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Abstract 

Background 

Respiratory disorders, including apnoea, are common in preterm infants due to their immature 

respiratory control and function compared with term-born infants. However, our inability to 

accurately measure respiratory rate in hospitalised infants results in unreported episodes of 

apnoea and an incomplete picture of respiratory dynamics. 

 

Methods 

We develop, validate and use a novel algorithm to identify inter-breath intervals (IBIs) and 

apnoeas in infants. In 42 infants (a total of 1600 hours of recordings) we assess IBIs from the 

chest electrical impedance pneumograph using an adaptive amplitude threshold for the 

detection of individual breaths. The algorithm is refined by comparing its accuracy with 

clinically-observed breaths and pauses in breathing. We also develop an automated classifier 

to differentiate periods of true central apnoea from artefactually low amplitude signal. We use 

this algorithm to explore its ability to identify morphine-induced respiratory depression in 15 

infants. Finally, in 22 infants we use the algorithm to investigate whether retinopathy of 

prematurity (ROP) screening alters the IBI distribution. 

 

Findings 

88% of the central apnoeas identified using our algorithm were missed in the clinical notes. As 

expected, morphine caused a shift in the IBI distribution towards longer IBIs, with significant 

differences in all IBI metrics assessed. Following ROP screening, there was a shift in the IBI 

distribution with a significant increase in the proportion of pauses in breathing that lasted more 

than 10 seconds (t-statistic=1.82, p=0.023). This was not reflected by changes in the monitor-

derived respiratory rate or episodes of apnoea recorded on clinical charts. 

 

Interpretation 

Better measurement of infant respiratory dynamics is essential to improve care for hospitalised 

infants. Use of the novel IBI algorithm demonstrates that following ROP screening increased 

instability in respiratory dynamics can be detected in the absence of clinically-significant 

apnoeas. 

 

Funding 

Wellcome Trust and Royal Society 
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Research in Context 

 

Evidence before this study 

Respiratory disorders are one of the most common reasons for admission to a neonatal care 

unit and many pathologies and clinically-required procedures affect respiration. Despite this, 

current methods to measure respiratory rate in infants often provide inaccurate measurements 

due to factors such as poor electrode placement, movement artefact and cardiac interference. 

Lee and colleagues previously developed an algorithm to better identify episodes of apnoea in 

infants from the electrical impedance pneumograph following removal of cardiac-frequency 

interference. This algorithm substantially improves apnoea detection and demonstrates the high 

number of apnoeas that are missed in medical records. However, false apnoeas can be detected 

during periods of low amplitude signal caused by shallow breathing or poor electrode 

placement, and shorter inter-breath intervals (IBIs) cannot be assessed using the method 

proposed by Lee et al. limiting its use in assessing more subtle changes in an infant’s respiratory 

dynamics. 

 

Added value of this study 

We develop, test and use a new algorithm for the identification of IBIs from the electrical 

impedance pneumograph. We use an adaptive amplitude threshold for the identification of 

breaths and develop a classification model to remove periods of low amplitude signal falsely 

identified as episodes of apnoea. Using the algorithm, we demonstrate that retinopathy of 

prematurity (ROP) screening causes a significant increase in pauses in breathing that last more 

than 10 seconds. Our apnoea detection method was more sensitive than the current standard 

monitor-derived approach that is used to monitor respiratory rate in neonatal care units. 

 

Implications of all the available evidence 

To improve understanding of infant respiratory dynamics, better methods of assessment are 

essential. This will create a more complete clinical understanding of infant well-being, that will 

lead to improved treatment options for infants with respiratory disorders. 
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Introduction 

 

Immature respiratory control in premature infants results in irregular patterns of breathing, with 

frequent pauses in breathing of variable duration1. Apnoea (often defined as a pause in 

breathing lasting more than  20 seconds, or shorter if associated with a bradycardia or oxygen 

desaturation2,3) is a common pathology of prematurity, affecting more than 50% of preterm 

infants3. These events can be life-threatening, result in reduced tissue oxygenation4, and may 

have long-term effects including reduced cognitive ability in childhood5,6.  Respiratory 

disorders are a common reason for admission to a neonatal unit7. An infant’s respiratory 

dynamics may also be affected by pathologies including sepsis8, pharmacological interventions 

including caffeine9,10 (administered as a treatment for apnoea of prematurity) and opioids11 

(respiratory depressants), and painful clinically-indicated procedures such as retinopathy of 

prematurity (ROP) screening12. Despite the high prevalence of problems with respiratory 

control, clinical measurement of infant respiration is inadequate13,14. Whilst clinicians can rely 

on other vital-sign measurements to initiate the treatment of apnoeic episodes (for example, 

reductions in oxygen saturation and heart rate occur during prolonged pauses in breathing), 

self-resolving apnoeas may be missed14 and more subtle changes in respiratory dynamics will 

not be observed. Accurate assessment of respiration is essential to inform clinical practice and 

to understand respiratory development in health and disease. 

