabolomic and proteomic traits to better characterise disease susceptibility.  

  

Conclusions 

The results of this large MR study using new high-throughput metabolic data from UK 

Biobank suggest that abdominal adiposity has a dominant role in driving the metabolic harms of 

excess adiposity – by raising harmful lipoprotein, lipid, and metabolite levels – particularly among 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 3, 2021. ; https://doi.org/10.1101/2021.05.29.21258044doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.29.21258044
http://creativecommons.org/licenses/by/4.0/


 

30 
 

women. Such direct impact of abdominal adiposity may be underestimated by conventional 

observational methods. These findings also suggest that apparent effects of adiposity on lowering 

LDL cholesterol are explained by an effect of adiposity on statin use. 
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