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Abstract

Existing compartmental-logistics models in epidemics control are limited in terms

of optimizing the allocation of vaccines and treatment resources under a risk-averse

objective. In this paper, we present a data-driven, mean-risk, multi-stage, stochastic

epidemics-vaccination-logistics model that evaluates various disease growth scenarios

under the Conditional Value-at-Risk (CVaR) risk measure to optimize the distribution

of treatment centers, resources, and vaccines, while minimizing the total expected

number of infections, deaths, and close contacts of infected people under a limited

budget. We integrate a new ring vaccination compartment into a Susceptible-Infected-

Treated-Recovered-Funeral-Burial epidemics-logistics model. Our formulation involves

uncertainty both in the vaccine supply and the disease transmission rate. Here, we also

consider the risk of experiencing scenarios that lead to adverse outcomes in terms of the

number of infected and dead people due to the epidemic. Combining the risk-neutral
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objective with a risk measure allows for a trade-off between the weighted expected

impact of the outbreak and the expected risks associated with experiencing extremely

disastrous scenarios. We incorporate human mobility into the model and develop a new

method to estimate the migration rate between each region when data on migration

rates is not available. We apply our multi-stage stochastic mixed-integer programming

model to the case of controlling the 2018-2020 Ebola Virus Disease (EVD) in the

Democratic Republic of the Congo (DRC) using real data. Our results show that

increasing the risk-aversion by emphasizing potentially disastrous outbreak scenarios

reduces the expected risk related to adverse scenarios at the price of the increased

expected number of infections and deaths over all possible scenarios. We also find

that isolating and treating infected individuals are the most efficient ways to slow the

transmission of the disease, while vaccination is supplementary to primary interventions

on reducing the number of infections. Furthermore, our analysis indicates that vaccine

acceptance rates affect the optimal vaccine allocation only at the initial stages of the

vaccine rollout under a tight vaccine supply.

Keywords. Epidemic control, epidemics, vaccination, logistics, resource allocation,

vaccine acceptance, vaccine effectiveness, Conditional Value-at-Risk (CVaR), mean-

risk multi-stage, data-driven, stochastic mixed-integer programming model, risk-averse

optimization, treatment, facility location, Ebola Virus Disease (EVD), the Democratic

Republic of the Congo, COVID-19.

1 Introduction

Epidemics and pandemics have devastated humanity throughout its existence. One recent

example is the Coronavirus (COVID-19), which has spread all over the world since its first

detection in China at the end of 2019, causing over 33 million cases and 1 million deaths as

of October 2020 (John Hopkins University CSSE, 2020). The COVID-19 has also resulted

in large economic losses, and the associated damage continues to escalate. For example, due

to the pandemic, 400 million full-time jobs were lost across the world (CNBC, 2020), and

consumer spending so far has decreased by more than one trillion dollars only in the U.S.

(Routley, 2020). Another example is the 2014-16 Ebola Virus Disease (EVD), one of the
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deadliest viral infections, causing more than ten thousand deaths in West Africa. Other

recent examples include the Severe Acute Respiratory Syndrome (SARS), which affected 26

countries since its discovery in South China in 2003, and the novel swine-origin influenza A

(H1N1) virus that spread fast in the human population since its first appearance in 2009,

causing tens of millions of cases and 12,469 deaths only in the U.S. (CDC, 2016, 2019; WHO,

2019c). Such viral diseases causing lower respiratory infections, such as pneumonia, have

remained among the top causes of death globally, including stroke and cancer (Hasan et al.,

2019; WHO, 2021b).

Effective and timely allocation of limited resources, such as medical treatment and vacci-

nation, plays a crucial role in alleviating the ravaging impacts of infectious disease outbreaks

on the human population. This problem has attracted much attention from academics and

practitioners. The vast majority of the research literature involves simulations and differ-

ential equations (Ajelli et al., 2016; Craft et al., 2005; Kaplan et al., 2003; Siettos et al.,

2015) to estimate the transmission of the disease and tackle the epidemic resource allocation

problem. Other studies use network models and stochastic compartmental models to analyze

various strategies on the control of an epidemic (Berman and Gavious, 2007; Funk et al.,

2017; Lekone and Finkenstädt, 2006; Longini Jr et al., 2007; Porco et al., 2004; Riley and

Ferguson, 2006; Tanner et al., 2008) as well as resource allocation analysis (Nguyen et al.,

2017; Shaw and Schwartz, 2010; Tebbens and Thompson, 2009; Zaric et al., 2000).

Previous operations research models that study the epidemic diseases and resource allo-

cation mainly focused on the logistics and operation management to control the disease in

optimal ways (Büyüktahtakın et al., 2018; Ekici et al., 2013; Liu et al., 2019; Queiroz et al.,

2020; Zaric and Brandeau, 2001). Only a few of those OR studies that integrate resource

allocation with epidemics control consider the uncertain parameters for resource allocation

to control the disease. Those mainly use stochastic and approximate dynamic programming

(Coşgun and Büyüktahtakın, 2018; Long et al., 2018) and two-stage stochastic programming

(Ren et al., 2013; Tanner et al., 2008; Yarmand et al., 2014). Because the growth of an

infectious disease dynamically changes over time, Yin and Büyüktahtakın (2021) present a

multi-stage stochastic programming model to capture the dynamics of an evolving disease

for effective epidemic control under the uncertainty of disease transmission.

Multi-stage stochastic programs typically minimize an expectation criterion, which cal-

culates the expected cost of all possible scenarios, each of which is mapped with a certain

probability of occurrence. The expectation is the most widely-used objective criterion in

stochastic programming (Ahmed, 2006). However, it does not capture the variability in
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possible scenarios that could arise, in particular, the situations with high impact and low

probability. If some extreme scenarios occur, there could be a significant loss when only the

expected value is considered in resource allocation decision-making. For example, in a dis-

astrous epidemic outbreak situation, non-repetitive decisions made at the beginning of the

horizon, such as the placement of treatment facilities, may result in capacity shortages and

unmet demand under the realization of a severe disease spread scenario. At the beginning

of an epidemic outbreak, disease characteristics, such as the infection or disease transmis-

sion rate, may be unknown, and the disease growth could be highly uncertain due to the

lack of data. Thus a large number of infections and losses could happen in shorter time

periods than expected, as in the case of COVID-19 (Lazzerini and Putoto, 2020; Li et al.,

2020). The former epidemics control multi-stage stochastic programming model of Yin and

Büyüktahtakın (2021) only considered an expectation criterion in the objective function. To

alleviate the adverse impacts of experiencing a disastrous disease transmission scenario, we

consider a risk measure in the objective function in addition to the expectation criterion.

Conditional value-at-risk (CVaR) is a coherent risk measure that can be used in an

optimization model without losing convexity (Rockafellar and Uryasev, 2002). Therefore,

many previous studies considered mean-risk models with CVaR in stochastic programming

models (Ahmed, 2006; Miller and Ruszczyński, 2011; Rockafellar and Uryasev, 2002; Schultz

and Tiedemann, 2006). CVaR-based mean-risk stochastic programming has been studied in

various applications, such as supply chain management (Alem and Morabito, 2013), reverse

logistic network design problem (Soleimani and Govindan, 2014), solid waste management

system (Dai et al., 2014), water resources allocation (Zhang et al., 2016), and forestry invasive

species control planning (Bushaj et al., 2020, 2021).

In this paper, we address the problem of building a mean-CVaR, multi-stage, stochas-

tic mixed-integer programming epidemics-vaccination-logistics model. Our model evaluates

various scenarios regarding the disease growth and the vaccine availability to optimize the

distribution of treatment centers and vaccines while minimizing the total expected number

of infections, funerals, and close contacts of infected people under a limited budget. Here,

we consider the risk of experiencing scenarios that lead to adverse outcomes in terms of

the number of infected and dead people due to the epidemic. Combining the risk-neutral

objective with a risk measure allows for a trade-off between the weighted expected impact

of the outbreak and the expected risks associated with experiencing extremely disastrous

scenarios.

For a newly-discovered disease, the invention of a new vaccine is difficult and typically
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takes a long time. Even if there is an approved vaccine available, its production will be short

compared to the high demand in the early period of the outbreak, and thus the availability

of the vaccines will be limited. In this study, we address the optimal distribution of limited

vaccine supply in addition to the allocation of treatment resources to control an epidemic

outbreak under the uncertainty in the vaccine supply and the transmission rate.

To incorporate human mobility within multiple regions of a country, we present a new

formulation to estimate migration rates among various locations. We apply our model to

the case of controlling the 2018-2020 EVD in the Democratic Republic of the Congo (DRC).

We provide insights into the optimal resource allocation among different regions of DRC in

a multi-period planning horizon with and without risk. We also analyze how risk-aversion

affects decision-making, such as the budget allocated to treatment and vaccination and the

number of infections and deaths, compared to the risk-neutral problem.

2 Literature Review and Paper Contributions

This section presents a discussion of various approaches to epidemics control, logistics, and

vaccination, focusing on the recent EVD outbreaks. We then give key contributions of this

paper and managerial insights into the effective management of the EVD and similar disease

outbreaks.

Statistical methods have been widely used to estimate the disease transmission param-

eters and forecast an infectious disease’s progression. For instance, Kelly et al. (2019) em-

ployed a non-parametrically estimated Hawkes point process model to generate multiple

probabilistic projections of the 2018− 2019 EVD outbreak size in DRC, while Dalziel et al.

(2018) performed a retrospective analysis on community deaths during the 2014−2016 Ebola

epidemic in Sierra Leone to estimate the number of unreported non-hospitalized cases.

Moreover, the majority of the literature has utilized compartmental models with sim-

ulations to study the strategies for controlling the EVD. For example, Jiang et al. (2017)

constructed a modified epidemic model that takes hospital isolation, drug, and vaccines into

account and later verified the result with a Monte Carlo Algorithm. Their work suggested

that Ebola eradication requires systematic thinking, effective hospital isolation, and effec-

tive EVD drug use and vaccination. Mizumoto et al. (2019) presented a quantified effective

reproduction number of the DRC’s ongoing EVD epidemic. Rachah (2018) proposed a de-

terministic compartmental model for assessing the impact of isolation to contain the EVD
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in Sierra Leone. According to their results, the isolation of latent detectable and infectious

individuals is the most effective strategy in curtailing the virus.

Due to the high death rate and difficulties in Ebola treatment, new vaccinations have

been developed and widely used to help control the disease. Various studies considered

vaccination as a strategy and involved the uncertainty of the supply of vaccines. For instance,

Kelly et al. (2019) used a stochastic branching process model to project the size and duration

of the 2018− 2019 Ebola outbreak in the Democratic Republic of Congo (DRC) under high

(62%), low (44%), and zero (0%) estimates of vaccination coverage. Xie (2019) modified the

Susceptible-Exposed-Infective-Hospitalized-Funeral-Removed model of Legrand et al. (2007)

to examine disease transmission dynamics after vaccination for the 2014 Ebola outbreak in

Liberia and found that the ring vaccination strategy would reduce the transmission rate.