 

Infants’ vital signs are continuously monitored in neonatal intensive care. Respiration is often 

computed by measuring changes in the electrical impedance of a patient’s thorax using the 

same electrodes that monitor the electrocardiograph (ECG). Commercially available vital-sign 

monitors use built-in algorithms to process the chest electrical impedance signal and calculate 

the respiratory rate, often through the identification of peaks in the signal classified as breaths 

as a result of a specified amplitude threshold being exceeded15–17. However, this approach is 

limited due to high-frequency noise at the cardiac frequency and artefacts caused by non-

respiratory related movements13,15,16. Moreover, the manufacturers of many vital-sign monitors 

warn that their methods have yet to be validated for apnoea detection in infants15,16. Research 

investigations have demonstrated the limitations of these monitors with high false-alarm rates 

and missed apnoeas13,14. Lee and colleagues previously developed an algorithm to remove 

cardiac-frequency noise from the electrical impedance pneumograph (IP) signal and 

demonstrated improved performance compared with built-in vital-sign monitor algorithms in 

the detection of neonatal apnoeas13. However, they note that low amplitude signal related to 
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factors such as poor electrode positioning or shallow breathing can be falsely identified as 

apnoeas (67% of the built-in monitor alarms in their study were found to be false; their 

algorithm reduced this rate to 37%)13. Additionally, accurate assessment of inter-breath 

intervals (IBIs), and not just the identification of apnoeas as in the work of Lee et al., is needed 

to gain a better understanding of the effects of pathology and interventions on respiration. For 

example, the assessment of more subtle changes in IBIs will improve classification of 

underlying pathology and may allow for the early detection and prediction of apnoeas18. 

 

Here we develop a new method for identifying IBIs and apnoeas (defined here as pauses in 

breathing of at least 20 seconds) from an infant’s IP signal. We then use the algorithm to 

explore its sensitivity to detect changes in IBIs following morphine administration. Finally, we 

investigate changes in IBIs following ROP screening. 
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Methods 

 

Study participants 

 

A total of 42 infants were included in this study from three independent data sets. Data set 1 

was collected as a subset of the MONITOR study19. It comprises 181 sequences of 

approximately 40 breaths each (in total 7,632 breaths), recorded from 5 preterm infants (post-

menstrual age [PMA] at study range 30.6 – 34.3 weeks). Each breath was manually annotated 

by clinical staff in real time by visual observation of the infant. Data set 2 comprised vital-sign 

data collected during the Poppi trial, a single-centre, masked, randomised, placebo-controlled 

trial which investigated whether oral morphine was an effective and safe analgesic for 

procedural pain in premature-born infants11. Vital-sign data were collected for 24 hours before 

and after the clinical procedure – a heel lance followed by ROP screening – in 30 infants (15 

received morphine, 15 received placebo, PMA at study 34-39 weeks). Data set 3 is a previously 

unpublished data set of 7 infants (PMA at study 30-37 weeks) whose vital signs were recorded 

before and after ROP screening. Further details for all studies are given in the Supplementary 

Methods. 

 

All data sets were collected at the Newborn Care Unit, John Radcliffe Hospital (Oxford 

University Hospitals NHS Trust, Oxford, UK). Written informed parental consent was gained. 

Approval was obtained from South Central Research Ethics Committee (REC) (13/SC/0597) 

for the MONITOR study, the Medicines and Healthcare products Regulatory Agency (MHRA) 

and Northampton REC (15/EM/0310) for the Poppi trial, and from South Central REC 

(12/SC/0447) for Data set 3. All studies conformed to the standards set by the Declaration of 

Helsinki. 

 

Vital-sign recordings 

All infants were monitored using a Philips IntelliVue MX800 monitor, and vital signs were 

continuously downloaded from the monitor using ixTrend software (ixitos GmbH, Germany). 

