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ABSTRACT 
 
Background: Electronic health records (EHRs) promise to enable broad-ranging 

discovery with power exceeding that of conventional research cohort studies. However, 

research using EHR datasets may be subject to selection bias, which can be 

compounded by missing data, limiting the generalizability of derived insights. 

Methods: Mass General Brigham (MGB) is a large New England-based healthcare 

network comprising seven tertiary care and community hospitals with associated 

outpatient practices. Within an MGB-based EHR warehouse of >3.5 million individuals 

with at least one ambulatory care visit, we approximated a community-based cohort 

study by selectively sampling individuals longitudinally attending primary care practices 

between 2001-2018 (n=520,868), which we named the Community Care Cohort Project 

(C3PO). We also utilized pre-trained deep natural language processing (NLP) models to 

recover vital signs (i.e., height, weight, and blood pressure) from unstructured notes in 

the EHR. We assessed the validity of C3PO by deploying established risk models 

including the Pooled Cohort Equations (PCE) and the Cohorts for Aging and Genomic 

Epidemiology Atrial Fibrillation (CHARGE-AF) score, and compared model performance 

in C3PO to that observed within typical EHR Convenience Samples which included all 

individuals from the same parent EHR with sufficient data to calculate each score but 

without a requirement for longitudinal primary care. All analyses were facilitated by the 

JEDI Extractive Data Infrastructure pipeline which we designed to efficiently aggregate 

EHR data within a unified framework conducive to regular updates.  

Results: C3PO includes 520,868 individuals (mean age 48 years, 61% women, median 

follow-up 7.2 years, median primary care visits per individual 13). Estimated using 
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reports, C3PO contains over 2.9 million electrocardiograms, 450,000 echocardiograms, 

12,000 cardiac magnetic resonance images, and 75 million narrative notes. Using 

tabular data alone, 286,009 individuals (54.9%) had all vital signs available at baseline, 

which increased to 358,411 (68.8%) after NLP recovery (31% reduction in 

missingness). Among individuals with both NLP and tabular data available, NLP-

extracted and tabular vital signs obtained on the same day were highly correlated (e.g., 

Pearson r range 0.95-0.99, p<0.01 for all). Both the PCE models (c-index range 0.724-

0.770) and CHARGE-AF (c-index 0.782, 95% 0.777-0.787) demonstrated good 

discrimination. As compared to the Convenience Samples, AF and MI/stroke incidence 

rates in C3PO were lower and calibration error was smaller for both PCE (integrated 

calibration index range 0.012-0.030 vs. 0.028-0.046) and CHARGE-AF (0.028 vs. 

0.036). 

Conclusions: Intentional sampling of individuals receiving regular ambulatory care and 

use of NLP to recover missing data have the potential to reduce bias in EHR research 

and maximize generalizability of insights. 
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Introduction 

Electronic health record (EHRs) databases are increasingly recognized as powerful 

tools for biological discovery and clinical insight.1 EHR databases provide favorable 

statistical power for large-scale association (e.g., epidemiological, genetic) analyses, 

rich and diverse feature sets including clinical risk factors, laboratory results, free text 

notes, and raw imaging data,2–5 and repeated measures to support modeling of disease 

progression and clinical trajectories.6 However, EHR data are subject to selection bias 

introduced by the acquisition of data on the basis of clinical need,3,7 and tend to exhibit 

high rates of missing data.4,8,9 

Many studies utilize EHR-derived samples including all available individuals for a 

particular modeling application. Such an approach is practical and powerful, but 

resulting samples may be substantially biased, and are more likely to be suitable only 

for the particular scientific question motivating their construction.10 In contrast, an EHR 

dataset sampled a priori to include individuals receiving longitudinal primary care more 

closely mirrors the design of prospective cohort studies and may result in more 

generalizable insights as well as the flexibility to support a more diverse array of analytic 

frameworks.11,12 Furthermore, acquisition of all unstructured data, such as free text 

notes, may provide an opportunity to recover data missing from structured fields. We 

hypothesized that careful design and attention to missingness would result in sufficient 

power, reduced bias, and valid prediction performance compared to a conventional 

EHR based analysis. 

In the current study, we developed an EHR-based cohort within a multi-

institutional healthcare system comprising individuals selected on the basis of receiving 
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regular in-network primary care, to enable novel cardiovascular discovery, which we 

named the Community Care Cohort Project (C3PO). We built a standardized data 

processing pipeline to harmonize a diverse range of structured and unstructured data. 