Chowell et al. (2019) employed an individual-level stochastic transmission model to evaluate

ring and community vaccination strategies for the 2018 − 2019 DRC Ebola transmission.

Their results also indicated that a ring vaccination strategy could speed up and enhance

the probability of epidemic containment. Brettin et al. (2018) constructed a game-theoretic

model of the EVD incorporating individual decisions on vaccination to study the effect of a

promising Ebola vaccine (rVSV-ZEBOV). Their result showed that Ebola could be eradicated

if voluntary vaccination programs are coupled with focused public education efforts.

Area et al. (2017) used simulations to compare compartmental models with and without

vaccination. They concluded that vaccination of all susceptible individuals at the beginning

of the outbreak would give the best result for controlling Ebola, and satisfactory results

could be attained if the number of available vaccines meets the population’s needs. Wells

et al. (2019) presented a method that can be applied to identify areas at risk during the

2019 EVD case in the DRC. They used a spatial model that incorporates human mobility,

poverty, and population density and assessed the effectiveness of the vaccination. Their

results demonstrated that even modest delays in initiating vaccination would have noticeably

degraded the impact of the program.

Büyüktahtakın et al. (2018) developed an epidemics-logistics model to address the re-

source allocation problem for controlling an infectious disease outbreak and demonstrated the

model in the case of 2014-15 EVD in West Africa. Their optimization model simultaneously

considered the logistics problem and the disease growth and represented the transitions from

the infections to the treatment compartment as a variable since this transition depends on

the treatment center’s capacity. Yin and Büyüktahtakın (2021) extended the deterministic

epidemics-logistics model of Büyüktahtakın et al. (2018) to a multi-stage stochastic mixed-
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integer programming model. They introduced the value of the stochastic solution (VSS) to

study the advantages of the stochastic model compared to the deterministic model. They

defined equity constraints to address the fair resource allocation problem on the logistics

of epidemic control. They implemented the model on the 2014 EVD in West Africa, and

their findings suggested that the multi-stage stochastic model is superior to the determinis-

tic model, and forcing equity resource allocation too much would cause a significant loss on

controlling the disease.

2.1 Key Contributions of the Paper

Former studies on the logistics of epidemics have omitted the risk of experiencing extreme

scenarios when formulating a stochastic optimization model. A risk-neutral stochastic pro-

gramming approach, which does not consider variability in possible scenario outcomes, may

perform poorly when there are outliers in the distribution of the scenarios. Also, existing

mathematical programming studies on epidemic control have not incorporated vaccine allo-

cation into a compartmental-logistics model. Furthermore, due to the lack of data, the rates

of migration among multiple regions of DRC are not known. The population is quite mobile

within regions and countries in Africa (Flahaux and De Haas, 2016). Thus, movement rates

are difficult to estimate.

In this paper, we address those aforementioned limitations existing in both the epi-

demiological modeling and healthcare operations research literature. Below, we present the

modeling and applied contributions with key recommendations to decision makers.

Modeling Contributions. First, to our knowledge, we present the first risk-averse multi-

stage stochastic programming model presented in the research field of infectious disease

control. Different than the former literature, we formulate the uncertainty in the transmis-

sion rate from the close contacts of infected people to the infections compartment and the

uncertainty in total vaccines available as two dependent random variables in a multi-stage

stochastic scenario tree. We then incorporate a nested CVAR risk measure into the objec-

tive function of the formulation while defining risk-related constraints to alleviate the risk

of experiencing scenarios that lead to adverse outcomes in terms of the number of infected

and dead people due to the epidemic. We also provide insights on how the expected impact

and expected risk in terms of deaths and infections change as the decision maker shifts from

being risk-neutral to risk-averse at varying risk levels.

Second, we address the optimal allocation of vaccines to multiple regions within a country
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in addition to the allocation of Ebola Treatment Centers (ETCs) and treatment resources

to control an epidemic outbreak in a multi-stage stochastic mean-risk model. Specifically, we

have extended the Susceptible-Infected-Treated-Recovered-Funeral-Burial epidemics-logistics

model of Büyüktahtakın et al. (2018) into an epidemic-vaccination-logistics model by incor-

porating a new ring vaccination compartment under uncertainty and risk.

Third, we develop a new formulation to estimate the migration rates between regions of a

country and integrate the impacts of human mobility into our epidemic-vaccination-logistics

model. Thus, our mathematical model captures the influence of human movement on the

transmission of the disease.

Fourth, our risk-averse epidemic-vaccination-logistics model is general and thus could be

adopted to study other epidemic diseases, such as influenza and H1N1, as well as pandemics,

such as the COVID-19.

Applied Contributions and Key Recommendations to Decision Makers. We im-

plement our multi-stage stochastic mean-risk model to study the case of the 2018-2020 EVD

in the DRC. We collect and synthesize epidemiological, population, and economic data of

Ebola infections in the provinces of DRC and organize them into regional data, using WHO

Ebola situation reports (WHO, 2021a, 2020). We perform computational experiments to

analyze the impact of treatment budget, risk parameters, uncertain vaccine availability, and

vaccine acceptance and effectiveness rates on the allocation of resources, such as ETC and

vaccines, during an epidemic. We drive several insights into the optimal resource allocation

under various risk levels that the decision maker is willing to take for controlling an infec-

tious disease. As such, our mathematical model could be used as a decision support tool

to aid policymakers in determining the optimal risk-averse treatment and vaccine-allocation

policies.

Based on our results, we provide the following recommendations to inform the resource

allocation decision making under an epidemic situation:

(i) Regions with a high initial infection level (“the number of infected people in a region”

/ “the total number of infected people” - “population in a region” / “total population

over all regions”) get the majority of the resources. While the ETCs and treatment

budget are mainly allocated to highly infected locations, the model allocates a budget

for vaccination to most locations to prevent the disease’s spread. Our findings also

suggest using the budget for vaccination in regions where the disease has just started,

while in regions with high initial infections, the model gives priority to build new ETCs
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and treat infected people over vaccination.

(ii) The potential risk associated with regions with low or zero initial infection levels should

also be taken into account when making resource allocation decisions. For instance, a

non-infected region nearby a highly-infected location may also be severely affected by

the disease due to human mobility among multiple regions. Thus, as the risk-averseness

level increases, the budget allocated to areas with the highest initial infection level is

decreased by moving the ETC and treatment budget to neighboring locations under

the risk of getting infections.

(iii) A risk-averse decision-maker should expect a possible increase in the number of in-

fections and deaths while trying to mitigate disastrous outbreak scenarios. Being

risk-averse also increases the expected cost of treatment and vaccination.

(iv) For the considered case of the EVD in DRC, isolating and treating infected individuals

are the most efficient ways to slow the disease’s transmission. When the supplied

vaccines are available but limited, the vaccination is supplementary to the primary

interventions on reducing the number of infections.

(v) While vaccination is supplementary, its delay could cause an exponential increase in

the number of infections and deaths, even under the main intervention measures, such

as treatment and isolation. In particular, vaccination at earlier stages of an epidemic

would also help control the disease faster than immunization at later stages. Thus,

if available, vaccination should be applied as early as possible for effective epidemic

response.

(vi) The number of vaccines supplied to Upper North Kivu and Middle North Kivu, the two

most-impacted regions of DRC, has a complementary relationship. When the vaccine

acceptance rate is fixed, the number of vaccines provided to these two regions only

sightly fluctuates under different vaccine effectiveness rates. Also, the more effective

the vaccine is, the fewer vaccines are needed in highly-impacted areas so that some

remaining vaccines could be used in regions with lower infection.

(vii) When the vaccine effectiveness rate is fixed, vaccine acceptance rates affect vaccine

allocation at the initial stages of the vaccine rollout. Under a very low vaccine accep-

tance rate, available vaccines are moved from highly impacted locations to less affected
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areas. However, vaccine acceptance rates do not impact the total number of vaccines

distributed throughout the planning horizon under a limited vaccine supply.

3 Multi-Stage Risk and Time Consistency

Let FZ(·) be the cumulative distribution function of a random variable Z. The α-quantile

of the distribution, infη{η ∈ R : FZ(η) ≥ α}, is defined as the value-at-risk (VaR) at the

confidence level α ∈ [0, 1) and denoted by VaRα(Z).

The mean excess loss or tail VaR, at level α, is called conditional value-at-risk (CVaR),

defined as CVaRα(Z) = E(Z | Z ≥ VaRα(Z)). Specifically, CVaR is the conditional expected

value that exceeds the VaR at the confidence level α. For a minimization problem, VaRα

is the α-quantile of the cost distribution, and it provides an upper bound on the cost that

is exceeded only with a small probability of 1 − α. On the other hand, CVaRα measures

an expectation of the cost that is more than VaRα, the α-quantile of the distribution of

costs. The conditional value-at-risk can be calculated as an optimization problem as follows

(Rockafellar and Uryasev, 2002):

CVaRα(Z) = inf
η∈R
{η +

1

1− α
E([Z − η]+)},

where (a)+ := max(a, 0) for any a ∈ R.

In this paper, we study a mean-risk minimization problem, as first introduced in Markowitz

(1991):

min
x∈X
{E(f(x, ω)) + λCVaRα(f(x, ω))}, (1)

where E(f(x, ω)) represents the expected cost function of the scenarios ω ∈ Ω, CVaRα rep-

resents the conditional value-at-risk at α ∈ [0, 1), and λ ∈ [0, 1] is a non-negative coefficient

of the risk part. The risk preference parameter λ is the weight of the risk term in the ob-

jective function (1), and can be adjusted for a trade-off between optimizing an expectation

value [E(f(x, ω))] and the level of risk taken [CVaRα(f(x, ω))]. The larger the λ, the more

risk-averse the decision maker is. The α parameter, on the other hand, gives the confidence

level on the perceived risky scenarios that exceed the maximum acceptable loss, VaRα. As

α increases, the probability of exceeding the VaRα reduces, and thus the decision maker

becomes more risk averse. The parameter α ∈ [0, 1) is typically set to a high value, e.g.,

0.95. The parameters λ and α are set by the user to adjust the level of risk averseness and
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do not have a direct relationship.

Time Consistency. When modeling a risk-averse multi-stage stochastic program, time

consistency is considered as a critical issue. Time consistency implies that if you solve a

multi-stage stochastic programming model today and find solutions for each node of a tree,

you should get the same solution if you resolve the problem tomorrow when you are given

the information that is observed and decided today. For a multi-stage stochastic model, risk

measures can be applied at every stage additively or to the complete scenario path or in a

nested form similar to dynamic programming. The nested risk measures are shown to satisfy

the time consistency of multi-stage stochastic programs in the study of (Homem-de Mello

and Pagnoncelli, 2016).