Further details are given in the Supplementary Methods.  
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Breath detection from the IP signal 

The algorithm presented here to identify IBIs from the IP signal consists of three main steps 

(Figure 1): 

(1) removal of artefacts, 

(2) application of an adaptive threshold to identify breaths, 

(3) identification of true apnoeas using support vector machine classification. 

 

 
Figure 1: Schematic of the proposed algorithm for detection of inter-breath intervals (IBIs) from the 

impedance pneumograph (IP) in infants.  

 

The code for this algorithm is available from 

https://gitlab.com/paediatric_neuroimaging/identify_ibi_from_ip.git. 

For further details of all parts of the algorithm see the Supplementary Methods, Supplementary 

Figures 1 and 2, and Supplementary Tables 1 and 2. Briefly, firstly, the IP signals were filtered 

to remove artefacts not related to respiration, for example large-amplitude changes caused by 

movements of the infant, and cardiac-frequency noise. Secondly, individual breaths were 

identified from the IP signal as the point at which an adaptive threshold is crossed (an adaptive 

threshold, i.e. one that is updated across the recording20–22, was used to account for changes in 

the amplitude of the signal for a variety of physiological and non-physiological reasons, such 

as shallow breathing and changes in the electrode and infant positioning). We identified the 

optimal threshold parameters for breath detection by comparing the breaths detected by the 

algorithm for different parameters with recordings where individual breaths were annotated in 

real time by a clinical member of staff visually observing the infant’s breathing (Data set 1).  

The optimal parameters were chosen to be values which achieved the best compromise between 

the percentages of false positives and false negatives. We then verified that these parameters 

were also suitable for detection of pauses in breathing with a duration greater than 5 seconds 
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by comparison of pauses in breathing detected by the algorithm with those that were 

retrospectively identified by two investigators (Data set 2, first hour of recording, in 15 infants). 

 

Finally, a linear support vector machine (SVM) classifier was used to identify true central 

apnoeas (defined here as IBIs³20 seconds) as opposed to artefactually low amplitude signal. 

The model input features are the magnitude (root-mean-square) of the filtered IP signal during 

the apnoea, in the 10 seconds prior to the apnoea, and in the 10 seconds after the end of apnoea, 

and the change in heart rate and oxygen saturation in the 60 seconds from the onset of the 

apnoea. The model was trained and tested using labels (true apnoea/false alarm) provided by 

two investigators for all potential apnoeas identified in Data set 2 (training set, 15 infants who 

received morphine, test set, 15 infants who received placebo). 24% of potential apnoeas were 

classed differently by the two investigators and so were not included in the analysis. 

 

Performance of apnoea identification 

To compare the accuracy of our approach with the accuracy of the current standard, all periods 

where the monitor-derived respiratory rate reached 0 were viewed by two investigators (see 

Supplementary Material) and rated according to whether the investigator thought this period 

was a true central apnoea or a false alarm (90% inter-rater agreement occurred here). The time 

of apnoeas identified by our algorithm was also compared with apnoeas documented in each 

infant’s clinical notes; apnoeas are documented if the clinical/nursing staff observe the infant 

having an apnoea. 

 

Use of the algorithm to evaluate respiratory depression following morphine administration 

We tested the apnoea detection algorithm by examining the changes in the IBI distribution 

following morphine administration in the 15 infants in Data set 2 who received morphine. We 

examined the IBI distribution in the 1-hour period prior to drug administration with the 1-hour 

period after the clinical procedure (from the end of the ROP screening, on average 1.3-2.3 

hours after drug administration), and calculated the mean, median, and standard deviation of 

the IBI distributions, the proportion of IBIs longer than 5 seconds, and the proportion of IBIs 

longer than 10 seconds (time periods commonly used to assess pauses in breathing2). We 

compared this with the mean monitor-derived respiratory rate calculated for the same periods. 
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Use of the algorithm to evaluate changes in IBIs following ROP screening 

We used the algorithm to investigate changes in the IBI distribution following ROP screening 

in a total of 22 infants – the 15 infants who received placebo in Data set 2 and the 7 infants in 

Data set 3. In the placebo-treated infants we compared the 1-hour period prior to placebo 

administration with the 1-hour period after the clinical procedure. In Data set 3 we similarly 

compared the 1-hour after ROP screening with the 1-hour period 2.3-1.3 hours prior to ROP 

screening. We also compared the 12-hour period before and after ROP screening in the subset 

of 19 infants with at least 12 hours of recording before and after ROP screening. 

