
 1

Case Study: End User Development of an Agent-based Model of 1 

Malaria Transmission to Support the Design of Late-Life-Acting 2 

Insecticides for the Control of Malaria Transmission and Delay 3 

of the Evolution of Insecticide Resistance 4 

 5 

Jacob H Heintzelman1, 2, Gregory R Madey1 6 

1 Department of Computer Science and Engineering, University of Notre Dame, 7 

Notre Dame, Indiana, United States 8 

2 Fairbanks School of Public Health, Indiana University Purdue University 9 
Indianapolis, Indianapolis, Indiana, United States 10 

 11 

 12 
 13 
Correspondence: jacobhh8@outlook.com  14 
 15 
Keywords: end-user development, malaria, end-user programming, modeling, 16 

simulation, NetLogo, insecticide resistance, end user development, agent-based 17 

modeling, malaria transmission, disease transmission, infectious disease 18 

modeling, mosquito vectors, biopesticide, fungal insecticide, individual-based 19 

modeling 20 

 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 

 29 

 30 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 3, 2021. ; https://doi.org/10.1101/2021.05.28.21257999doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2021.05.28.21257999
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2

Abstract 31 

We describe an end-user developed agent-based simulation of malaria transmission. The 32 

simulation’s development is a case study demonstrating an approach for non-technical 33 

investigators to easily develop useful simulations of complex public health problems. We focused 34 

on malaria transmission, a major global public health problem, and insecticide resistance (IR), a 35 

major problem affecting malaria control. Insecticides are used to reduce transmission of malaria 36 

caused by the Plasmodium parasite that is spread by the Anopheles mosquito. However, the 37 

emergence and spread of IR in a mosquito population can diminish the insecticide’s effectiveness. 38 

IR results from mutations that produce behavioral changes or biochemical changes (such as 39 

detoxification enhancement, target site alterations) in the mosquito population that provide 40 

resistance to the insecticide. Evolutionary selection for the IR traits reduces the effectiveness of an 41 

insecticide favoring the resistant mosquito population. It has been suggested that biopesticides, 42 

and specifically those that are Late Life Acting (LLA), could address this problem. LLA 43 

insecticides exploit Plasmodium’s approximate 10-day extrinsic incubation period in the mosquito 44 

vector, a delay that limits malaria transmission to older infected mosquitoes. Since the proposed 45 

LLA insecticide delays mosquito death until after the exposed mosquito has a chance to produce 46 

several broods of offspring, reducing the selective pressure for resistance, it delays IR and gives 47 

the insecticide longer effectivity. Such insecticides are designed to slow the evolution of IR thus 48 

maintaining their effectiveness for malaria control. For the IR problem, the simulation shows that 49 

an LLA insecticide could work as intended, but its operational characteristics are critical, primarily 50 

the mean-time-to-death after exposure and the associated standard deviation. We also demonstrate 51 

the simulation’s extensibility to other malaria control measures, including larval source control 52 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 3, 2021. ; https://doi.org/10.1101/2021.05.28.21257999doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.28.21257999
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3

and policies to mitigate the spread of IR. The simulation was developed using NetLogo as a case 53 

study of a simple but useful approach to public health research.  54 

Introduction 55 

It has recently been argued that modeling and simulation can be useful tools for public health 56 

research and innovation, but have yet to be used to their potential [1]. One recommended solution 57 

to this challenge is to increase the participation of the interested parties in the modeling and 58 

simulation development process, including the stakeholders, scientists, researchers and health 59 

professionals [1, 2]. Modeling and simulation can use many approaches, including differential 60 

equation-based or system dynamics approaches, statistical or data science approaches, and agent-61 

based approaches. This study used the latter, the agent-based modeling (ABM) approach, which is 62 

highly suitable for end-user participation in the simulation process [3]. As faster computers and 63 

more intuitive programming tools become increasing available, and typical users become more 64 

comfortable with computing, such end-users can become more involved as the developers of 65 

simulations [4], including agent-based simulations [5]. We describe in this paper a case study of 66 

an end-user developed malaria transmission simulation, and demonstrate its usefulness for 67 

evaluating a potential solution to a major challenge for malaria control. 68 

The use of chemical insecticides to control malaria vectors goes back at least to the 1940s 69 

and reported loss of their effectiveness caused by the vectors’ insecticide resistance (IR) goes back 70 

to the 1970’s [6, 7]. Malaria, a disease caused by the parasitic protist Plasmodium, is one of the 71 

major causes of death globally, especially in developing countries. There were 409,000 deaths and 72 

229 million infections across the world from the disease in 2019 [8]. Mosquito vectors transmit 73 

malaria by taking a blood meal from an infectious human and, after an extrinsic incubation period 74 

(EIP), biting a susceptible human, releasing the parasite into their bloodstream. Transmission 75 
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control can use chemical interventions to kill the mosquitoes that transmit the disease. These 76 

interventions primarily take the forms of insecticide treated bed-nets, which provide both a 77 

physical barrier and insecticide killing, and indoor residual spraying, which consists of an 78 

insecticide application inside human habitations. The efficacy of these interventions can be seen 79 

in the 27 countries which have improved to less than 100 yearly cases of malaria since 2010 [8].  80 

However, these chemical interventions are losing their effectiveness due to the evolution 81 

of IR in the mosquitoes causing them to be less affected by the current chemicals [7, 9, 10]. Once 82 

IR emerges in a vector population, the insecticide interventions become effective at reducing the 83 

mosquito population and controlling malaria [11, 12]. To combat this loss of effectiveness, new 84 

interventions are proposed to replace those that are no longer effective. These interventions can be 85 

evaluated using mathematical and computer modeling to observe their effects before such 86 

interventions are designed, developed and produced [13-17]. Such model-based evaluations can 87 

help specify performance attributes for the proposed interventions before they enter more costly 88 

development and field evaluation. However, many computer models are complex and hard for 89 

anyone other than specialists to use and understand. They also can take a long time to develop or 90 

adapt, which can reduce their utility during the insecticide’s development. While there have been 91 

many agent-based malaria transmission models described in the literature [13, 15, 18-26], most 92 

are not free-open source, and experience shows that most users of the notable free-open source 93 

models actually reside in the organization that sponsored their development [13, 26].  94 

We identify multiple challenges for the users of modeling and simulation of malaria 95 

transmission, including: 1) requirement of either strong mathematical or computer programming 96 

skills, 2) the traditional complexity of modeling and simulation, 3) long development time, 4) lack 97 
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of ease of use and extensibility, 5) lack of transparency of assumptions and limitations, and often 98 

6) the need for high performance computing resources. 99 

One approach to address these six challenges is to develop models employing an easy-to-100 

use ABM tool. These tools can simulate a sufficient level of needed problem complexity, while 101 

remaining simple enough to develop in a shorter time by a wider range of researchers compared 102 

to other modeling methods. These ABM tools enable relatively easy development of useful 103 

simulations of problems of interest and are accessible for use by non-technical investigators. Many 104 

reviews of these ABM tools, also called ABM platforms, are available [27-31]. Many are free-105 

open source, require lower levels of development effort, and can be used for a wide range of 106 

applications [27]. 107 

This paper describes an ABM of malaria transmission developed using the popular 108 

simulation development tool NetLogo [32] demonstrating an approach for non-technical 109 

investigators to develop useful simulations of many complex problems. As a demonstration, we 110 

investigate a proposed insecticide that uses a novel mechanism to control the mosquito population 111 

and hence malaria transmission, while delaying the evolution of resistance to that intervention. 112 