We consider a nested risk measure, expected conditional value-at-risk (E-CVaR), as de-

fined in Homem-de Mello and Pagnoncelli (2016). The E-CVaR can be linearized and for-

mulated as a linear stochastic programming model. In the next section, we will utilize

the E-CVaR as a risk measure to formulate our mean-risk multi-stage stochastic epidemics-

vaccination-logistics model.

4 Problem Formulation

This section presents the compartmental model description and the mean-risk formulation of

the multi-stage stochastic epidemics-vaccination-logistics model. In Appendix A, we describe

the model notation that will be used throughout the rest of this paper.

4.1 Compartmental Disease Model Description

Figure 1 shows the transmission dynamics of the EVD in a region r located in DRC for each

period j. The disease spreads among susceptible individuals (S) as well as close contacts

of infected (H), by either person-to-person contact at a periodic rate of θω1,r under scenario

ω or through touching Ebola-related dead bodies that are not yet buried during traditional

funerals at a periodic rate of θ2,r in region r. Thus, once close contacts (H) or susceptible

individuals (S) become infected, they move to the infected (I) compartment. However,

individuals in the general community (S) are infected with a lower rate of σr compared to

close contacts (H).
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Figure 1: One-Step Disease Compartmental Model.

Here, we focus on modeling the ring vaccination, where only close contacts with infected

people can be vaccinated. The quantity of vaccines allocated to region r under scenario ω at

the end of period j under scenario ω is defined by the variable Oω
j,r. Given the effectiveness

rate of vaccination, βr, there will be βrO
ω
j,r people who are moving from the (H) to (V)

compartment in each period j, where (V) represents the successfully vaccinated individuals,

who become fully immunized by vaccination. Next, due to the time effect, successfully

vaccinated individuals (V) become no longer immune to the disease over time and move to

the general community (S) with a rate of εr in region r. When the number of infected people

increases, the close contacts of infected people will also increase. Thus, the dotted arrow

from the general community (S) to close contacts (H) represent the movement of people from

(S) to (H) as (I) increases. Furthermore, since people are getting vaccinated, the number

of close contacts in (H) being infected and moving into the (I) compartment should be

decreased by
θω1,r
q
βrO

ω
j,r, where q is the average number of close contacts for each infected

individual. The term
θω1,r
q

shows the proportion of close contacts that would be infected for

each infected individual, and because βrO
ω
j,r represents the number of successfully vaccinated

close contacts who become fully immunized by vaccination,
θω1,r
q
βrO

ω
j,r gives the number of

close contacts saved by the vaccination.

Without treatment, some of the infected individuals in the compartment (I) will die

and move to the funeral (F) compartment with the rate of χ1,r, while some of the infected

individuals will recover with a rate of χ3,r, moving into the recovered compartment (R).

However, the number of individuals hospitalized for treatment (T) is based on the treatment

capacity variable Cω
j,r, which gives the available number of beds in the ETCs in region

r under scenario ω in period j. Thus, there is no constant transition rate from I to T.
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Meanwhile, individuals who did not receive treatment will remain in the community and

spread the disease. In treated compartment (T), some individuals will recover with a periodic

rate of χ4,r, and a fraction of them will die with a periodic rate of χ2,r. The deceased

individuals in the funeral compartment are safely buried at a rate of χ5,r, moving into the

buried compartment (B).

To describe the migration of infected individuals and close contacts within a given coun-

try, we define il→r and ir→l as the rates of migration of infected individuals into and out

of region r, as shown in dotted arrows going in and out of compartment (I). Similarly, we

define hl→r and hr→l as the rates of migration of close contacts of infected people (H) into

and out of region r.

4.2 Uncertainty and Model Assumptions

Modeling Uncertainty. In this paper, we used a discrete set of scenarios ω ∈ Ω to model

the uncertainties related to the disease–the uncertainty in the transmission rate from the close

contacts of the infected individuals to infections and the uncertainty in total vaccines supplied

(available) at each stage j. Each scenario has a probability of pω, where
∑
ω∈Ω

pω = 1. We

assume that the uncertainty of the transmission rate is highly dependent on the availability

of vaccine supply. If the vaccine supply is high, we observe a low transmission rate from

close contacts to infections, and if the vaccine supply is low, we will have a high transmission

rate instead. For our multi-stage stochastic model, we have two branches in each node

of the scenario tree, representing the two possible realizations in each stage j: low and

high transmission rates θω1,r corresponding to the high and low levels of vaccines supplied at

time j under scenario ω, Gω
j . The case study values of the uncertain transmission and the

vaccine availability parameters under two realizations at each branch of the scenario tree are

presented in Table 10 in Appendix B.4.

Assumptions on Model, Data, and Parameters. The transmission of the EVD is

affected by many factors, including damaged public health infrastructures, cultural beliefs,

behavioral practices, and violent events frequently happening in DRC (Wannier et al., 2019;

WHO, 2015). Due to these issues, data to calibrate some of the model parameters is either

lacking or inaccurate. Data parameters, such as the transmission rate and the probability

of scenarios, are quite difficult to estimate. Therefore, we make assumptions about some of

the parameters used in the model formulation.

First, in our current model, each infected individual is assumed to have 100 close contacts,
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including direct close contacts and their close contacts (i.e., contacts of contacts) (CDC,

2015; Doshi et al., 2020). Those close contacts (e.g., household and health care workers) are

considered as the high-risk group to be infected. In contrast, the susceptible people in the

general community are considered in the lower risk group compared to infected people’s close

contacts. Due to the nature of the ring vaccination, we assume that only the close contacts

of infected people will get the vaccination.

Second, in our model, each node of the scenario tree has two realizations of the transmis-

sion rate and vaccine availability, as low and high. Former research has shown that violent

events happening in DRC contribute to the increased transmission of EVD (Wannier et al.,

2019). During our planning horizon of 15 weeks, from June 25, 2019, to October 8, 2019,

seven violent events were reported (Dickey, 2018). Considering the likelihood of a violent

event happening in each period, we assign a probability of 0.5 to each potential outcome (low

and high) of disease transmission in our scenario tree in each time period. Disease trans-

mission rates under no violent events are reported to vary between 0.81 and 1.08 (Wannier

et al., 2019). Thus, we use a low transmission rate of 0.948 for North Kivu and 0.84 for Ituri

based on the estimations reported in Camacho et al. (2014) and Wannier et al. (2019). The

mean value of the transmission rate in DRC is 1.11 (Wannier et al., 2019), and the highest

transmission rate in history is 1.83 (Chowell et al., 2004). In between those two values of

transmission rates in DRC, we consider a high transmission rate of 1.422 for North Kivu

and adjust it proportionally to a high transmission rate of 1.26 for Ituri based on the ratios

of low transmission rates in both locations. Similar to their impacts on transmission rates,

we assume that violent events lead to a low vaccine supply upper bound due to hindered

humanitarian operations and lowered access to the infected population.

Third, the transmission rate defined in our model represents how many new infections

can be generated from the existed infected individuals through a specific period of time.

Under a small population, the transmission rate may be influenced by the total number of

susceptible individuals since the total number of infected individuals may approach the max-

imum population size. However, here, we focus on meta-population modeling over multiple

regions of a country. Thus the size of the susceptible population will not decline enough to

make a significant difference in the infection rate for Ebola on a large spatial scale under

several interventions already in place. Formulating the dependency of the susceptible pop-

ulation in the general community and the number of newly infected individuals also results

in non-linearity in the optimization model. Thus, to avoid this non-linearity, we assume

that the number of newly infected individuals in our model is independent of the size of the

14

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 31, 2021. ; https://doi.org/10.1101/2021.05.28.21258003doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.28.21258003


susceptible population in the general community.

Finally, current Ebola vaccines are shown to provide immunization for at least two years

with high and stable levels of antibodies to the Ebola Zaire Virus in the blood of volunteers

who are vaccinated (Branswell, 2018; WHO, 2021a). Thus, we assume that recovered indi-

viduals will not get infected again within four months of vaccination or recovering from the

disease, which is nearly the planning horizon we consider in our study.

4.3 Model Formulation

Using the notation defined in Appendix A, the mean-risk multi-stage stochastic epidemic-

vaccination-logistics model can be formulated as follows:

min
∑
j∈J

(
∑
ω∈Ω

pω(
∑
r∈R

(Iωj,r + F ω
j,r +Hω

j,r) + λ(ηωj +
1

1− α
zωj ))) (2a)

s.t. Initial Condition Constraints :

Sω0,r = πr, Iω0,r = $r, T ω0,r = κr, Rω
0,r = ϑr, Hω

0,r = φr,

F ω
0,r = υr, Bω

0,r = τr, V ω
0,r = ϕr, Cω

0,r = ζr, ∀r ∈ R, ∀ω ∈ Ω, (2b)

Population Dynamics Constraints :

Sω(j+1),r = Sωj,r − σrIωj,r + εrV
ω
j,r − q((σr + θω1,r)I

ω
j,r + θ2,rF

ω
j,r −

θω1,r
q
βrO

ω
j,r),

j ∈ J \ {J},∀r ∈ R, ∀ω ∈ Ω, (2c)

Iω(j+1),r = Iωj,r + Îωj,r − Ĩωj,r + (σr + θω1,r)I
ω
j,r + θ2,rF

ω
j,r −

θω1,r
q
βrO

ω
j,r − (χ1,r + χ3,r)I

ω
j,r − I

ω

j,r,

j ∈ J \ {J},∀r ∈ R, ∀ω ∈ Ω, (2d)

Hω
(j+1),r = Hω

j,r + Ĥω
j,r − H̃ω

j,r − θω1,rIωj,r − θ2,rF
ω
j,r − βrOω

j,r + q((σr + θω1,r)I
ω
j,r

+θ2,rF
ω
j,r −

θω1,r
q
βrO

ω
j,r) +

θω1,r
q
βrO

ω
j,r, j ∈ J \ {J},∀r ∈ R, ∀ω ∈ Ω, (2e)

V ω
(j+1),r = V ω

(j+1),r + βrO
ω
j,r − εrV ω

j,r,

j ∈ J \ {J},∀r ∈ R, ∀ω ∈ Ω, (2f)

T ω(j+1),r = T ωj,r + I
ω

j,r − (χ2,r + χ4,r)T
ω
j,r,

j ∈ J \ {J},∀r ∈ R, ∀ω ∈ Ω, (2g)