 

Statistical analysis 

All data analysis was undertaken with MATLAB 2019b (MathWorks Inc. USA). Model 

performance of the SVM classification was assessed with accuracy and Matthew’s correlation 

coefficient (MCC) using leave-one-subject-out cross-validation in the training set and 

independently in the test set using the model constructed from all infants in the training set. 

Differences in the IBI distribution and mean respiratory rate estimated from the patient monitor 

before and after morphine administration and ROP screening were compared using paired non-

parametric t-tests with statistical significance assessed using permutation testing (10,000 

random permutations) performed using FSLs PALM software23. P-values were adjusted for 

multiple comparisons using Hochberg’s method in R (The R Project for Statistical Computing). 

 

Role of the funding source 

The funder had no role in study design, data collection, data analysis, data interpretation, or 

writing of the report. The corresponding author had full access to all data in the study and had 

final responsibility for the decision to submit for publication.   
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Results 

 

Optimising the adaptive threshold 

 

We use an adaptive amplitude threshold to identify individual breaths in the IP signal. To 

optimise the threshold parameters, we investigated the performance of different threshold 

values (defined as a multiple (𝛼) of the standard deviation of the IP signal across the previous 

N breaths) to identify individual breaths which had been visually identified at the time of 

recording (Data set 1). A threshold of 0.4 times the standard deviation of the filtered IP signal 

for the 15 previous breaths provided a good compromise between the false positive and false 

negative rates (Figure 2A, Supplementary Figure 3). At this threshold, a mean (across all 

recordings in Data set 1) of 12% of the manually-annotated breaths were missed by the 

algorithm (false negatives), and 13% of breaths detected by the algorithm were false positives. 

 

We next verified whether these threshold parameters could also accurately identify pauses in 

breathing of at least 5 seconds (using 15 infants from Data set 2, first hour of recordings). Using 

the same parameters, 13 pauses out of the 162 identified by both investigators were missed by 

our algorithm (false negative rate: 8%) and 44 pauses out of the 229 identified by the algorithm 

were not identified by either investigator (false positive rate: 19%). Varying the parameters 

confirmed that those selected achieved a good balance between false positives and false 

negatives (Figure 2B).  
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Figure 2: Optimising the threshold for breath detection. Percentage of false positives (orange) and false 

negatives (purple) for different values of	𝛼 (with N=15). (A) Values calculated by comparing algorithm-identified 

breaths with breaths manually annotated at the time of the recording by visual observation (Data set 1). (B) Values 

calculated by comparing algorithm-identified pauses in breathing with pauses (of at least 5 seconds) manually 

annotated by two investigators (first hour of recording in 15 infants from Data set 2). Error bars indicate mean 

and standard deviation (across the recordings). Values are jittered on the x-axis so that false positive and false 

negative bars do not overlap. Grey shading indicates selected threshold parameters; with these parameters (𝛼 = 

0.4, N=15), there was the optimal balance between the percentages of false positives and false negatives in the 

identification of individual breaths (A). These parameters also achieved a good balance between false positives 

and negatives in the identification of pauses in breathing (B). 

 

 

Optimising apnoea detection using machine learning 

 

Shallow breathing or poor electrode placement can lead to a low-amplitude IP signal which is 

erroneously identified as a pause in breathing13. Applying the adaptive threshold to all 

recordings from Data set 2 identified a total of 164 potential apnoeas. Of the 164 episodes, 68 

(41%) were classifed by both investigators as true apnoeas and 57 (35%) were classified by 

both investigators as false alarms (no agreement for 39 (24%) episodes). This already 

represents a major improvement in detection rate from the respiratory rate signal analysis of 

the patient monitor – of the 71 occasions for which the monitor-derived respiratory rate reached 

a value of 0 breaths per minute, two episodes were classified by both investigators as true 

apnoeas (3%) and 62 (87%) were classified by both investigators as false alarms. 
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An SVM classifier was trained to distinguish between episodes detected by the adaptive 

threshold and classify them as either true apnoeas or false alarms (examples shown in Figure 

3A, B). In the training set (15 infants), using features derived from the IP signal alone (Figure 

3C, Supplementary Methods), the classifier had an accuracy of 75% in the detection of true 

apnoeas versus false alarms (MCC=0.49, 62% of 69 episodes in the training set were true 

apnoeas). Including additional features related to the change in oxygen saturation and heart 

rate as inputs to the classifier and re-training it on the same training set increased the accuracy 

to 87% (MCC=0.74, Figure 3D). 