The proposed intervention is a late-life-acting (LLA) insecticide [33, 34]. This intervention targets 113 

the problem of IR by being more selective in the timing between exposure and mortality than 114 

traditional insecticides for two key reasons. First, the Plasmodium parasite has an approximately 115 

8 to 12-day EIP (the phase of the parasite’s life-cycle within the mosquito) meaning that the 116 

infectious mosquito does not need to die until at least 8-days after it has taken a blood-meal from 117 

an infectious person to block transmission of the disease. Second, this extra time also allows the 118 

mosquito to complete several gonotrophic cycles (i.e., the cycle of feeding, resting, and 119 

ovipositing), producing offspring with its genotype before they die, thus reducing the selective 120 
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pressure on the resistant allele. Most insecticides kill the insect on or shortly after contact – referred 121 

to as Instant Acting (IA) – meaning that only the resistant insects are able to reproduce and pass 122 

on their genotype when exposed to the IA insecticide. An LLA insecticide slows the spread of IR 123 

by allowing the insecticide-susceptible mosquitoes to be more competitive at passing on their 124 

insecticide-susceptible genes, resulting in a longer-lasting insecticide-susceptible population.  125 

One type of proposed LLA insecticide is based on using an entomopathogenic fungus – a 126 

biopesticide – which could provide the resistance delaying benefits of an LLA insecticide [33-40]. 127 

The application of these fungi has been evaluated in several field tests which have shown that the 128 

fungi can be applied effectively and work to kill mosquitoes in the field but have never been tried 129 

on a large enough scale to test their effect on malaria transmission [39, 41]. Mosquitoes are 130 

frequently in natural contact with fungi and do have ways to adapt to them in nature. Fungi can 131 

enter the mosquito from several points: ingestion, cutaneous openings, and forced introduction 132 

[37, 38]. Although their innate immune system is not capable of adapting to specific invaders [42], 133 

it is assumed that a mutation in the mosquitoes’ genome could confer a boosted immune system, 134 

causing the mosquito to become resistant to the fungal insecticide.  135 

However, some potential drawbacks with LLA insecticides have been identified. The 136 

female mosquito may not be exposed to the insecticide until her second or third gonotrophic cycle 137 

so that she may still live long enough to cause an infectious bite. Even if the mosquito is exposed 138 

to the LLA insecticide during its first gonotrophic cycle, there may be a wide variability in the 139 

timing of the mosquito’s death, possibly resulting in reduced malaria control or a shortened delay 140 

of the emergence of IR. To examine such problems, we constructed an ABM of the malaria 141 

transmission cycle. We then applied this model by using it to perform a series of tests on 142 
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hypothetical properties of an LLA insecticide [34]. This study utilized the simplicity, ease and 143 

speed of development of the NetLogo tool to quickly create a useful model.  144 

The model presented in this paper is agent-based (sometimes called individual-based) 145 

because it explicitly represents in the simulation important elements of the modeled system (the 146 

agents or individual actors in the system). ABM is an alternative to mathematical modeling, which 147 

often models population dynamics using differential equations. ABM can simulate the actions and 148 

events in the life-cycle of each distinct individual agent, including its interactions with other 149 

agents, to simulate more detailed and representative behavior of the modeled system. In the model 150 

there are six types of agents: 1) the adult female mosquito agents, 2) the brood agents (representing 151 

the aquatic stages of mosquito cohorts), 3) the susceptible or exposed (but not yet infectious) 152 

human agents, 4) infectious human agents, 5) recovered human agents, and 6) the patch agents 153 

(the square spaces that make up the simulated world of the simulation). Each of the agents can 154 

have its own unique attributes, individual behaviors, and distinct interactions with the other agents. 155 

The malaria parasite was modeled as an attribute possessed by the mosquitoes and humans and not 156 

as an explicit agent.  157 

This paper describes our results for two interrelated objectives: 1) a case study of how end 158 

users can develop agent-based simulation to be used by public health researchers to support their 159 

investigations, and 2) discover through simulation insights into the potential utility of LLA 160 

insecticides as a proposed strategy for addressing IR. The challenge of IR is not limited to malaria 161 

control and insights presented here may be applicable to other IR problem areas (e.g., other 162 

arthropod transmitted diseases and agricultural applications). The complete EMMIT (Extendible 163 

Model for Malaria Intervention Testing) program presented in this paper is included as a 164 

supporting information file and includes source code and documentation, permitting modifications 165 
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and extension to other malaria control research topics. Additional supporting information files 166 

include 1) formal documentation using the ODD standard, 2) a table of simulation parameters, and 167 

3) a compilation of calibration, verification, and validation experiments conducted on the model. 168 

The following sections present a description of a model of malaria transmission, the IA and LLA 169 

insecticide malaria control methods simulated in the model, our representation of the mosquitoes’ 170 

resistance genotypes, implementation details of the EMMIT program, and results and analysis.  171 

Model 172 

The EMMIT program consists of mosquito agents, brood agents, three types of human agents, a 173 

simulated world for the agents to occupy consisting of discrete patches, villages, water patches 174 

representing breeding sites, and interventions designed to reduce the number of mosquito agents. 175 

The simulated world is conceptually divided into an aquatic habit (where the broods reside) and a 176 

terrestrial habitat (where the adult mosquitoes and humans reside). 177 

Mosquito Agents 178 

We modeled the mosquitoes’ life cycle in two phases: the aquatic phase and the adult phase. In the 179 

aquatic phase of the life cycle, one brood agent represents all of the eggs associated with an 180 

oviposition. The brood agent represents all three aquatic stages (eggs, larvae, pupae) and has a 181 

lifespan equivalent to the sum of the time spent in each stage. For each gonotrophic cycle, the 182 

mosquitoes produce one brood. When each brood agent reaches the specified age, it is replaced by 183 

15 - 50 juvenile female adult mosquito agents, representing the survivors of the aquatic life stage. 184 

These newly emerged mosquitoes move randomly for about two days, after which they are 185 

assumed to have mated, become mature female adult mosquitoes, and begin seeking a blood meal 186 

(the beginning of a gonotrophic cycle). After successfully taking a blood meal, a period of time 187 
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passes representing the mosquito digesting the meal and the preparation of a brood of eggs. This 188 

is followed by search and selection of a water site for oviposition. After successful oviposition, 189 

the mosquito begins a new gonotrophic cycle. In each gonotrophic cycle the mosquito may be 190 

infected by the Plasmodium parasite. Male mosquitoes are not explicitly modeled as agents, but 191 

are implicitly modeled for determining the genotype of the offspring. See Fig 1. 192 