Rω
(j+1),r = Rω

j,r + χ3,rI
ω
j,r + χ4,rT

ω
j,r,

j ∈ J \ {J},∀r ∈ R, ∀ω ∈ Ω, (2h)
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F ω
(j+1),r = F ω

j,r + χ1,rI
ω
j,r + χ2,rT

ω
j,r − χ5,rF

ω
j,r,

j ∈ J \ {J},∀r ∈ R, ∀ω ∈ Ω, (2i)

Bω
(j+1),r = Bω

j,r + χ5,rF
ω
j,r, j ∈ J \ {J},∀r ∈ R, ∀ω ∈ Ω, (2j)

Migration Constraints :

Îωj,r =
∑
l∈Mr

il→rI
ω
j,l, Ĥω

j,r =
∑
l∈Mr

hl→rH
ω
j,l,

j ∈ J,∀r ∈ R, ∀ω ∈ Ω, (2k)

Ĩωj,r =
∑
l∈Mr

ir→lI
ω
j,r, H̃ω

j,r =
∑
l∈Mr

hr→lH
ω
j,r,

j ∈ J,∀r ∈ R, ∀ω ∈ Ω, (2l)

Logistics and Operation Management Constraints :∑
r∈R

(
∑

j∈J\{0,J}

∑
a∈A

gaj,ry
ω
aj,r +

∑
j∈J

(bj,rT
ω
j,r + ej,rO

ω
j,r)) ≤ ∆ ∀ω ∈ Ω, (2m)

Cω
j,r =

j∑
m=1

∑
a∈A

kay
ω
am,r + C0,r, j ∈ J \ {J},∀r ∈ R, ∀ω ∈ Ω, (2n)

I
ω

j,r = Uω
j,r +W ω

j,r, j ∈ J \ {J},∀r ∈ R, ∀ω ∈ Ω, (2o)

Uω
j,r ≤ QUBd

ω
j,r, Uω

j,r ≥ QLBd
ω
j,r,

Uω
j,r ≤ (Cω

j,r − T ωj,r)−QLB(1− dωj,r), Uω
j,r ≥ (Cω

j,r − T ωj,r)−QUB(1− dωj,r),

j ∈ J \ {J},∀r ∈ R, ∀ω ∈ Ω, (2p)

W ω
j,r ≤ IUB(1− dωj,r), W ω

j,r ≥ ILB(1− dωj,r),

W ω
j,r ≤ Iωj,r − ILBdωj,r, W ω

j,r ≥ Iωj,r − IUBdωj,r
j ∈ J \ {J},∀r ∈ R, ∀ω ∈ Ω, (2q)

Oω
j,r ≤ Hω

j,r, j ∈ J,∀r ∈ R, ∀ω ∈ Ω, (2r)∑
r∈R

Oω
j,r ≤ Gω

j j ∈ J,∀r ∈ R, ∀ω ∈ Ω, (2s)

Risk Measure Constraints :

zωj ≥
∑
r∈R

(Iωj,r − Iωj−1,r + F ω
j,r +Hω

j,r)− ηωj , j ∈ J,∀ω ∈ Ω, (2t)

zωj ≥ 0, j ∈ J,∀ω ∈ Ω, (2u)

Non− anticipativity Constraints :

yωat(n),r − yan,r = 0, I
ω

t(n),r − In,r = 0, Cω
t(n),r − Cn,r = 0, Oω

t(n),r −On,r = 0,
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zωt(n),r − zn,r = 0, ηωt(n) − ηn = 0, a ∈ A,∀ω ∈ β(n), ∀n ∈ N, (2v)

Non− negativity Constraints :

Sωj,r, Oω
j,r, Hω

j,r, V ω
j,r, Iωj,r, T ωj,r, Rω

j,r, F ω
j,r, Bω

j,r, I
ω

j,r ≥ 0,

j ∈ J,∀r ∈ R, ∀ω ∈ Ω, (2w)

yωaj,r ∈ {0, 1, 2, . . .}; yωaj,r ≤ Iωj,r, a ∈ A, j ∈ J \ {J},∀r ∈ R, ∀ω ∈ Ω, (2x)

dωj,r ∈ {0, 1}, ∀j ∈ J,∀r ∈ R, ∀ω ∈ Ω. (2y)

The objective function (2a) minimizes the total expected number of infected individuals,

funerals, plus the close contacts of infected individuals, plus the conditional value-at-risk

over all scenarios, in all regions throughout the planning horizon.

Initial Condition Constraints:

Constraints (2b) give the initial number of the general community, infected, treated, re-

covered, close contacts, funerals, buried, and vaccinated compartments, and the total ETC

capacity, respectively, in each region r at the beginning of the planning horizon.

Population Dynamics Constraints:

Equations (2c)–(2j) represent the dynamics of the population in each disease compartment,

which are shown in Figure 1. Constraint (2c) shows that the number of susceptible individ-

uals in the community in region r at the end of period j + 1 under scenario ω is equal to

the number of susceptible individuals from the previous time period minus the number of

newly infected individuals, plus the number of successfully vaccinated individuals who were

no longer immune to the disease at the end of period j under scenario ω. Furthermore, the

term q((σr+θ1,r)I
ω
j,r+θ2,rF

ω
j,r−

θω1,r
q
βrO

ω
j,r) represents the number of susceptible individuals in

the community (S) that transfer to close contacts (H) due to the newly infected individuals

(I), where q is the average number of close contacts of each newly infected individual.

Constraint (2d) implies that the number of infected individuals at the end of period j+1

in region r under scenario ω is equal to the number of infected individuals from the previous

time period plus the net migrated infected individuals, plus newly infected individuals from

the close contacts, general community, and funerals, minus individuals who were saved from

infection by vaccination (
θω1,r
q
βrO

ω
j,r) minus recovered, died, and treated individuals at the

end of period j under scenario ω.

Constraints (2e) define the number of close contacts at the end of time period j + 1,

which equals the number of close contacts from the previous time period plus the net mi-
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grated close contacts, minus the number of newly infected individuals from close contacts,

minus the number of successfully vaccinated individuals during period j, and plus the new

close contacts and the close contacts saved by the vaccination. Constraint (2f) ensures that

the number of successfully vaccinated individuals at the end of period j+1 equals the number

of successfully vaccinated individuals from the previous time period plus the number of new

successfully vaccinated individuals and minus the number of individuals who are not immune

to the virus anymore. Constraint (2g) describes the total number of treated individuals in

region r at the end of time period j + 1 under scenario ω, which is equal to the number of

treated individuals at the end of period j plus infected individuals who were admitted to

the hospital for treatment based on the availability of beds minus treated individuals who

died or recovered. Constraint (2h) implies that the cumulative number of individuals who

recover in region r at the end of the period j + 1 under scenario ω is equal to the number

of individuals who recover from the previous period plus newly recovered individuals. Con-

straint (2i) ensures the number of unburied funerals in region r at the end of time period

j + 1 under scenario ω is equal to the sum of infected and treated individuals who died,

minus the buried dead people. Constraint (2j) gives the total number of buried dead bodies

at the end of the period j under scenario ω.

Migration Constraints:

Constraints (2k) and (2l) formulate the number of net immigrated individuals in infected and

close contact compartments, similar to the spatio-temporal reaction-diffusion (RD) models

(Kıbış and Büyüktahtakın, 2019; Kıbış et al., 2020). Specifically, constraints (2k) show the

number of infected individuals and close contacts migrating into region r from region l ∈Mr

under scenario ω. Constraints (2l) represent the number of infected individuals and close

contacts emigrating from region r into neighboring region l ∈Mr under scenario ω.

Logistics and Operation Management Constraints:

Constraints (2m)–(2s) show the restrictions regarding logistics and operations management.

Specifically, the inequality (2m) represents the budget constraint on the sum of the fixed

costs of opening ETCs and the variable cost of treating infected individuals, and the cost

of allocating vaccines over all regions r in all periods j under scenario ω. Constraint (2n)

denotes the total capacity in region r at the end of period j under scenario ω. Constraint

(2o)–(2q) are linear constraints that ensure the number of available beds in ETCs limit the

number of hospitalized individuals in region r. Particularly, linear equations (2o)–(2q) are
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equivalent to the non-linear constraints implying that the number of hospitalized individuals

(I) is equal to the minimum number of infected individuals and the capacity available at

established ETCs after considering currently hospitalized individuals in ETCs (see Yin and

Büyüktahtakın (2021) for the details of the linearization). Constraint (2r) represents that

the number of vaccines supplied to region r at period j under scenario ω is limited by the

number of close contacts in region r at period j under scenario ω. Constraint (2s) ensures

that the total number of vaccines allocated over all regions can not exceed the available

supply at each time period.

Risk Measure Constraints:

Constraints (2t) and (2u) represent the risk measure limitations. Constraint (2t) calculates

the difference between the objective function value and the value-at-risk for each stage un-

der each scenario. Constraint (2u) ensures that the loss value exceeding the value-at-risk is

included in the CVaR calculation, and thus zωj should be greater than or equal to 0.

Non-anticipativity Constraints:

Constraints (2v) are non-anticipativity restrictions stating that if two scenarios share the

same path up to stage j, the corresponding decisions will be the same.

Non-negativity Constraints:

Constraints (2w) imply non-negativity restrictions on the number of individuals who are

susceptible, being vaccinated, close contacts, successfully vaccinated, infected, total treated,

recovered, funeral, buried, and treated, respectively, under scenario ω. Constraints (2x) rep-

resent the integer requirements on the number of type-a ETCs to be opened in region r at

the end of period j under scenario ω. Additionally, if the number of infected individuals is

less than 1 in a region r, the value of integer variable corresponding to opening an a-bed

ETC is forced to be zero, and thus there will be no ETC opened in that region.

Constraint (2y) represents the binary variable dωj,r, which is 1 when the number of infected

individuals to be hospitalized is restricted by the number of available beds in the ETCs,

and 0 when all infected individuals are hospitalized for treatment in the ETCs due to the

available capacity.
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5 Case Study and Results

5.1 Implementation Details

We apply our model 2a–2y to the case of the 2018-2020 EVD in the Democratic Republic

of the Congo (DRC). The North Kivu and Ituri provinces of the DRC are affected by the

EVD. We divided these two provinces into six different sub-regions: Upper (UNK), middle

(MNK), and lower (LNK) North Kivu, and upper (UI), middle (MI), and lower (LI) Ituri.

We describe the case study data used to formulate the model parameters, including popula-

tion and migration data, resource cost data, and epidemiological data in Appendix B. The

details of the mathematical formulation used to calculate the migration rates are presented

in Appendix B.2.

We use a nested risk measure in multi-stage stochastic programming, known as the

E-CVaR, in the stochastic model, as described in Section 3. We assume that the vac-

cines’ availability impacts the transmission rates in community contact, and thus uncertain

transmission rates depend on the uncertain vaccine supply. Hence the high (low) availability

of vaccines implies the low (high) realization of the uncertain transmission parameter. We

present the value of the vaccine availability and uncertain transmission parameters under

two realizations at each branch of the scenario tree, as shown in Table 10 in Appendix B.4.