 

 
Figure 3: Using support vector machine classification to identify true apnoeas. (A) An example of a pause in 

breathing lasting longer than 20 seconds identified as a true apnoea. IP – the electrical impedance pneumograph 

after filtering to remove cardiac-frequency noise and movement artefact. HR – heart rate in beats per minute. 

SpO2 – oxygen saturation. RR – respiratory rate in breaths per minute, recorded by the infant’s patient monitor 

(black) and calculated using our algorithm (blue). Note that the RR does not reach zero on the infant’s patient 

monitor and so this episode does not lead to a monitor apnoea alarm. Grey shading indicates the period during 

which no breaths were detected by our algorithm. (B) A potential apnoea initially detected by the algorithm but 

classified by investigators as a false alarm. (C) The root mean square (RMS) of the IP signal before and during 

the apnoea (see Methods for further details). Red circles indicate episodes classified by both investigators as true 
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apnoeas, and blue circles are those episodes classified by both investigators as false alarms. (D) Change in oxygen 

saturation and heart rate for true apnoeas (red) compared with false alarms (blue). 

 

Applying the best classification model to the test set gave an accuracy of 93% (MCC=0.87, 25 

of 56 episodes in the test set were true apnoeas), validating the model in this independent data 

set. Overall, of the 60 true apnoeas identified by our method (in both the training and test sets), 

88% were missed in the clinical notes demonstrating the potential of our algorithm for 

improving apnoea detection. The majority of the 24 apnoeas recorded in the clinical notes were 

associated with an IBI of at least 10 seconds; however, 4 events were not associated with a 

prolonged pause in breathing but instead with a prolonged loss of signal due to artefacts. We 

hypothesise that such artefacts were caused by clinical intervention in response to the apnoea. 

 

Use of the algorithm to evaluate respiratory depression following morphine 

administration 

 

Opioids are a known respiratory depressant.  We used data from the morphine-treated infants 

in Data set 2 (from the Poppi clinical trial11) to check that our algorithm could identify the 

resulting change in IBIs. In the Poppi trial, we previously demonstrated a significant decrease 

in the respiratory rate (recorded on the monitor) in the morphine-treated infants compared with 

the placebo-treated infants, with a peak decrease approximately 2.5 hours following drug 

administration11. Thus, to compare the change in respiratory rate with changes in the IBI 

distribution we compared the 1-hour period prior to morphine administration with the 1-hour 

period following the clinical procedure (approximately 1.3-2.3 hours after drug 

administration). As expected, there was a significant decrease in the respiratory rate recorded 

by the patient monitor (p=0.0004, non-parametric permutation t-test corrected for multiple 

comparisons, n=15, Table 1, Figure 4A). This was reflected in the IBI distribution, which 

showed a clear shift in the distribution towards longer IBIs following the clinical procedure 

(Figure 4B), and significant differences in all IBI metrics assessed (Figure 4C, D, Table 1). 

 

 

Use of the algorithm to evaluate changes in IBIs following ROP screening 

 

ROP screening, an eye exam that is thought to be painful and distressing for infants24, has 

previously been shown to increase the rate of apnoea in the 24 to 48 hours following the 
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screen12. Using our algorithm, we compared the IBI distribution one-hour before and after ROP 

screening in 22 infants. Infant demographics are shown in Table 2. There was a shift in the IBI 

distribution in the 1-hour following ROP screening towards longer IBIs (Figure 4F), with a 

significant increase in the proportion of IBIs longer than 10 seconds (p=0.023, Figure 4H, 

Table 1). This was not reflected by a change in the respiratory rate recorded by the patient 

monitor (p=0.89, Figure 4E, Table 1). Moreover, in the subset of 19 infants who had vital signs 

recorded for at least 12 hours before and after ROP screening, there was a significant increase 

in the proportion of IBIs longer than 10 seconds in the 12 hours after ROP screening compared 

with the 12 hours before (p=0.037, t-statistic=1.77). No apnoeas were recorded in the clinical 

notes in the 12 hours before or after ROP screening for any of these infants. 