 193 

 194 

Fig 1. Modeled mosquito life cycle and human disease cycle. 
The simulated mosquitoes begin as a brood agent in the water patches of the simulated 
landscape until they emerge as immature mosquito agents wandering until they mature. Once 
matured (about two days later), the mosquito agents are assumed to have mated and begin 
searching for a blood meal. Once they take a blood meal, the simulated mosquitoes begin 
blood digesting then begin searching for a water patch to lay their eggs. If they bite an 
infectious person, they become exposed and then infectious. Once the simulated mosquito 
finds a water patch it creates a new brood agent and resumes the blood meal search. The 
human agents are susceptible until they receive a bite from an infectious mosquito, they then 
enter the exposed state, after which they transition to the infectious state. After the specified 
time, they transition from infectious to recovered and then back to susceptible. 
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The adult mosquitoes in the baseline model have a simple one percent hourly chance of 195 

mortality from natural causes (predators, age, environmental hazards, etc.). Since we only modeled 196 

the hours when the mosquitoes are active in our simulation (12-hours per day), this gave the 197 

mosquitoes a slightly less than 12% daily death rate causing an exponential decline in the mosquito 198 

population age structure. See Fig 4 in the Results section. 199 

Malaria dynamics in the mosquito population were implemented using the Susceptible-200 

Exposed-Infectious model. The mosquitoes are susceptible until they take a blood meal from an 201 

infectious human (with a given probability of infection), then they entered the exposed state with 202 

an EIP of 8-12 days [34, 43, 44], after which they became infectious for the rest of their lives.  203 

The mosquito agents are able to bite one of the human agents when they are on the same 204 

patch and the mosquito is not gravid. When taking a blood meal from a human agent a separate 205 

procedure determines if the human they bite is infectious, and hence if they become infected. After 206 

the bite procedures, the mosquito agent is considered gravid, begins bloodmeal digesting, and 207 

seeking a water patch for egg laying. After a burn-in period (running the simulation until it reaches 208 

equilibrium), the simulation records the total number of bites, the hourly bites, the total bites that 209 

infect humans, and the hourly bites that infect humans.  210 

The mosquito agents in our model move every timestep. If the non-gravid mosquitoes are 211 

within fifty patches of the center of either of the villages they move generally (although not 212 

directly) towards the village to take a blood meal. Outside of fifty patches from the villages, the 213 

mosquitoes move randomly. The gravid mosquitoes move randomly at a constant rate until they 214 

are within four patches of an open water patch. They then move to this patch and leave a brood 215 

agent there, and begin a new gonotrophic cycle searching for another blood meal.  216 

 217 

  218 
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Humans Agents 219 
 220 

Individual human agents all reside in one of two villages each represented in the model by a circle 221 

of patches. Human births and deaths are not modeled and the total number of human agents stays 222 

constant throughout the simulation’s duration. No additional attributes are assigned, such as co-223 

morbidities, preventative drug administration, age, sex, or pregnancy. The human agents move 224 

randomly within the village patches. Some humans move linearly in and out their village to 225 

simulate time that members of the villages spend traveling, tending to crops, and other activities 226 

outside of the village. To simulate the human disease states in our model we assumed the SEIRS 227 

(Susceptible, Exposed, Infectious, Recovered, Susceptible) disease model (see Fig 1). We modeled 228 

the SEIRS states using three types of human agents: 1) susceptible (which includes exposed), 2) 229 

infectious, and 3) recovered. The human agents cycle between these states when receiving 230 

infectious bites and after a delay. The length that the human agent spends in each state is sampled 231 

randomly from a normal distribution. In the event of a bite, if the human is susceptible and the 232 

mosquito is infectious, then the human becomes exposed. After a delay to represent the time which 233 

the parasite spends in the human liver (the exo-erythrocytic cycle) and the human blood 234 

(erythrocytic cycle), the human becomes an infectious agent. If the bitten human is infectious, the 235 

mosquito becomes exposed but not infectious until after the EIP (the sporogonic cycle) [44]. If the 236 

human is recovered, they can receive infectious bites, but are considered immune and do not 237 

change states. Then, after a random delay, the recovered human agents switch to the susceptible 238 

state where they are can receive infectious bites and become exposed and then infectious again. 239 

The mean of the time spent in the recovered and infected states is an input value which can be set 240 

in the interface.  241 

 242 
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Insecticides 243 

Both LLA and IA insecticides are modeled. To model the use of the LLA insecticide, we randomly 244 

assigned patches across the villages to be treated with the insecticide with coverage percentage 245 

specified by the user. When the mosquitoes encountered these patches, they have a random chance 246 

of exposure to the insecticide. If they are exposed, they are assigned a time-to-death. This time-to-247 

death is a normally distributed random number with adjustable mean and standard deviation used 248 

to evaluate the performance of the LLA. We evaluated multiple means from 7 to 11 days after 249 

exposure to evaluate the optimal delay time to death [37, 38]. We then evaluated multiple standard 250 

deviations to see how precise the timing of an LLA insecticide needed to be to reduce malaria 251 

transmission and simultaneously slow the spread of resistance. We modeled the effects of this LLA 252 

based on results from field tests of entomopathogenic fungi’s effect on mosquitoes [37, 38]. For 253 

example, after exposure to the LLA, we modeled a decrease in the mosquito’s flight speed, 254 

representing the growing burden of the fungal infection prior to death [40].  255 

We also modeled an IA insecticide representative of those currently approved for use by 256 

the WHO [45]. This enabled us to calibrate our model using empirical studies conducted on these 257 

insecticides [46, 47]. This also allowed us to compare the effectiveness of approved IA insecticides 258 

to the LLA insecticide. The IA insecticide was implemented in the model in the same way as the 259 

LLA insecticide: patches of insecticide were randomly distributed around the villages and when 260 

the mosquitoes encountered them, they had a certain probability of exposure and death. The 261 

difference is that, for the IA insecticide, the mosquitoes die immediately after exposure. 262 

Several variables are critical in determining the functionality of both insecticides. These 263 

include: the chance of exposure, the resistance dominance of the heterozygous genome [16, 17], 264 

the chance of death after exposure (IA), the mean and standard deviation of the kill time (LLA), 265 
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the fitness cost on the resistant mosquitoes, and the insecticide coverage of the village. All of these 266 

variables can be set through the interface of the program. 267 

Source Control Extension 268 

To demonstrate the flexibility and extensibility of the program, a simple source control feature was 269 

added to evaluate the reduction of breeding sites. When this feature is on, a variable percent of the 270 

water patches within the anulus of the village are removed to simulate the draining and removal of 271 

mosquito breeding sites near the villages. The distance that this intervention extends from the 272 

village is controlled by a slider on the user interface. The accuracy of this intervention is also 273 

controllable on the interface and can be set so that only a certain percent of patches in the 274 

intervention area are removed. The patches that become part of this intervention never become 275 

breeding sites again in the simulation. With this feature on, the number of people who leave the 276 

village is increased to simulate people going out to implement and maintain the source control 277 

measures. This extension was added with about 10 lines of code. See the S4 document for details 278 

on the results of this feature. 279 

Resistance Mitigation Policy Extension 280 

A second demonstration the extensibility of our model was a feature which evaluates an adaptive 281 

policy for the managing the use of an insecticide as IR emerges. When activated, this feature 282 

controls the amount of insecticide treated patches in the model based on how prevalent the resistant 283 

allele is in the mosquito population. As resistance to the insecticide increases, this IR mitigation 284 

policy iteratively reduces the number of treated patches until no insecticide is applied (so that the 285 

selective pressure for resistance goes down). Then, it waits for the percent of resistant mosquitoes 286 
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to return to a baseline level and reintroduces the insecticide at full strength. This feature relies on 287 

a high fitness cost of resistance to cause the resistant population to decrease after the insecticide is 288 

removed. This extension was added with about 35 lines of code. See the S4 document for details 289 

on the results of this feature.  290 

Agent Space 291 

The agent space consists of 40,401 patches arranged in a 2-dimensional 201x201 grid. This is 292 

intended to represent 100m2 per patch for a simulated space of approximately 4 km2. The edges of 293 

the space wrap horizontally and vertically forming a torus. Two village areas (red) are set 294 

equidistant from the center of the space (see Fig 2). In these villages, the people move randomly. 295 