We solve the model for a 5-stage time period, where each stage corresponds to three weeks

(from June 25, 2019, to October 8, 2019, in total 15 weeks) with high and low vaccine supply

under different budget levels. Because each node of the scenario tree has two branches, each

corresponding to a possible realization of the random parameters, we have 25 = 32 scenarios

for T = 5 stages.

The mathematical model is solved using CPLEX 12.7 on the desktop running with Intel

i7 CPU and 64.0GB of memory. For each run, the time limitation is set at 72,000 CPU

seconds. In the following subsections, we present results from solving the mean-risk multi-

stage stochastic epidemics-vaccination-logistics model.

5.2 Resource Allocation under Different Budget Levels

We test the formulation for each time period under different budget levels: Very Tight

($40M), Tight ($70M), Medium ($100M), and Ample ($130M). The mean-risk trade-off

coefficient λ is set to be 1, and the confidence level α is set to be 0.5.
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(a)

(b)

(c)

Figure 2: Budget, Capacity (Bed), and Vaccine Allocated to Each Region (λ = 1 and

α = 0.5) 21
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Figure 2 presents the optimal allocation of resources (budget, capacity [number of beds],

and vaccine) for each region under each budget level. According to the results, the regions

with the highest initial infestation levels receive most of the budget, as in the case of Upper

North Kivu and Middle North Kivu (Figure 2a). When the budget increases from very tight

to ample, other regions will also get their share of the budget depending on their initial

infection levels and disease-growth scenarios in the model.

Similar to the total budget allocation, the total capacity is allocated based on the initial

infection levels (Figure 2b). However, different from the total budget allocation, the majority

of the ETCs are assigned in the first stage of the 5-stage planning horizon. For instance,

under the $130M budget level, 1450 beds are allocated to Upper North Kivu in the first

stage, while the total number of beds allocated to Upper North Kivu only increases by

150 by the end of stage five. Therefore, quick response in terms of allocating most of the

treatment centers at the beginning of the outbreak will help to slow down the spread of

the disease, while the majority of the budget should be allocated to treat infected people in

ETCs and vaccine close contacts over multiple periods throughout the planning horizon.

When the budget level increases, the number of vaccines allocated to each region does

not always increase (Figure 2c). For instance, under the $100M budget level, Lower North

Kivu receives 177 vaccines, while this reduces to 128 vaccines under the $130M budget level.

A possible reason for this is that vaccination can prevent more people from being infected,

but it is not the most efficient way to reduce infections. Thus, the model gives priority to

opening new ETCs and treating infected individuals and then uses the rest of the budget to

allocate vaccines.

5.3 Analysis of the Risk Trade-Off

We perform an analysis of the risk parameters λ and α in terms of their impact on the

objective function values and the resource allocation strategies. Specifically, under the $70M

budget level, we compare four different problems with respect to their risk-averseness level,

adjusting λ and α values accordingly–risk-neutral (λ = 0, α = 0), weak risk-aversion (λ =

1, α = 0.05), mild risk-aversion (λ = 10, α = 0.5) and strong risk-aversion (λ = 100, α =

0.95).
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5.3.1 Impact, Risk, and Cost under Risk-Neutral and Risk-Averse Policies

In this section, we provide insights on the effect of risk parameters λ and α on the expected

impact and expected risk and how those values change as the decision maker shifts from being

risk-neutral to risk-averse at varying risk levels. To analyze the results with the risk trade-

off coefficient, we decompose the objective function into the expected impact [E(f(x, ω))]

and the expected risk [λCVaRα(f(x, ω))], as demonstrated in Equation (1). Specifically, the

expected impact represents the expected value of the total number of infections, funerals, and

close contacts of infected people, and the expected risk corresponds to the expected CV aRα

term in Eq. (2a). Table 1 presents results for the optimal objective function value for Eq.

(2a), expected impact, expected risk, and the expected total cost over the four different

risk-averseness levels described above. We also present values of the expected impact and

expected risk for various combinations of λ = {0, 1, 10, 100} and α = {0.05, 0.5, 0.95} under

the $70M budget level in Table 2. In both Tables 1 and 2, the “Expected Risk” under the

risk-neutral model, where λ = 0, is computed as the expected total number of infections,

funerals, and close contacts of infected people over all periods for the (1−α) worst scenarios.

Table 1: Comparison of Objective Value, Expected Impact, Expected Risk, and Expected

Cost under Various Risk-Averseness Levels

Risk Weak Mild Strong

Neutral Risk-aversion Risk-aversion Risk-aversion

(λ = 0, α = 0.95) (λ = 1, α = 0.05) (λ = 10, α = 0.5) (λ = 100, α = 0.95)

Objective Value a 3,881,046 7,771,744 44,365,553 409,005,446

Expected Impact 3,881,046 3,881,501 3,882,344 3,884,815

Expected Risk b 5,628,125 3,890,243 4,048,321 4,051,206

Expected Cost ($M) 69.70 69.76 69.84 69.85

a The calculation with units is represented as “Expected Impact” + λ * “Expected Risk”

b The Expected Risk is the CV aRα and does not include preceding λ coefficient

According to Table 1, the risk-neutral model has the smallest expected impact but the

largest expected risk compared to all other risk-averseness levels. This indicates that the

risk-neutral model provides the least expected number of infections, funerals, and close

contacts over all scenarios, but once one of the worse-case scenarios happens, it gives a

much larger number of infections, funerals, and close contacts compared to the risk-averse
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model. When both λ and α increase, the level of risk-averseness increases. Consequently, the

optimal objective function value significantly increases due to the additional values of risk

that are added to the objective formulation. The expected impact also increases, implying

that there is a price for being risk-averse in terms of the increased number of infections,

funerals, and close contacts under a more risk-averse policy. Moreover, the total cost of

allocated capacity, treatment, and vaccination increases slightly when the risk-averseness

level increases, implying that more budget is needed as the decision maker becomes more

risk-averse.

Table 2: Expected Impact and Expected Risk for Different Risk-averseness Levels

λ\α 0.05 0.5 0.95

Expected Expected Expected Expected Expected Expected

Impact Risk a Impact Risk a Impact Risk a

0 3,881,046 3,957,443 3,881,046 4,512,163 3,881,046 5,628,125

1 3,881,501 3,890,243 3,881,323 4,047,577 3,887,508 4,054,319

10 3,881,053 3,889,802 3,882,344 4,048,321 3,883,418 4,050,082

100 3,883,462 3,892,219 3,881,704 4,047,882 3,884,815 4,051,206

a The Expected Risk is the CV aRα and does not include preceding λ coefficient

Each row of Table 2 shows the change of the expected impact and expected risk when we

fix the value of one of the risk parameters (λ = {1, 10, 100} and α = {0.05, 0.5, 0.95}) and

change the other. All optimality gaps for the computational results in Table 2 are between

0.51% and 1.26%. According to the results, the largest expected risk occurs when λ = 0

for each α value. Similar to Table 1, in Table 2, the expected risk is the highest, and the

expected impact is the lowest under the risk-neutral model. When we move from risk-neutral

(λ = 0) to risk-averse (λ = {1, 10, 100}), the expected impact always increases. However,

changing the λ parameter have a non-monotonous influence on the expected impact. When

fixing the λ value and increasing the α value, the expected risk increases because we increase

the confidence level for the impact of scenarios that is under the V aR value. When we

increase α from 0.05 to 0.95, the risk-averseness level increases and the expected impact also

shows an increasing trend for all risk-averse policies (λ ≥ 1).
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5.3.2 Resource Allocation under different Risk-Averse Policies

Table 3 presents the allocation of the budget over the five stages of the planning horizon. We

observe that the majority of the budget is allocated under stages one, two, and four, while

as the risk-averseness increases, the budget under stage one is slightly decreased and moved

further into the future to be used later. The total budget used over all stages increases as

the decision-maker becomes more risk-averse.

Table 3: The Budget ($M) Allocation at Each Stage over Four Different Risk-Averseness

Levels

Risk-averseness Level Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Total

Risk-neutral 14.0 20.6 8.9 20.6 5.6 69.7

Weak Risk-aversion 12.1 22.4 9.0 20.6 5.6 69.8

Mild Risk-aversion 13.0 22.0 8.8 20.9 5.3 69.8

Strong Risk-aversion 13.8 20.9 9.0 20.8 5.4 69.9

Figure 3: Budget Allocation over Treatment, ETC Capacity, and Vaccine for Four Different

Risk-averseness

Figure 3 illustrates the budget allocation of treatment, ETC capacity, and vaccination
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for different risk-averseness levels. As shown here, the capacity and treatment budget shows

an increasing trend, and the budget allocated to vaccination shows a decreasing trend when

the risk-averseness level increases. This may imply that as the decision-maker becomes more

risk-averse, more investment is made on treatment rather than vaccination. It helps reduce

variability in the set of scenarios that results in the highest number of infections and deaths.

The optimal allocation of treatment budget, ETC capacity, and vaccine allocation un-

der different risk-averseness levels is presented in Figure 4. When the risk-averseness level

increases, the budget allocated to Upper North Kivu, which has the highest initial infec-

tion level, is decreased by moving the budget to neighboring locations with a potential risk

of getting infections from Upper North Kivu (Figure 4a). For example, under the strong

risk-averseness level, the budget allocated to Middle Ituri and Lower Ituri increases because

they are geographically close to Upper North Kivu and thus are under the risk of getting

infections through the large migrant population from Upper North Kivu.

The total capacity allocation of 1700 beds over all regions under the risk-neutral and weak

risk-averseness cases is increased to 1750 beds under the mild and strong risk-averseness levels

to alleviate adverse outcomes under the worst-case scenarios exceeding the VaR value (Figure

4b). As the risk-averseness level increases, the model allocates more beds to some regions

that have low infection levels, considering their proximity to highly-infected locations and the

risk of getting more infections from those locations. For example, Lower Ituri, right above

the Upper North Kivu, receives an increased number of beds under the strong risk-averseness

level.

The number of vaccines allocated to each region varies under different risk-averseness

levels (Figure 4c). The total number of allocated vaccines decreases when the risk-averseness

level increases. Regions that initially have zero infections get zero bed capacity. However,

they still get vaccination due to the migration impact and the expectation of the disease

spread under the risk-neutral and all risk-aversion cases. Thus, in locations where the disease

has just started, the model uses the budget for vaccination to stop or slow the epidemic’s

growth rather than building new ETCs.