 

 
Figure 4: Inter-breath intervals are altered by morphine administration and following ROP screening. (A-

D) Respiratory rate and inter-breath intervals (IBIs) in the one-hour period prior to morphine administration 

compared with a one-hour period after morphine administration (the one-hour period immediately following ROP 

screening, approximately 1.3-2.3 hours after morphine administration) in the 15 infants who received morphine 

in the Poppi clinical trial. (E-H) Respiratory rate and IBIs one hour before and after ROP screening in 22 infants. 

(A, E) Mean respiratory rate from the infants’ patient monitor. (B-D, F-H) Metrics calculated using the novel 

algorithm proposed in this paper to identify the IBIs. (B) IBI distribution in the one-hour period prior to (black) 

compared with 1.3 – 2.3 hours after morphine administration (red). (F) IBI distribution in the one-hour period 

before (black) and after (red) ROP screening. Y-axis indicates the probability of an IBI of duration greater than 

or equal to the x-axis value. Dotted line indicates the mean and shaded area the standard deviation. (* indicates 

p<0.05, ** p<0.01, *** p<0.001, p-values corrected for multiple comparisons). 
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 Mean 

Before 

Mean 

After 

t-statistic Uncorrected 

p-value 

Corrected 

p-value 

Morphine (n=15 infants) 
Mean respiratory rate (bpm) 52.01 44.66 -3.54 0.0001 0.0004 *** 

Mean IBI (seconds) 1.07 1.34 5.18 0.0001 0.0004 *** 

Median IBI (seconds) 0.93 1.03 3.96 0.0012 0.0012 ** 

Standard deviation IBI (seconds)  0.61 1.26 5.86 0.0001 0.0004 *** 

IBI > 5 seconds (%) 0.56 2.54 4.17 0.0004 0.0008 *** 

IBI > 10 seconds (%) 0.02 0.49 3.39 0.0002 0.0006 *** 

ROP screening (n=22 infants) 
Mean respiratory rate (bpm) 51.07 50.92 -0.14 0.89 0.89 

Mean IBI (seconds) 1.09 1.12 1.32 0.20 0.81 

Median IBI (seconds) 0.97 0.98 0.25 0.84 0.89 

Standard deviation IBI (seconds)  0.56 0.66 2.45 0.021 0.10 

IBI > 5 seconds (%) 0.49 0.63 1.14 0.28 0.83 

IBI > 10 seconds (%) 0.02 0.06 1.82 0.0039 0.023 * 

 
Table 1: Changes in inter-breath intervals following morphine administration and ROP screening. 

Comparison of the respiratory rate (recorded by the patient monitor) and inter-breath interval (IBI) distribution 

one hour before and after morphine administration and one hour before and after ROP screening. The table 

indicates the mean across all infants in each group, and the t-statistic and p-values for each comparison 

(permutation test). P-values were corrected for multiple comparisons using Hochberg’s method (* indicates 

corrected p<0.05, ** p<0.01, *** p<0.001). 

  

Gestational age at birth (weeks) – median (IQR) 28.1 (27.1 – 29.3) 

Postmenstrual age at study (weeks) – median (IQR) 34.9 (34.3 – 36.1) 

Weight at birth (g) – median (IQR) 1100 (889 – 1228) 

Weight at study (g) – median (IQR) 2080 (1923 – 2206) 

Sex – Female/Male – number (%) 12 (55) / 10 (45) 

Normal vaginal delivery – number (%) 7 (32) 

Assisted delivery – number (%) 1 (4) 

Caesarean delivery – number (%) 14 (64) 

Apgar score at 10 minutes – mean (SD)* 8.9 (1.5) 

Infants ventilated during admission – number (%) 15 (68%) 

Number of days ventilated in those ventilated – median (IQR) 2 (1.5-11.5) 

 

Table 2: Demographic details for the 22 infants where inter-breath interval distributions are compared 

before and after ROP screening. IQR – interquartile range, SD – standard deviation, * Apgar scores were 

missing from the notes of 2 infants.  
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Discussion 

We developed a new algorithm to detect IBIs from the IP signal in infants. We used an adaptive 

amplitude threshold to identify individual breaths, validating the threshold by comparison with 

visually identified breaths and pauses in breathing. Previous studies have reported that signals 

with low amplitude due to poor electrode placement or shallow breathing can be erroneously 

detected as episodes of apnoea. To overcome this problem, we used machine learning to 

identify true apnoeas from periods of artifactually low amplitude. We tested our algorithm by 

investigating changes in IBIs following morphine administration, observing a clear shift in the 

IBI distribution consistent with the reduction in respiratory rate seen on the infants’ patient 

monitors. Finally, we used our algorithm to investigate changes in IBIs following ROP 

screening. We observed a significant shift in the IBI distribution following ROP screening 

which was not reflected by a change in the respiratory rate recorded by the monitors. This 

demonstrates the increased sensitivity of our method and highlights the increase in 

physiological instability in infants following ROP screening. 