Water patches are randomly spread across the space controlled by a slider on the interface to 296 

specify their initial frequency. During the simulation, the water patch count decreased or increased 297 

seasonally with two peaks each year to simulate seasonal rainfall. Each water patch has a carrying 298 

capacity of three broods. The mosquitoes move randomly across the map unless they are within 299 

50 patches (adjustable in the interface) of one of the villages in which case they move generally 300 

towards the village until they encounter a human and take a blood meal. After the blood meal, the 301 

mosquitoes move randomly out of the village until they find a water patch. If they are within 4 302 

patches of a water patch, they move straight to the water where, and if their gonotrophic cycle is 303 

completed, they lay a brood of eggs and continue random flight.  304 
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 305 

 306 

Resistance 307 

The resistance to the LLA insecticide in the model was governed by two alleles giving three 308 

possible genotypes, susceptible (SS), partially resistant (SR), and resistant (RR) [16, 17]. We 309 

assumed that a single mutation was responsible for causing resistance for both of the insecticides 310 

(see Table 1). Since male mosquitoes were not explicitly modeled as agents in the program, the 311 

contribution of the male alleles to the spread of resistance was computed probabilistically based 312 

on the proportion of each genotype in the simulation. The resistant allele was introduced in the 313 

burn-in (a number of days at the beginning of a simulation run to let the model stabilize before 314 

Fig 2. NetLogo representation of the agent-space. 
Screenshot showing two villages (red), patches with insecticide treatment, aquatic breeding 
sites, humans and mosquitoes. The black patches are empty, not including any insecticide, 
humans, breeding sites or mosquitoes. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 3, 2021. ; https://doi.org/10.1101/2021.05.28.21257999doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.28.21257999
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16

collecting data – sometimes called warm-up) and maintained at up to 2% of the population to 315 

simulate a naturally occurring mutation. The initial percent of SR mosquitoes is a changeable 316 

variable in our model but we used 2% for consistency. Since the male mosquitoes were not 317 

simulated, the female mosquitoes determine the genotype of the male they have mated with by 318 

using the percentage of each genotype in the total population as the probability that they mate with 319 

each type of male. Once this had been evaluated, it was recorded in a variable which was passed 320 

from the female to any broods she created along with her own genotype. When a brood agent 321 

transitions to adult female mosquitoes, each new mosquito’s genotype is assigned using 322 

probabilities based on the genotypes of the mother and assumed father.  323 

 324 
Table 1. The assumed genetic outcomes for mosquito genotype parings. 325 

 
 

Offspring 
Genotype 

Parents’ Genotypes 

SS + SS SS + SR SS + RR SR + SR SR + RR RR + RR 

SS 100% 50% 0% 25% 0% 0% 
SR 0% 50% 100% 50% 50% 0% 
RR 0% 0% 0% 25% 50% 100% 

This table shows the assumed genetic outcomes of the combinations of each 326 
genotype. Each mosquito’s variables include a set of two genotypes, one it 327 
expresses which was assigned when it entered the system based on its parents’ 328 
genotypes, and one which it evaluates based randomly on the density of each 329 
genotype in the population. Both of these are combined to assign the genotypes of 330 
that mosquitoes' offspring. 331 

 332 
The model includes an option for modeling a fitness cost of resistance implemented as a 333 

reduction in flight speed and an increased larval fatality for the homozygous resistant mosquitoes. 334 

The heterozygous resistant mosquitoes are also subject to the cost of resistance in the same ways 335 

but at a lower level than the homozygous resistant mosquitoes [17, 48-50]. The cost was assigned 336 

three levels: High Cost, Low Cost, and No Cost. Each of these levels acted on the same variables 337 
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but gave them more or less extreme values. These values can easily be edited in the code by 338 

someone looking to experiment with different types of cost or resistance. These cost values were 339 

evaluated to test their effect on the spread of resistance. We used a variable called Resistance-340 

Dominance [17] to determine how much the resistant allele was expressed for the heterozygous 341 

genotype mosquitoes. The Resistance-Dominance raged from 0 to 100 with 100 meaning that the 342 

resistant allele caused the heterozygous mosquito to be completely resistant and 0 causing 343 

complete susceptibility. For values in-between 0 and 100 the value that was chosen became the 344 

chance that the mosquito was affected by the insecticide upon exposure. For example, if the 345 

Resistance-Dominance was set to 50, the SR mosquitoes had a 50% chance of being affected by 346 

the implemented insecticide per encounter with an insecticide treated patch.  347 

 348 

Model Implementation 349 
 350 
The model is implemented as a computer simulation using NetLogo 6.2.0. The NetLogo simulation 351 

tool is open source and freely available, running on the Windows, Macintosh and Linux operating 352 

systems [32]. A complete executable copy of the EMMIT program can be found in Supporting 353 

Information File S1 Program. The ODD (Overview, Design concepts and Details) protocol is 354 

employed to provide standardized and detailed documentation of the model [51-54] supporting 355 

experimental replication of results and a basis for model adaptation and extension by others. This 356 

documentation can be found in Supporting File S2 ODD Documentation. On opening the EMMIT 357 

program file in the NetLogo tool, the user can view the Interface_Tab (discussed in the next 358 

section), the InfoTab displaying model documentation and usage guidance, and the Code_Tab 359 

displaying the actual code with detailed line-by-line comments. As implemented, the program is 360 

highly modular, consisting of 39 procedures. Setup and initialization of the program takes place in 361 

14 of those procedures and the remaining 25 procedures contain the code for execution of the 362 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 3, 2021. ; https://doi.org/10.1101/2021.05.28.21257999doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.28.21257999
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18

simulation. About 40 global variables are used to control a simulation instance, of which about 20 363 

can be set through the user interface using slider, switch and dropdown interface elements. The 364 

remaining global variables are set in the code but can be easy edited to take on different values. In 365 

the Code_Tab the global variable declarations and procedures (i.e., the functional code, excluding 366 

program comments) total approximately only 600 lines. These program statistics suggest that this 367 

program is an example of an end-user development, user-extensible agent-based simulation of 368 

malaria transmission, but capable of providing insight into complex questions about the disease’s 369 

transmission and control. A typical single simulation with an agent space consisting of 40,401 370 

patches, as many as 50,000 mosquito agents and 200 human agents, running for up to 20 years, 371 

running on a single core on a consumer-grade computer (laptop or desktop) has a wall-clock run-372 

time of approximately 5-8 hours. Simulation experiments consisting of hundreds of parameter-373 

sweeps were run using the Behavior Space tool in NetLogo specific variable values, including 374 

ranges of values, as a parameter sweep. Each individual simulation runs on a separate core, with 375 

multiple simulations running in parallel on all available cores of a single computer (for example, 376 