5.4 Analyzing the Impact of Delay in Vaccination

In this section, we compare the number of infections and funerals for each stage for the 5-

stage planning horizon with respect to the delay of the vaccine application in the first stage

(Delay 1), first two stages (Delay 2), first three stages (Delay 3), first four stages (Delay 4)
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(a)

(b)

(c)

Figure 4: Treatment Budget, Capacity (Bed), and Vaccine Allocation under Different Risk-

averseness Levels
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and five stages (Delay 5) under the $70M budget level. For example, in “Delay 3”, we fix

the number of available vaccines in the first three stages to zero. In those first three stages,

we assume a high transmission rate, which is equivalent to the low vaccine supply, and thus

results presented here provide a lower bound on the number of infections and deaths. Here,

we also consider a mild risk-averseness level by setting λ at 10 and α at 0.5.

The results of the cumulative number of infections and funerals in each type of delay in

vaccines are shown in Figure 5, while Figure 6 demonstrates the non-cumulative infections

and funerals for each delay option over no delay of vaccines for five stages. Both figures

indicate that the number of infections and funerals increases exponentially over time for

each delay type. The more the vaccination is delayed, the larger the infections and funerals

are. Furthermore, the difference in the number of infections and funerals between “Delay 1”

and “Delay 3” is larger than the difference between “Delay 3” and “Delay 5.” A possible

reason is that the vaccination at the initial stages of the disease transmission would decrease

the transmission rate faster and cause fewer infections and funerals than vaccination at later

stages. These results indicate that the vaccines should be supplied as soon as possible once

the epidemic breaks out, given the vaccines’ availability.

Figure 5: Cumulative Number of Infections and Funerals for Each Stage under Different

Types of Delay (λ = 10 and α = 0.5)
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Figure 6: Non-cumulative Number of Infections and Funerals for Each Delay Option over

No Delay (λ = 10 and α = 0.5)

6 Analyzing Vaccine Effectiveness and Acceptance Rates

In this section, we perform the sensitivity analysis on vaccination effectiveness and acceptance

rates. Specifically, we adjust the vaccination effectiveness rate and the proportion of close

contacts who are willing to get vaccinated. In WHO (2019a), the vaccination effectiveness

rate is estimated as 0.975. In our model, we test vaccination effectiveness rates varying from

0.7 to 0.975 in increments of 0.05. Specifically, we change the value of the parameter βr from

low to high to simulate the impact of varying vaccination effectiveness rates on the number

and location of vaccines allocated.

Several papers study the willingness of people to be vaccinated. For instance, Kpanake

et al. (2018) find that 38% of people always choose to be immunized for the Ebola Virus Dis-

ease. Mudatsir et al. (2019) conclude that 74% of the people who participate in the interview

express their acceptance of an Ebola vaccine. In addition, Ughasoro et al. (2015) suggest

that 80% of the respondents accept being vaccinated with the Ebola vaccine. Therefore, we

consider four different vaccine acceptance rates in the sensitivity analysis, which are 0.01,

0.4, 0.8, and 1. In reality, the vaccine acceptance rate may not be as low as 0.01. However,

considering that the vaccine supply is quite limited, even under a vaccine acceptance rate

of 0.4, the number of people who are willing to get vaccinated is still more than the upper
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bound on the vaccine supply. Thus, we use a vaccine acceptance rate of 0.01 to observe the

changes in the vaccine allocation when the upper bound of vaccine supply is larger than the

number of people who are willing to get vaccinated. In particular, we use a new parameter f

to represent the number of close contacts who are willing to be vaccinated. Thus, Constraint

(2r) is replaced by:

Oω
j,r ≤ Hω

j,rf, j ∈ J,∀r ∈ R, ∀ω ∈ Ω. (3)

Constraint (3) implies that the number of successfully vaccinated individuals at stage j

in region r under scenario ω should be less than or equal to the number of close contacts

who are willing to be vaccinated.

In this section, we assume that the amount of available vaccine supply changes with

respect to the time period. For example, in the initial stages of an epidemic or a vaccine

discovery, it is less likely to make sufficient vaccine supply available to all demand locations.

As time progresses, the vaccine supply upper bound will also increase. In this section’s

analysis, the vaccine supply upper bound under each scenario is set to be 1000 at stage

one, 2000 at stage two, 4000 at stage three, 5000 at stage four, and 6000 at stage five. The

budget level for each test instance is set to be an ample level of $130M . Since the number

of people who are willing to get vaccinated at the initial stages is less than the number of

available vaccines, the remaining vaccines can be allocated in the following stages. Thus, in

this analysis, Constraint (2s) is replaced by:

∑
r∈R

Oω
j,r ≤

j∑
m=1

Gω
m −

j−1∑
m=1

∑
r∈R

Oω
m,r, j ∈ J,∀ω ∈ Ω. (4)

Constraint (4) ensures that the number of vaccines allocated to region r at stage j under

scenario ω should be less than or equal to the total number of available vaccines up to stage

j minus the total number of vaccines that are allocated to various regions from stage 1 until

the end of stage j − 1.

Figure 7 shows the optimal number and location of vaccines allocated under different

vaccination effectiveness rates when the vaccine acceptance rate is fixed at 0.8. For all the

cases, the Upper North Kivu has most of the vaccines allocated, followed by Middle North

Kivu. Also, the number of vaccines allocated to these two regions has a complementary

relationship. When Upper North Kivu receives more (fewer) vaccines, Middle North Kivu

will get fewer (more) vaccines allocated. This is because these two regions suffer from Ebola

the most. The total number of infections and deaths does not fluctuate much if the number
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of vaccines allocated to these two regions is in a range of 11,000 to 15,000 for Upper North

Kivu and 2,000 to 6,000 for Middle North Kivu. In addition, the total number of vaccines

allocated under each case is close to the total supply upper bound of 18,000. Thus, we can

conclude that, as long as the vaccine stays effective, no matter what vaccine effectiveness

rate is, the total number of vaccines allocated will not significantly change under a limited

supply of vaccines.

When the vaccination effectiveness rate increases, we also observe some of the vaccines

that are allocated to regions with high levels of infections are moved to regions with fewer

infections. Specifically, 17,670 vaccines allocated to Upper North Kivu and Middle North

Kivu reduce to 16,113 vaccines when the vaccination effectiveness rate increases from 0.7

to 0.975. This result implies that the more effective the vaccine is, the fewer vaccines are

needed in highly-impacted areas so that regions with lower infection could benefit from the

remaining vaccines.

Figure 7: Vaccine Allocation under Different Vaccine Effectiveness Rates (λ = 10 and α =

0.95)

Figures 8a and 8b present the results for the first-stage and total vaccine allocation over all

stages, respectively, under different vaccine acceptance rates when the vaccine effectiveness

rate is fixed at 0.975. When the vaccine acceptance rate is 0.01, fewer vaccines are allocated

in the first stage compared to the number of vaccines allocated under vaccine acceptance

rates of 0.4, 0.8, and 1. Upper North Kivu is the only region that receives vaccines at the

first stage when the vaccine acceptance rate equals 0.4, 0.8, and 1 because it has the highest

number of initial infections among all regions. However, under the vaccine acceptance rate
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of 0.01, the number of close contacts willing to get vaccinated in Upper North Kivu is less

than the supplied vaccines in the first stage. Thus, some vaccines in hand are allocated to

other regions.

Compared to the first stage vaccine allocation, the total vaccine allocation over all stages

shows a similar trend under different vaccine acceptance rates. This is because as the number

of infections increases in the following stages, the number of close contacts also significantly

increases. Therefore, even under the vaccine acceptance rate of 0.01, the number of close

contacts who are willing to get vaccinated is more than the vaccine supply upper bound

when considering the planning horizon of five stages. Furthermore, remaining vaccines from

previous time stages will be used in the following stages. The total number of vaccines

allocated to Upper North Kivu under the 0.01 vaccine acceptance rate is less than those

in other cases. This is because more vaccines become available under a quite low vaccine

acceptance rate, and those available vaccines are allocated to other regions with infections

lower than that of Upper North Kivu.

7 Discussion and Conclusions

This paper presents a multi-stage mean-risk epidemics-vaccination-logistics model to address

the optimal resource allocation challenges for epidemic control. We apply our model to

the 2018-2020 EVD case in the Democratic Republic of the Congo (DRC). Because the

information regarding the migration rates between regions in DRC is limited, we develop a

method to estimate the transmission rate between each considered region. In our multi-stage

stochastic programming model formulation, we use the CVaR in a nested form over multiple

stages to minimize the total expected number of infections, funerals, and close contacts of

infected people, and a weighted risk in a five-stage planning horizon, including 15 weeks.

The results regarding the analysis of risk trade-off show that there is a price for being

prepared for the worst set of disease-growth scenarios. In other words, a risk-averse decision-

maker should expect a possible increase in the number of infections and deaths while trying

to mitigate disastrous outbreak scenarios. Thus, when the mean-risk trade-off coefficient

increases, the confidence level in a risk-averse model will improve while the expected impact

on infections and deaths worsens. Furthermore, the total cost of treatment and vaccination

increases as the decision-maker becomes more risk-averse.

Allocating the resources fully based on the initial infection level will increase the risk of
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(a)

(b)

Figure 8: The First-Stage and Total Vaccine Allocation under Different Vaccine Acceptance

Rates (λ = 10 and α = 0.95)
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experiencing more infections and deaths in some disease scenarios. For example, the initial

infection level of Lower Ituri is not high. Still, the model considers the possible adverse

scenarios that may happen in Lower Ituri and allocates more resources to Lower Ituri under

the case of strong risk-aversion. Thus, the potential risk associated with the disease growth

in regions that have low initial infection levels but are in close proximity to hot spots of

infection should also be considered when making risk-averse decisions on epidemics resource

allocation.

The analysis of resource allocation under different budget levels indicates that the initial

infection level is the key parameter that influences the budget and capacity allocation among

each region. The regions with high initial infection levels get more resources, similar to the

findings in Yin and Büyüktahtakın (2021). Different from the former literature, we study

the budget allocation trade-off between treatment and vaccination while also accounting for

the disease transmission dynamics. The results of vaccine allocation under different budget

levels suggest that priority must be given to treat and isolate infected individuals in ETCs,

while vaccination is supplementary to treatment. This has also been justified by the study

of Kucharski et al. (2016), which states that ring vaccination might be insufficient to contain

the outbreak if standard measures for controlling the transmission are not working, as in the

EVD case in West Africa in early 2014. In another study, Kretzschmar et al. (2004) state

that ring vaccination can contain the smallpox disease provided the intervention measures

are very useful. Being risk-averse reinforces our findings on the resource-allocation priority

of treatment over vaccination.

Our results also show that as the number of stages with no vaccines supplied increases, the

number of infections, funerals, and close contacts exponentially increases even under other

intervention measures, such as treatment and isolation. This result implies that vaccination

is still quite effective when performed in addition to standard intervention measures, as

shown in the studies of Kretzschmar et al. (2004), Ajelli et al. (2016), and Merler et al.