 

Premature infants are born with immature cerebral and respiratory function compared with 

term-born infants, and consequently have a higher incidence of respiratory disorders. Current 

inadequacies in the measurement of respiration in infants leads to missed opportunities to better 

understand respiratory development and could potentially lead to suboptimal clinical treatment. 

For example, caffeine therapy, given for apnoea of prematurity, is stopped in infants between 

33-35 weeks PMA if the infant appears clinically stable25. However, in 10% of infants caffeine 

treatment is restarted26, which may suggest that caffeine was withdrawn too early, exposing 

the infants to the adverse consequences of lack of treatment. We found that 88% of apnoeas 

identified using our algorithm were missed in the clinical notes. Improved measurement of 

respiration is essential to optimise clinical treatment of apnoea and could enhance treatment 

for other clinical conditions or procedures which alter respiration.   

 

Many drugs will alter infants’ vital signs. Our results confirm the applicability of the algorithm 

to analyse morphine-related respiration depression. Using this approach to investigate 

respiratory changes in relation to other drugs commonly prescribed in neonatal care may 

enhance our understanding of pharmacodynamics. Additionally, analysis of vital signs may be 

useful to develop predictive models to tailor individualised care27,28. We recently showed in a 

post-hoc analysis of the morphine-treated infants in the Poppi trial that we could predict the 

risk of adverse cardiorespiratory effects in individual infants from their baseline physiological 
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stability29. To date, measures of respiration are often not included in the development of 

predictive tools, which is likely due to the relatively poor quality of the currently-available 

measurement tools28. Here we provide a more accurate measure of IBIs, which will allow for 

more complex metrics, such as respiratory rate variability, to be computed. 

 

ROP screening is a routine procedure that is performed approximately every 2 weeks in infants 

born very prematurely. Previous research has suggested that there is an increase in apnoeas 

following screening from clinical chart review12. In exploratory analysis, we demonstrated a 

significant increase in the proportion of IBIs longer than 10 seconds in the 1-hour and 12-hour 

periods after ROP screening, which was not reflected by a change in the respiratory rate 

recorded on the monitor or by apnoeas recorded on clinical charts. This demonstrates the 

improved sensitivity of our method for identifying changes in respiratory dynamics and 

suggests that even those infants without clinically-significant apnoeas may still experience 

changes in respiratory dynamics with a shift towards longer IBIs. Further research in a larger 

cohort across a wider age range is needed to explore the relationship between an infant’s 

respiratory dynamics following ROP screening and changes with age. Identifying older infants 

that are at risk of physiological instability after ROP screening would be particularly important 

for those ex-premature infants who have ROP screening in outpatient clinics and may benefit 

from observation before leaving hospital30. 

 

By using an adaptive threshold which we validated for infants, and combining this with 

machine learning classification, our algorithm performed substantially better than the monitor 

derived respiratory rate in identifying apnoeas. However, limitations of this study are the 

relatively small sample size and narrow age range of the infants included (from 30-39 weeks 

PMA). Further validation should be carried out in younger infants. Moreover, this method 

identifies central apnoea; it cannot detect obstructive apnoea – alternative measures, such as 

nasal air flow, are needed to detect these events. Additionally, apnoea that necessitates 

intervention by clinical staff may not be detected or the reported duration may be shorter than 

the true duration of the episode as interventions are likely to lead to large artefacts in the IP 

signal. Whilst this is not a problem for clinical management, as the infant is receiving the 

appropriate clinical intervention to support their breathing, this should be taken into account in 

research studies so that apnoeas are not missed in the analysis. 
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In summary, despite the common occurrence of respiratory pathology in preterm infants, 

current methods used to measure respiration are inadequate. We developed a new method to 

measure respiration in infants, demonstrating the improved sensitivity of the method compared 

with current standards. Furthermore, we identified a significant increase in respiratory 

instability in infants following ROP screening. A better understanding of respiratory dynamics 

in infants is critical to improve neonatal care. 
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