8 parallel runs on an 8-core machine). If needed, the Behavior Space tool also supports running 377 

multiple simulations on a cluster of computers. As each simulation is completed, the next one 378 

begins until all scheduled runs are completed. The output of each Behavior Space experiment is 379 

recorded to a CSV file with the specified output data from each run. A separate data tool can then 380 

be used to analyze and visualize the results.  381 

 382 

Interface and Simulations 383 
 384 

A screen shot of the EMMIT program’s interface is shown in Fig 3. The interface of the program 385 

contains 25 input elements (sliders, switches and drop-down menus) that a user can select to set 386 

the associated 19 variable values, monitors for observing mosquito and human population values 387 
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during run-time, dynamic charts, and a map of the simulated world and the agents on it. For 388 

interactive usage, a simulation is started by selecting the desired values in the input features, 389 

pushing the Setup button to initialize the agents, and then pushing the Go button to begin the 390 

simulation. We believe this interface is intuitive enough for most researchers to use and understand 391 

so that it can be used in many settings.  392 

When the simulation begins, it has a 1000 timestep burn-in period to initialize the 393 

populations and then a one-year control period before the chosen intervention is applied. This 394 

control period enables the observation of a simulated baseline, prior to the introduction of a malaria 395 

control intervention. When running the simulation using the interactive interface, the simulation 396 

runs until the user stops it pressing again on the Go button.  397 

 398 

 399 

Fig 3. NetLogo user interface. 
Screen shot of the EMMIT program’s interface displays user-selectable inputs specifying malaria 
control interventions and simulation setup values, and program outputs including mosquito 
statistics and human statistics. 
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Most of the simulations were run with a fixed seed for the random number generators to 400 

enable replication of results and comparison of simulations with different parameter settings. This 401 

removed variability in the simulation attributable to the starting point in the random sequence 402 

generated by the random number generator. Sensitivity analysis on different random seeds 403 

indicated that multiple runs are typically needed to properly determine the distributions of possible 404 

outcomes. More discussion on this is reported in the results section below.  405 

 406 

Model Parameters 407 
 408 
Where applicable, we set simulation parameter values based on values reported in the literature. 409 

See Supporting File S3 Table of Model Variables for most of these used in the model. When a 410 

range of values are reported (perhaps dependent on temperature, mosquito or parasite species, etc., 411 

we typically modeled the uncertainty with random distributions. While most of these values are 412 

hard coded into the program, they can be easily edited in the Code_Tab view of NetLogo. As an 413 

example, one of these is the EIP which is reported as being between eight and twelve days [34, 414 

43]. This value played an important role in the results and insights provided by our model and can 415 

be edited in the model code. As another calibration example, we were able to find WHO data to 416 

calibrate the kill rate of instant acting insecticide we simulated [12, 55]. We did test other values 417 

as well to allow for natural variation which may occur. 418 

 419 

  420 
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Results 421 
 422 

We ran many simulations and analyzed the output with six different (but overlapping) objectives: 423 

1) calibration, 2) verification, 3) validation, 4) sensitivity analysis, 5) evaluation of the potential 424 

of LLA biopesticides for malaria control, and 6) demonstration of the model’s extensibility and 425 

use of simple end-user-developed agent-based modeling to investigate important public health 426 

research questions. Objectives 1-4 served the purpose of increasing our confidence in the model 427 

and objectives 5-6 provided the two contributions of this study. We discuss and provide examples 428 

of these below. 429 

 430 

Calibration, Verification, and Validation 431 
 432 
Calibration of the model is the process of iteratively setting appropriate simulation parameters to 433 

achieve internally consistent and externally plausible outputs. For example, the simulated world is 434 

abstracted to be a toroidal grid of 100m2 patches of total size of approximately 4 km2. Movement 435 

of the mosquito in the simulation is specified by patches per time-step (where a time-step is 436 

specified to be one hour). This needs to be consistent with actual flight distances over time of the 437 

mosquitoes. For example, mosquito flight distances are reported to have typical values of a few 438 

hundred meters per day, but may occasionally be long distances [56, 57]. The size of our simulated 439 

world and typical flight distances are consistent with these reported values. Likewise, the natural 440 

mortality (pre-intervention) of the mosquitoes needs to be modeled, to properly address the 441 

research question investigated in this paper, i.e., the potential ability of a late-acting bio-pesticide 442 

to delay IR while controlling malaria transmission.  443 

As described in more detail earlier, we assumed an average baseline mosquito mortality of 444 

1% per hour for 12 hours per day, resulting in a daily mortality of slightly less than 12% per day 445 
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on average. This value is consistent with reported survival rates of a mosquito in the wild [56, 57]. 446 

To calibrate this parameter value and its usage in the simulation, we recorded data from a running 447 

control simulation (no insecticide interventions) and tabulated the average age distribution of the 448 

mosquito population (see Fig 4) following the methods of Hancock, et. al. [11]. A good fit to the 449 

expected age distribution is observed demonstrating parameter calibration (also providing support 450 

for verification and validation of the simulation). 451 

 452 

 453 

Verification checks if the simulation runs correctly, as intended by the modelers, primarily 454 

checking for coding and programming logic errors. Validation checks for the correctness of the 455 

design and specifications as defined by the researchers, primarily checking for reasonable 456 

emulation of the underlying phenomenon being investigated. A large literature describes methods 457 

Fig 4. Mosquito Age Distribution. 

This graph shows the percent of the population in each daily age group. The data is an average 

of the population age structure over many days in a control test. This data confirms our 

intended age structure. In addition to the data, a fitted curve is plotted to show the similarity 

between the data and an exponential decline. 
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for conducting verification and validation of ABMs. See Cooley [58], Xiang [59], and Sargent 458 

[60] as examples. To verify and validate the model described in this paper, we used multiple 459 

methods, including code walkthroughs, face validity, internal validity, input-output analysis, and 460 

sensitivity analysis. Since the NetLogo tool provides multiple types of interface elements (e.g., 461 

animations of agent movement, monitors displaying program variable values, graphical plots of 462 

time series – see Fig 3), face validity checks, internal validity checks, and input-output analysis 463 

was easily conducted. A face validity check on Fig 5 suggests that the underlying SEIRS disease 464 

model is properly implemented in the simulation. The number of humans in each state fluctuates 465 

stochastically in equilibrium around average levels. In Fig 6 we see support for the case that 466 

seasonality, insecticide treatments and IR are properly modeled and implemented in the model. 467 

Mosquito populations for three conditions are compared: baseline (no insecticides), IA insecticide 468 

introduced after 12 months, and LLA insecticide introduced after 12 months. Each of the three 469 

insecticide treatments was replicated 10 times with a different random starting seed. The thick 470 

lines in the plots are the average of all output sequences for each treatment. The IA insecticide is 471 

more effective initially, but resistance appears after a few years, while the LLA insecticide, while 472 

slightly less deadly, avoids resistance for the duration of the simulation run. This displays support 473 

for the verification and validation of the model. In these simulations we observe a minor 474 

dependence on the starting random generator seed, primary with the IA insecticide.  475 
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 476 

 477 

Fig 5. Validation of assumed SEIRS model implemented in the NetLogo simulation. 