(2016). Under the same length of delay, the delay of the vaccine at the early stages will

cause more infections and deaths compared to the delay in the late stages. This proves that

when the vaccines are limited but available, we should supply them as early as possible to

minimize the number of infections at the beginning of an outbreak. Similarly, Wells et al.

(2019) mention that even modest delays in initiating vaccination could noticeably degrade

the impact of the epidemic control.

Interestingly, the model allocates vaccination to regions that get no treatment resources

under a limited budget because it estimates a disease spread to these locations due to hu-
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man mobility. Specifically, the model uses the budget for vaccination in regions where the

disease has just started to curb the growth of the epidemic, while in regions with high ini-

tial infections, the model gives priority to build new ETCs and treat infected people over

vaccination.

The sensitivity analysis on the vaccine effectiveness and acceptance rates indicates that

the number of vaccines supplied to Upper North Kivu and Middle North Kivu has a com-

plementary relationship. The number of vaccines provided to these two regions fluctuates

under different vaccine effectiveness rates when the vaccine acceptance rate is fixed. This

fluctuation does not influence the number of infections significantly.

When the vaccine effectiveness rate is fixed, vaccine acceptance rates affect vaccine allo-

cation in the initial stages. Specifically, available vaccines are moved from highly impacted

locations to less affected areas under a very low vaccine acceptance rate. In the early stages

of an epidemic, there are fewer infections and close contacts, and the number of close con-

tacts who are willing to get vaccinated is less than the number of vaccines supplied when

the vaccine acceptance rate is very low. However, in the subsequent stages of an epidemic,

the number of infections increases, thus significantly increasing close contacts. Therefore,

even under a low vaccine acceptance rate, the number of close contacts who are willing to

get vaccinated is much more than the available vaccine supply as the disease progresses over

time. Consequently, those leftover and newly-supplied vaccines are allocated in the stages

following the first stage to locations with both high and low infection levels. Thus, the total

number of vaccines distributed over the whole planning horizon is similar under different

vaccine acceptance rates.

This study leads to a number of important future directions. For example, the method

we present for calculating the migration rate between each region could be further improved.

Human behavior and social effects could be incorporated into the calculation of migration

rates. For instance, Miami is not a metropolis compared to New York City. However, a

substantial amount of people may travel to Miami for vacation. In our model, we only chose

the metropolis of each region as the center of movement but did not consider other regions

that may also have large short-term population migrations. This research could be extended

by improving our estimation by considering more complicated environments to formulate the

migration-estimation model.

In our epidemic-vaccination-logistics model, the term “logistics” represents the spatial

and temporal allocation of ETCs, treatment budget used at ETCs as a function of T (treated)

people, and the number of vaccines in region r at the end of period j under scenario ω. Here
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logistics do not involve details, such as distributing vaccines to certain locations within a

region and its transportation specifics. A future extension of this work could investigate the

transportation details of both vaccination and treatment resources, such as distributing those

resources to specified locations within a region and its associated costs. Future work could

also specify the transmission rate parameter, θ1,r, as a function of the vaccines allocated in

region r, converting the model into a stochastic non-linear mixed-integer program. Both

future directions would require the development of advanced solution algorithms, such as

decomposition methods, global optimization, and cutting plane algorithms, to tackle the

increased complexity of the mathematical model.

In this study, we present a general multi-stage mean-risk epidemics-vaccination-logistics

model. This epidemic model could be adopted, for example, in the case of the COVID-19

pandemic. In such a model, the susceptible individuals can be divided into multiple sub-

compartments based on their risk, demographics, and behaviors. For example, susceptible

individuals can be divided into different sub-groups, such as people who wear masks and

people under quarantine, with each group having a different infection rate, depending on

the intervention measures applied. We can also analyze specific groups for vaccination, e.g.,

doctors, nurses, and volunteers to be injected. Increasing the number of compartments in a

heterogenous-mixing epidemiological model will further complicate the epidemic-vaccination-

logistics optimization model. Thus, the analysis of multiple specified groups can be studied

in a more detailed agent-based simulation rather than a large-scale meta-population model

as in our case.

For the pandemic control, we should also consider the international imported infections

for the selected regions. Also, the travel patterns of people during the pandemic might

influence the transmission of the disease. Therefore, our future research would present new

mathematical models that will control a pandemic and help optimize resource allocation

decisions.
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Appendices

A Notation

Sets and indices:

J : Set of time periods, J = {0, ..., J}.
A : Set of ETC types, A = {1, ..., A}.
R : Set of regions, R = {1, ..., R}.
Mr : Set of all surrounding regions of region r.

Ω : Set of scenarios, Ω = {1, ...,Ω}.
j : Index for time period, where j ∈ J .

r : Index for region where r ∈ R.

a : Index defining type of ETC, where a ∈ A.

ω : Index for scenario, where ω ∈ Ω.

Transition parameters used to describe the rate of movement between disease compart-

ments:

χ1,r :Disease fatality rate without treatment in region r.

χ2,r :Disease fatality rate while receiving treatment in region r.

χ3,r :Disease survival rate without treatment in region r.

χ4,r :Disease survival rate with treatment in region r.

χ5,r :Safe burial rate of Ebola-related dead bodies in region r.

σr :Transmission rate per person in general community

due to community interaction in region r.

θω1,r :Transmission rate per person of close contacts due to

interaction with infected individuals in region r under scenario ω.

θ2,r :Transmission rate per person of close contacts during a traditional funeral ceremony in region r.

f :Vaccine acceptance rate.

βr :Vaccine effectiveness rate.

εr :Transmission rate per person from successfully vaccinated V (immune)

to general community S (not immune anymore) in region r.

Other parameters:
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bj,r :Unit cost of treatment for an infected individual in region r at the end of period j.

gaj,r :Fixed cost of establishing type a ETC in region r at the end of period j.

ka :Capacity (number of beds) of type a ETC.

ur :The population in region r.

ej,r :Unit cost per vaccine in region r at the end of period j.

∆ :Total available budget for treatment.

πr :Initial number of susceptible individuals in general community in region r.

φr :Initial number of close contacts of infected people in region r.

ϕr :Initial number of vaccinated individuals in region r.

$r :Initial number of infected individuals in region r.

κr :Initial number of treated individuals in region r.

ϑr :Initial number of recovered individuals in region r.

υr :Initial number of unburied dead bodies in region r.

τr :Initial number of buried dead bodies (funerals) in region r.

ςr :Initial treatment capacity in terms of the number of ETC beds in region r.

il→r :Migration rate of infected individuals from surrounding regions l ∈Mr to region r.

hl→r :Migration rate of close contacts from surrounding regions l ∈Mr to region r.

ir→l :Migration rate of infected individuals from region r to surrounding regions l ∈Mr.

hr→l :Migration rate of close contacts from region r to surrounding regions l ∈Mr.

dωj,r :Binary variable for linearization in region r at the end of period j under scenario ω.

Uω
j,r :Auxiliary variable to be substituted with (Cω

j,r − T ωj,r)dωj,r
in region r at the end of period j under scenario ω.

W ω
j,r :Auxiliary variable to be substituted with Iωj,r(1− dωj,r)

in region r at the end of period j under scenario ω.

QLB :Lower bound for Cω
j,r − T ωj,r.

QUB :Upper bound for Cω
j,r − T ωj,r.

ILB :Lower bound for Iωj,r.

IUB :Upper bound for Iωj,r.

Gω
j :Number of total supplied vaccines at the end of period j under scenario ω.

q :Average number of close contacts per each infected individual.

State variables:

Sωj,r :Number of susceptible individuals in general community
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in region r at the end of period j under scenario ω.

Hω
j,r :Number of close contacts of infected people

in region r at the end of period j under scenario ω.

V ω
j,r :Number of successfully vaccinated individuals, who are fully immunized to disease, in region r

at the end of period j under scenario ω.

Iωj,r :Number of infected individuals in region r at the end of period j under scenario ω.

T ωj,r :Number of individuals receiving treatment in region r at the end of period j

under scenario ω.

Rω
j,r :Number of recovered individuals in region r at the end of period j under scenario ω.

F ω
j,r :Number of deceased individuals due to the epidemic in region r at the end of period j

under scenario ω.

Bω
j,r :Number of buried individuals in region r at the end of period j under scenario ω.

Ĥω
j,r :Number of close contacts of infected people migrating into

region r at the end of period j under scenario ω.

H̃ω
j,r :Number of close contacts of infected people emigrating

from region r at the end of period j under scenario ω.

Îωj,r :Number of infected individuals migrating into region r

at the end of period j under scenario ω.

Ĩωj,r :Number of infected individuals emigrating from region r at the end of period j

under scenario ω.

Decision variables:

Cω
j,r :Total capacity (number of beds) in ETCs to be established in region r at the end of period j

under scenario ω.

I
ω

j,r :Number of infected individuals hospitalized (and quarantined) in region r

at the end of period j under scenario ω.

yωaj,r :Number of type a ETCs established in region r at the end of period j

under scenario ω.

Oω
j,r :Number of vaccines allocated to region r at the end of period j

under scenario ω.

Risk parameters:
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α :Confidence level of value-at-risk, where α ∈ [0, 1).

λ :Non-negative risk preference parameter or mean-risk trade-off coefficient.

Risk variables:

ηωj :Value at risk at the confidence level α for each stage j under scenario ω.

zωj :Value exceeding the value-at-risk at the confidence level α (ηωj ) at stage j under scenario ω.

Sets and Parameters related to non-anticipativity:

N :Set of nodes in the scenario tree.

n :The serial number of nodes in the stochastic decision tree.

β(n) :Set of scenarios that pass through node n ∈ N .

t(n) :The corresponding stage that node n marked in the decision tree.

B Ebola Case Study Data

This section presents the data used to formulate the model parameters, including population

and migration data, resource cost data, and epidemiological data, and the mathematical

formulation for estimating the migration rate.

40

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 31, 2021. ; https://doi.org/10.1101/2021.05.28.21258003doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.28.21258003


B.1 Regional and Population Data

Figure 9: Region division in North Kivu and Ituri. The map is constructed using ArcGIS

(2020).

Based on the World Health Organization (WHO) Ebola situation report (WHO, 2020), we

divided North Kivu and Ituri provinces of the Democratic Republic of Congo that are affected

by the EVD into six different sub-regions: Upper (UNK), middle (MNK), lower (LNK) North

Kivu and Upper (UI), middle (MI), lower (LI) Ituri. In the report of June 25th, 2019, there

were almost no cases confirmed in Upper Ituri and Lower North Kivu; however, in the latest

report of December 17th, 2019, some cases were confirmed in these regions. We consider

the migration of people among multiple regions in our model and include these regions to

analyze the influence of immigration on transmitting the disease.