People transition over 10 years through Susceptible, Infected, Recovered and Susceptible disease 

stages associated with an endemic disease such as malaria. See S4-Fig.1 in Supporting 

Information “S4 Figures Output” for parameter settings for this result.  
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 478 

 479 
One aspect of our model which required extensive calibration, verification, and validation 480 

was the genetics involved in the mosquito IR. Originally, we employed a simple method of 481 

transferring the resistant gene from a resistant female to all offspring. We refined this process to 482 

be more accurate through verification and validation to better represent the natural stochasticity of 483 

genetics. We implemented the two-allele genotype and a set of probabilities for how those genes 484 

were expressed described above. We also used the idea of resistance dominance from South and 485 

Fig 6. Validity check of simulations of three insecticide treatments: no insecticide, IA 

insecticide, and LLA insecticide. 

No intervention (no insecticide baseline) displays mosquito population varying with seasonality 
and stochasticity of mosquito deaths, births, and gonotrophic cycles. IA insecticide treatment 
displays initial large reduction in mosquito population, followed by evolving IR with mosquito 
population rising close to the baseline. The LLA insecticide treatment displays sustained 
reduction in mosquito population by avoiding evolving IR over an 8-year period. Each of the 
three insecticide treatments was replicated 10 times with a different random starting seed. Minor 
dependance on the starting seed is seen in the IA insecticide intervention between months 40 
through 85. 
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Hastings [17] to model multiple resistance levels for the heterozygous genotype. With this method, 486 

we were able to provide better analysis on the development of IR.  487 

 488 

Sensitivity Analysis 489 
 490 
Sensitivity analysis of the simulation outputs was conducted for many of the important model 491 

parameters, including 1) sensitivity of the initial random number generator seed, 2) the delay in 492 

the timing of the mosquito’s death after exposure to LLA insecticide (kill-time-mean), 3) the 493 

variability in the timing of mosquitoes’ death after exposure to LLA insecticide (death-time-494 

deviation), 4) the fitness cost of the resistance allele, 5) the resistance dominance associated with 495 

the SR genotype, 6) the effect of the area of source control (reduction of aquatic breeding sites) 496 

around the villages, 7) the chance of exposure to the LLA insecticide (probability range), 8) LLA 497 

insecticide coverage (percent of village patches with insecticide), 9) the size of the source 498 

reduction area, and 10) different resistance mitigation policies. A more extensive documentation 499 

and presentation of this analysis can be found in Supporting Information S4 Figures. 500 

The results of a sensitivity analysis for two items are displayed in Fig 7: 1) variability of 501 

simulation output caused by the initial value of the random number generator seed, and 2) a sweep 502 

over multiple values of the LLA insecticide standard deviation parameter.   503 

 504 
Sensitivity to Random Generator Seed 505 

 506 
As discussed in the Model section above, the simulation expresses the randomness of many events 507 

in the transmission of malaria (e.g., probabilities of exposure to an insecticide, the probability that 508 

a mosquito blood meal results in an infection, the distribution of mortality of an LLA insecticide, 509 

etc.) with calls to a random number generator. As with most such random number generators, an 510 

initial seed is required to start a sequence of values, which then are used to compute probabilities 511 
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in the simulation. Simulation output will typically vary based on the value of the initial seed and 512 

this needs to be accounted for in the interpretation of the results. See Martinez-Moyano and Macal 513 

[61]. Fig 7 presents the results of 8 runs of the EMMIT program for an LLA insecticide scenario, 514 

while all model parameters were held to the same values with only the starting seed changed. The 515 

sensitivity of simulation outputs based on the starting seed can be observed in the wide range of 516 

output time series. The thin graph lines present the simulation output for individual runs. The thick 517 

lines report the mean of the output time series over all the 8 runs of the simulation. We thus 518 

conclude that a valid interpretation of the simulation results will require such sensitivity analysis 519 

to avoid the possible situation of any one simulation run being an outlier and approximately 8 520 

replications provide a good sample size for estimating the mean and variability of the simulation’s 521 

output sequences. 522 

 523 
Sensitivity of Standard Deviation of LLA Insecticide Time to Death 524 

 525 
In Fig 7, a sensitivity analysis on the standard deviation parameter is displayed for a simulation of 526 

the LLA insecticide, with mean time to death of 9-days (kill-time-mean), and an iteration of zero 527 

through three days for the standard deviation (death-time-deviation). For each standard deviation 528 

setting in the model, eight replications were run. Outputs are total mosquito population, numbers 529 

of each mosquito genotype (SS, SR, RR), and the number of infectious humans. As the standard 530 

deviation increases, it can be observed that the number of infectious humans increases because of 531 

the survival of older infectious mosquitoes. Also, as the standard deviation increases, we more 532 

frequently see an earlier appearance of IR. See Supporting Information S4 Figures for other 533 

sensitivity analyses. 534 
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 536 
 537 

 538 

Results for Objective 1: Evaluating the Potential of LLA Insecticides 539 
 540 

LLA insecticides have been proposed as a potential method to delay the emergence of IR and to 541 

provide another tool for malaria control managers to reduce transmission by reducing the mosquito 542 

population [33-39, 41]. It is argued that the delayed death of the mosquitoes after first exposure to 543 

the LLA insecticide can reduce the selective evolutionary pressures that result in IR by permitting 544 

the SS or SR genotypes time to return the susceptible allele to the population.  545 

The first objective of the research reported in this paper is to provide (by way of simulation) 546 

insights into the required performance properties of such LLA insecticides in order to achieve the 547 

goal of delaying the emergence of IR and to identify other variables that affect the insecticide’s 548 

performance. Towards this objective, we have described 1) an assumed model of how malaria is 549 

transmitted between mosquito vectors and humans, 2) the emerging challenge of IR for malaria 550 

control, 3) the design and implementation of the EMMIT program, 4) the calibration, verification 551 

and validation of that program, and 5) and the use that program to explore, discover, and evaluate 552 

the effect of operational characteristics and assumptions about an LLA insecticide. See Supporting 553 

Information S4 Figures for an extensive report on this last item. 554 

While there are many variables in the model, a few critical variables determine whether the 555 

LLA insecticide might be effective. An ideal set of values for these critical variables results in the 556 

LLA insecticide killing as many infected mosquitoes as possible prior to those mosquitoes 557 

Fig 7.  Sensitivity analysis on the Random Number Generator seed and the standard 

deviation for the kill-time-delay for the LLA insecticide.  

This figure displays the results of eight replications of the EMMIT program with the same 
settings but different random seeds. Individual run results are shown in thin lines and the 
averages of each output parameter are thick lines. See Supporting Information S4 Figures for 
the simulation parameters.  
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becoming infectious, but with as long a time-to-death delay as possible to slow IR emergence. 558 

Analysis of simulation results (see Supporting File S4 Figures) suggests that several operational 559 

characteristics of the LLA insecticide, its application, and the nature of the mosquito’s resistance 560 

strongly influence the LLA insecticide’s potential success. These six critical variables are: 1) the 561 

delay between exposure and death of the mosquito (i.e., the Kill-Time-Mean), 2) the distribution 562 

of mosquito deaths around the mean delay-to-death (i.e., the standard deviation), 3) the LLA 563 

insecticide coverage, 4) the fitness-cost of resistance, 5) the chance of exposure, and 6) resistance 564 

dominance.  565 

The best values of these critical variables that the EMMIT program predicts for a LLA 566 

insecticide are displayed in Table 2. The associated values at which LLA insecticide perform with 567 

either high or low success are listed in separate columns. These variables are synergistic with one 568 

another so there is an overlap in the categorization of some values. Finally, we note that these 569 

results are dependent on our assumptions of mosquito properties, LLA insecticide properties, 570 

malaria transmission properties, and the course of the disease in the human population. The 571 

assumptions in the current model will need to be calibrated before evaluation of a specific LLA 572 

insecticide, a specific vector species, and a specific environmental and public health setting. 573 

In Fig 7 we display a sensitivity analysis of one of the most important variables, the 574 

distribution of mosquito deaths around the mean time from exposure to death (i.e., the death-time-575 

deviation). A zero value for the death-time-deviation means the LLA insecticide kills all the 576 

mosquitoes exposed to it at precisely the specified time, ideally just before the mosquito becomes 577 

infectious and begins to transmit malaria. Values for the death-time-deviation greater than zero 578 

imply that the LLA insecticide kills the mosquitoes either earlier or later than the ideal mean kill 579 
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time delay, diminishing its effectiveness both at reducing transmission and at slowing down the 580 

emergence of IR.  581 

These results are primarily meaningful for a malaria transmission scenario close to the one 582 

we simulated. Researchers wishing to use such a model to inform the development of a candidate 583 

LLA insecticide will need to calibrate all the assumptions of the model especially for these six 584 

critical variables and confirm that our simplifying assumptions in the simulation are valid for their 585 

application.  586 

 587 
  588 
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Table 2. LLA Insecticide Critical Variables  589 

Critical Variables Values With High Success Values With Low Success 
Kill-Time-Mean 7,8,9 10,11 
death-time-deviation 0, 1, 2 2, 3 
LLA-Coverage% 20, 25, 30, 40 10, 20, 50 
Cost High Cost, Low Cost, No Cost Low Cost, No Cost 
chance-of-exposure 50, 75, 100 25 
resistance-dominance 0, 10, 20, 25, 30, 40, 50, 60 50, 60, 75, 80, 90, 100 

Given all the assumptions built into the EMMIT program, six critical variables 590 

and their values associated with successful and less successful performance of the 591 

LLA insecticide are listed in this table. Successful performance here implies 592 

achieving the two simultaneous goals of a LLA insecticide: 1) killing mosquitoes 593 

before they can transmit malaria, and 2) doing it with as long as possible a delay 594 

so as to slow the emergence of IR. Some of the critical variables represent 595 

characteristics of IR in the mosquito population (cost-of-resistance and resistance-596 

dominance) and the others are associated with the LLA insecticide’s application 597 

(LLA-Coverage-%) and its performance (kill-time-mean, death-time-deviation, 598 

and chance-of-exposure). Researchers wishing to use such a model to inform the 599 

development of a candidate LLA insecticide will need to calibrate all the 600 

assumptions of the model especially for these six critical variables.  601 

 602 
Results for Objective 2: Demonstration of an Approach for End-user 603 
Development of Computer Simulation in Support Public Health Research 604 
 605 
The EMMIT program and investigation described in this paper demonstrate the feasibility of end-606 

user/non-technical development of computer models and the ability to provide useful insights into 607 

public health research questions. Earlier in this paper we identified multiple modeling and 608 

simulation challenges, including: 1) requirement of either strong mathematical or computer 609 

programming skills, 2) the typical complexity of modeling and simulation, 3) long development 610 
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time, 4) lack of ease of use, 5) simulation adaptation and extensibility, 6) transparency of 611 

assumptions and limitations, and 7) often the need for high performance computing resources. In 612 

Table 3 we summarize how the approach we describe in this paper addresses these challenges. For 613 

this study, we wished to demonstrate the relative ease of developing a model primarily focused on 614 

a specific public health topic. While the model presented here can be adapted and extended, as the 615 

research topic changes sufficiently from the motivating topic used to design the original model, 616 

modifications will become more difficult and a new design may be required.  617 

  618 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 3, 2021. ; https://doi.org/10.1101/2021.05.28.21257999doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.28.21257999
http://creativecommons.org/licenses/by-nc-nd/4.0/


 34

Table 3. Modeling Challenges and How Approaches Address Those Challenges 619 

Modeling Challenges How Approach Presented Addresses the Challenges 
Need for Strong 
Mathematical or 
Computer Programming 
Skills 

Agent-based simulation and modeling using NetLogo is employed. 
Basic mathematical and programing skills are needed. The initial 
version of the model was developed by Author 1, a novice 
programmer (at the time) with only one semester of programming 
training in MATLAB. Author 2 helped define the public health 
problem to be modeled and assisted with the design of the 
conceptual model, but only contributed to the simulation with 
verification and validation of the results (primarily face-validity). 

Complexity The model contains only 600 lines of functional code (other lines 
in program are comments or demonstrations of extensibility). 
NetLogo (and other such simulation building tools) are widely 
available, free and open source in many cases, and can be learned 
and used in a short time. 

Long Development Time The initial version was developed in under 100 hours of effort by 
Author 1. That development time included both learning how to 
use the NetLogo tool and actual computer coding. (That said, 
much more additional time was eventually needed for extensions, 
verification, validation, and documentation, specifically for this 
paper). 

Ease of Use & 
Transparency of 
Assumptions and 
Limitations 

The graphical interface permits interactive simulation runs 
providing understanding of the behavior of the program and 
insights into its assumptions and limitations. The program also 
includes 1) tabs to view the model’s documentation, 2) 
instructions on how to use the program, and 3) a full listing of the 
model’s code and comments.  

Extensibility and 
Flexibility 

In addition to the model of LLA insecticides for addressing the 
malaria transmission control IR problem, two other interventions 
were added as a demonstration of the potential ease of extending 
the simulation. This required under 10 lines of code for the source 
control intervention and about 35 lines of code for the IR 
mitigation policy. 

Need for High 
Performance Computing 
Resources 

NetLogo and other such simulation development tools run on 
consumer-grade desktop/laptop computers. NetLogo programs can 
be run in “batch mode” using the Behavior Space tool on desktop 
and laptop computers utilizing all available cores, and if needed, 
can run in “headless mode” (ie, no user interface) from the 
command line on computer clusters. Modern consumer-grade 
computers have increased performance, often equivalent to high 
performance computing of a decade ago.  