Table 4 presents the population as well as the population ratio of each sub-region pre-

sented in Figure 9, while Table 5 shows the number of initial infections in each region on

June 25, 2019.
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Table 4: Regions, population size, and rate in West Africa

North Kivu Population Ratio Ituri Population Ratio

(millions) (millions)

UNK 1,9 0.19 UI 2,3 0.42

MNK 2,3 0.23 MI 2,8 0.51

LNK 5,7 0.58 LI 0,4 0.07

Total 9,9 1.00 5,5 1.00

Table 5: The number of infected people at the beginning of the planning horizon (June 25,

2019)

Upper Middle Lower

North Kivu 380 260 0

Ituri 0 23 74

B.2 Migration Estimation Model and Data for Migration Rates

Migration plays a crucial role in disease transmission between regions of a country and among

multiple countries. Because the data regarding the migration of the population among each

region of North Kivu and Ituri is not available, we have driven a new formula to estimate

the rate of movement among multiple regions as described below. The logical sequence to

derive the migration formulation is presented in Figure 10 and described below.
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Figure 10: Steps of calculating the migration rate

If no border closure is imposed, some of the infected individuals from the regions where

the disease has originated migrate to other regions during the incubation period of the

virus. When disease symptoms begin to appear, they are discovered as the first cases in

the new region. The Ebola virus average incubation period is around 2 to 21 days (WHO,

2019d). Thus, we estimate the migration rate using a cycle of three weeks, and the migration

rate presented below is three-weekly. Let r ∈ R represents a newly infected region, and

l ∈ L = {1, . . . , R̄} stands for the region where the disease has already existed, and R̄ is the

upper bound for the number of infected regions. Suppose we have a total of six regions as

shown in Figure 9, r ∈ R = {UNK,MNK,LNK,UI,MI, LI}. For each region r, denote

the number of infections detected in the first period (the first set of infected people) by Ir.

1. Find the First Reported Cases in Region r

We first check the WHO case situation report (WHO, 2020) and determine the first group

of cases discovered in each defined region.

2. Find Existing Cases in Surrounding Regions at the Same Time Period

We assume that the first group of infected individuals discovered in region r might have

only come from the regions that already have infections at the same time period or before.

Thus, using the WHO situation report (WHO, 2020), we choose a subset of regions l ∈
L surrounding region r, which have discovered infections before region r, as the possible
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emigration regions, where Il 6= 0. Specifically, since the average time from infected to either

recovered and funeral, with or without treatment, is from one week to three weeks, we

calculate the total confirmed cases in region l within the three-week interval of the time

period where the first infection is seen in region r, Il.

3. Calculate How Many Cases in Region r Might Have Come from Each of the

Surrounding Region

In this step, we calculate the distance Drl between each main region considered in Figure 9

using Google Maps (Table 6). We assume that the number of infected cases migrated from

a possible emigration region l to region r is negatively correlated with Drl. Therefore, we

compute the ratio of Drl and the sum of the distances from region r to all possible emigration

regions, and multiply it with the total migrated infected cases Ir, to calculate the infected

population in region r that resulted from people moving from region l to r, denoted by Îl→r,

as given in below equation:

Îl→r =
Drl∑

l∈L
Drl

Ir, ∀r ∈ R, ∀l ∈ L. (5)

4. Calculate the Proportion of Infected Individuals for Each of the Surrounding

Region

In this step, we calculate the infection ratio at region l, i = Il/Ul, where Ul is the population

of area l. We also assume that we should have the same ratio i for the people who immigrate

from region l to region r. Then we have:

i =
Il
Ul

=
Îl→r

Ûl→r
. (6)

where Îl→r represents the infected people who immigrate from region l to region r, as given

in Equation (5), and Ûl→r stands for the migration population from l to r, which is the

parameter that we want to estimate to calculate the migration rate.
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5. Calculate the Migration Rate Between Each Region

Substituting Equation (5) in Equation (6) and re-organizing it, the number of people that

migrate from l to r can be calculated by the following equation:

Ûl→r =
Drl∑

l∈L
Drl

Ir
Ul
Il
. (7)

Since we formulate the model based on the short-term migration, we assume that those

migration population is temporary (for business travel, cargo delivery, etc.) and migrated

population will come back to the original region. Thus, the number of immigrated people

from new infection regions r to the emigration regions l is estimated the same as the number

of people moving from emigration regions l to the new infection regions r, i.e., Ûl→r = Ûr→l.

Finally, the migration rate from region l to region r is calculated by dividing the immi-

gration population from l to r with the total population of each region l, as given below:

il→r =
Ûl→r
Ul

. (8)

Because we have Ûl→r = Ûr→l, similar to Equation (8), the migration rate from region r to

region l is calculated by

ir→l =
Ûr→l
Ur

. (9)

Additionally, suppose a considered region b ∈ R does not have any existed infections. In

that case, we can estimate the migration rate based on the distance between region l and

region r, for which the migration population from l to r is defined. Specifically, the migration

between region b and region r can be estimated as:

Ûl→b = Ûl→r
Dlr

Dlb

. (10)

Then we can use Equations (8) and (9) to calculate the migration rate between region b and

region r.

Here, we note that the estimation of the migration rate based on the distance between

each region may not be accurate in some cases due to the popularity of a region and social

effects. For instance, larger short-term migrations occur between cities rather than a city and

a village because of the greater opportunities in urban locations and the corresponding social

behavior. Therefore, to calculate the migration rates, the locations that have similar social
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environments should be selected from each region to minimize the impact of social effects on

human mobility. In our case, each location selected from a region is a metropolitan of that

region.

Example.

As an example, consider the case of MNK. The WHO report (WHO, 2020) shows that MNK

discovered the first three cases on September 11th, 2018, and at this time, only UNK and LI

had infected cases. Thus, we assume that newly infected cases in MNK come from these two

regions. The proportion of the distance from the main cities of UNK and LI to the main city

in MNK is 57.5/145. So we assume that 71.6% (1.86) of the three cases in MNK come from

UNK, and 29.4% (1.14) of them come from LI. The proportion of infections in UNK and LI is

0.00001 (21 over 1861730) and 0.00001 (2 over 148, 387). Using Equation (7), the migration

population of UNK and LI to MNK is estimated as ÛUNK→MNK = 164, 896 and ÛLI→MNK =

84, 581. Then the migration rate from UNK to MNK is calculated as iUNK→MNK = 0.0886

, and the migration rate from LI to MNK is computed as iLI→MNK = 0.5700. On the other

hand, because we assume that ÛMNK→UNK = ÛUNK→MNK = 164, 896, the migration rate

from MNK to UNK is calculated as iMNK→UNK = 0.0685, and the migration rate from MNK

to LI is given as iMNK→LI = 0.0351.

The estimated migration rates between each region (Figure 9) are presented in Table 7.

Table 6: Geographical distance between regions (KM)

From \ To UNK MNK LNK UI MI LI

UNK 57.5 358 467 202 92.6

MNK 301 523 258 145

MNK 823 558 445

UI 267 483

MI 217

LI
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Table 7: Migration rate between regions of North Kivu and Ituri.

From \ To UNK MNK LNK UI MI LI

UNK 0.0886 0.0012 0.0016 0.0424 0.0345

MNK 0.0685 0.0059 0.0025 0.0851 0.0351

LNK 0.0081 0.0511 0.0935 0.0062 0.0023

UI 0.0138 0.0283 0.1200 0.0795 0.0088

MI 0.1254 0.0735 0.0050 0.0273 0.0167

LI 0.1456 0.5700 0.0044 0.0129 0.0711

B.3 Resource Allocation Cost Data

Table 8 gives the fixed cost of locating Ebola treatment centers (ETCs) and the variable

or per-person cost of the Ebola treatment. The treatment cost includes the fixed cost for

establishing each type of ETCs (either 50 or 100-bed ETC), isolation unit center, and lab-

oratory diagnosis. Additionally, each facility has a variable running cost, mainly composed

of treating infected people and contact tracing of the infected individuals. Safe burial cost

is also included for safely burying infected dead bodies. Fixed costs are one-time; however,

all other cost values given in Table 8 are presented for a three-week period. For example, an

Ebola treatment center’s variable cost represents the cost of treating one infected individual

over three weeks.

Table 8: Summary of fixed and variable treatment costs in 50 (100)-Bed ETC.

Cost description Fixed Cost Variable cost* Safe burial cost*

Ebola treatment center $386,000 ($694,800) $13,215

Isolation unit center (IUC) $112,500 $1,699

Laboratory diagnosis $100,000 $810

Subnational technical services $3,375

Contact tracing $1,692

Safe burial $1,691

Total $598,500 ($1,077,300) $20,791 $1,691

* Variable and safe burial costs are given for a period of three weeks.
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B.4 Epidemiological Data

In this section, we present the values of the parameters that describe the disease transmission

among compartments of the EVD that were described in Section 4.1 in North Kivu and Ituri

of DRC.

Table 9: Transmission parameters and three-weekly rates for the Ebola outbreak.

Parameter Description Data Reference

North Kivu Ituri

χ1 Rate of fatality without treatment 0.527 0.372 WHO (2019d), WHO (2014)

χ2 Rate of fatality with treatment 0.383 0.288 WHO (2019d), WHO (2014)

χ3 Rate of recovery without treatment 0.695 0.725 WHO (2019d), WHO (2014)

χ4 Rate of recovery with treatment 0.937 0.98 WHO (2019d), WHO (2014)

χ5 Safe burial rate 2.22 2.13 WHO (2019d), WHO (2014)

σr Transmission rate in the community 0.648 0.54 Camacho et al. (2014)

θ2,r Transmission rate at a traditional funeral 2.04 2.19 Camacho et al. (2014)

βr Vaccination effectiveness rate 0.975 0.975 WHO (2019a)

εr Probability of transition from vaccinated to susceptibles 0.06 0.06 WHO (2018)

Table 10: Three-weekly values for vaccine supply upper-bound (Gω
j ) and the uncertain trans-

mission rate (θω1,r) for the Ebola outbreak. High (low) realization for Gω
j implies low (high)

realization for θω1,r.

Parameter Scenario tree branch Realization Value Reference

North Kivu Ituri

(Gω
j , θω1,r)

High (4500, 0.948) (4500, 0.84) Camacho et al. (2014); WHO (2019b)

Low (3000, 1.422) (3000, 1.26) Camacho et al. (2014); WHO (2019b)
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Bushaj, S., İ. E. Büyüktahtakın, D. Yemshanov, and R. G. Haight (2021). Optimizing

surveillance and management of emerald ash borer in urban environments. Natural Re-

source Modeling 34 (1), e12267.
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without vaccine use in Équateur, Democratic Republic of Congo, as of May 27, 2018. PloS

One 14 (3), e0213190.
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