 620 

  621 
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Discussion 622 

In this study we designed, developed, verified, and validated a basic model of malaria transmission 623 

using NetLogo as a demonstration of how an easy-to-use ABM tool can be used to investigate 624 

specific public health questions. To demonstrate that meaningful research questions can be 625 

investigated with this approach, we presented the problem of IR and a proposed IA insecticide 626 

alternative – LLA insecticides – to evaluate how effective LLA insecticides could be at both 627 

controlling malaria and avoiding IR. We designed the EMMIT program such that its behavior and 628 

assumptions were transparent so that it can be adapted, used and understood by researchers from 629 

many disciplines, including those who regulate the production of new insecticides, researchers 630 

who engineer new insecticides, and public managers who design malaria control campaigns 631 

impacted by IR. We conducted comparison runs on a representative IA insecticide, such as those 632 

currently approved for use, and a hypothetical LLA insecticide. Two especially important 633 

parameters we evaluated were the Kill-Time-Mean (the mean delay-before-death after exposure to 634 

the LLA insecticide) and the standard deviation of the delay. Our analysis suggests that the more 635 

closely the timing of the LLA insecticide’s delay-to-death coincides with the end of the EIP, the 636 

better it was at preventing malaria transmission and avoiding insecticide resistance in the mosquito 637 

population. We also concluded that the hypothetical LLA insecticide we simulated performed 638 

better than the instant acting insecticide in most situations.  639 

We made many simplifying assumptions in the model. We assumed that the mosquitoes 640 

have a constant baseline hourly mortality regardless of age or position on the map. While this is a 641 

very difficult parameter to calibrate, it could be improved by implementing some of the findings 642 

from [11]. Our simplification may result in a slight change in the selective pressure for IR and in 643 
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the malaria transmission as Hancock [11] reported that mosquitoes may have a longer average 644 

lifespan than we modeled.  645 

The two-allele mosquito genotype was also a simplification in our model as IR is often the 646 

result of many concurrent and interacting genotypic and phenotypic changes. An improvement to 647 

this simplification would be to increase the complexity of the modeled mosquito genotype and the 648 

fitness benefits and costs associated with that increase. This simplification may result in a change 649 

in the prevalence of IR, especially in the instant acting insecticide.  650 

 Another simplified component of our model was the mosquito movement. The mosquitoes 651 

move randomly until they enter the region of the map where they can sense the village (controlled 652 

by the village-sense-radius variable). This variable was not based on reported data but rather 653 

calibrated using face validity to find a suitable value. Future improvement might be to calibrate 654 

this variable more accurately to a specific region and mosquito population, and incorporate 655 

reported movement patterns for that geographic location.  656 

 Other simplifications that could be improved include: 1) male mosquitoes and their 657 

genotypes are abstracted in the simulation, 2) no birth or deaths of male mosquitoes are modeled, 658 

3) no cost of resistance is included for the male mosquitoes, and 4) the cost of female mosquito IR 659 

is modeled by way of reduced travel distances per time step. These simplifications would need to 660 

be improved for more accurate representation of resistance cost in both the males and females or 661 

for studies of other interventions such as a sterile insect technique. 662 

The humans in our model also have simple characteristics and behaviors. Most only move 663 

randomly within the village. A possible improvement to this would be to add human attributes 664 

such as age and gender specific differences for time spent in areas with a higher likelihood of 665 

infection, differences in bed-net usage, etc. We modeled a small number of humans who traveled 666 
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out of the village. These people represented village members who may leave the village area for 667 

several days to perform agricultural, forestry or mining work away from their village. These people 668 

moved constantly in and out of the village in straight lines regardless of whether they were 669 

infected. This routine may not be representative of some populations and can be easily edited or 670 

disabled in the code of the model. We did model a feature where human agents were infected 671 

randomly, without mosquito interaction. This simulates humans receiving infections outside of the 672 

modeled region and bringing them back to their community, i.e., importation of external malaria 673 

cases [62]. We also did not model any malarial drug administration, prevention, and treatment. We 674 

did not model births, deaths, or age, sex, and pregnancy dependent malaria susceptibility in our 675 

model. This simplification may have effects on the malaria transmission rate in our simulation, 676 

depending on the specific questions being investigated.  677 

We modeled the insecticides in our model so that they had a constant coverage rate and a 678 

constant performance level. Application details, reapplication, effectiveness decay, or delivery 679 

mechanism of the insecticides, (such as insecticide treated bed nets or indoor residual spraying) 680 

were not explicitly modeled. Such details should be relatively easy to add. In practice these 681 

performance parameters are difficult to achieve but may be closely approximated with frequent re-682 

applications. For locations where reapplication is not an accessible option, an improvement to the 683 

model would be to have the chance of exposure to the insecticide decay over time to show the 684 

deterioration in the active amount of insecticide remaining.  685 

Some remaining factors to explore which we did not investigate are: the length of time that 686 

the humans spend in the infected and recovered stages, the introduction of bed nets or other 687 

interventions, the combination of the insecticides with source control, the effect of changing 688 

temperatures, and varying the number of people in the simulation.  689 
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While NetLogo is the modeling tool used for this study, many other such tools are available 690 

[27, 29-31]. NetLogo is a relatively mature tool, with the benefit of many useful features 691 

supporting the programmer: an extensive tutorial and manual, tool studies, and many example 692 

models. Because it was originally designed for educational applications, inspired by the Logo 693 

project, and used the Lisp programming language in precursor implementations, some of 694 

NetLogo’s programming syntax contain curious legacy artifacts, such as agents are called turtles 695 

in the programming language. These legacy artifacts will seem strange to programmers trained in 696 

more contemporary programming languages, but should not be a problem for novice programmers. 697 

Given this minor issue, the tool is implemented in Java and Scala providing portability to most 698 

modern computer operating systems: Windows, Mac OS, and Linux. 699 

Conclusions 700 

This paper presents the results of a study with two related objectives: 1) demonstrate how simple 701 

but useful models of public health questions can be rapidly build by skilled public health 702 

researchers, including those with limited mathematical modeling or programming skills (i.e., end-703 

user-development), and 2) demonstrate this by simulating the performance of proposed LLA 704 

insecticides as an approach to address the major problem of IR for malaria control. A ready-to-run 705 

copy of the EMMIT program including graphical interface, usage information, and editable code 706 

is included. Supporting information also includes documentation using the ODD format for ABMs 707 

and an extensive report of calibration, verification, and validation simulation runs.  708 

For this project, the agent-based modeling approach, employing the NetLogo tool, was 709 

used. The model presented in this paper was coded exclusively by one novice programmer (the 710 

first author), with the second author contributing by framing of the public health research problem 711 

and assisting with verification and validation. The modeling and simulation approach presented in 712 
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this paper might be ideally suited to smaller or urgent public health investigations where resources 713 

are limited, but the potential insight provided by the simulation is needed quickly. For a study such 714 

as this one, the public health expert alone might be able to design and program the model in support 715 

of their investigation. For larger scale investigations where more time and resources are available, 716 

a team including both the public health experts and skilled mathematical modelers or programmers 717 

might be more appropriate. We suggest that the EMMIT program and investigation described in 718 

this paper demonstrate the feasibility of end-user/non-technical development of computer 719 

simulations and the ability to provide useful insights into public health research questions. 720 
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