To demonstrate the potential to reduce missingness in C3PO, we deployed a deep 

natural language processing (NLP) model to recover four vital sign features using 

unstructured notes. We assessed overall validity of C3PO by deploying two established 

clinical risk scores, and comparing model performance to that observed in Convenience 

Samples constructed from the same parent EHR but including all individuals with 

sufficient data to calculate each score (i.e., with no requirement for regular in-network 

primary care).  

 

Methods 

Cohort construction 

Mass General Brigham (MGB) is a multi-institutional healthcare network with a linked 

EHR spanning seven tertiary care and community hospitals with associated outpatient 

practices in the New England region of the United States. Study participants were 

initially identified using an MGB-based data mart containing tabular EHR data for >3.6 

million individuals with at least one ambulatory visit between 2000-2018. Given our 

intent to identify individuals receiving primary care within the MGB system, we 

developed, validated, and applied rule-based heuristics to identify primary care office 

visits using Current Procedural Terminology (CPT) codes (Supplementary Table 1) 

and a manually curated list of 431 primary care clinic locations. To increase the 

probability that individuals received longitudinal primary care within MGB, we restricted 
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the cohort to individuals with at least one pair of primary care visits occurring between 

1-3 years apart. To allow for ascertainment of baseline clinical factors, we defined the 

start of follow-up for each individual as the second primary care visit of that individual’s 

earliest qualifying pair (Supplementary Figure 1).4 Study protocols complied with the 

tenets of the Declaration of Helsinki and were approved by the Mass General Brigham 

Institutional Review Board. 

 

Cohort validation 

We validated the construction of C3PO using two methods (Supplementary Methods 

1). First, we assessed overlap between individuals selected for C3PO and an existing 

sample from a curated Massachusetts General Hospital (MGH) primary care practice 

registry comprising 297,718 individuals. Prior to applying any temporal and age 

selection criteria (see below), 93.3% of the MGH registry was included within the 

candidate set for C3PO. After applying temporal and age selection criteria to the C3PO 

set, 73.7% of the MGH registry remained included in C3PO (Supplementary Figure 2). 

 Second, we performed manual validation of the EHR for C3PO candidates. Two 

clinical adjudicators (S.K., M.A.A.) reviewed n=400 records to assess accuracy of the 

applied selection criteria. Definitions used to determine inclusion and exclusion in C3PO 

met the pre-specified threshold of ≥85% positive predictive value (PPV) sufficient to 

proceed with cohort construction (PPV 94% for cases; 92% for non-cases, 

Supplementary Table 2).  
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Data ingestion pipeline 

After identifying a candidate set of 523,445 individuals in C3PO, we obtained a 

comprehensive range of EHR data including demographics, anthropometrics and vital 

signs, narrative notes, laboratory results, medication lists, and radiology/cardiology 

diagnostic test reports using the Research Patient Data Registry (Boston, 

Massachusetts), a data repository containing the complete EHR data of all individuals 

receiving care within MGB.13 We then developed a standardized data ingestion pipeline 

(the JEDI Extractive Data Infrastructure [JEDI]), which integrates a series of distinct files 

containing an array of different EHR data types into a unified, indexed file system 

suitable for implementation of an array of traditional and machine learning-based 

models (Hierarchical Data Format 514). To facilitate interactive data exploration and 

epidemiologic modeling, we also developed egress pipelines capable of producing 

customized long-format files (i.e., each row is a distinct observation within the EHR) and 

wide-format files (i.e., each row is a unique individual and columns represent data from 

observations, drawing from the full corpus of data available in C3PO). We removed 

individuals aged <18 or ≥90 years at the start of follow-up, as well as an additional 21 

individuals with missing demographic data, resulting in 520,868 individuals in the final 

C3PO cohort (Figure 1). 

 

Cohort validation 

We implemented two well-validated and clinically relevant cardiovascular risk prediction 

models to assess the validity of C3PO as a tool for patient-oriented discovery research 

and longitudinal risk prediction: 1) the Pooled Cohort Equations (PCE),15 and 2) the 
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Cohorts for Aging and Genomic Epidemiology Atrial Fibrillation (CHARGE-AF) score.16 

 Relevant exposures were derived from the EHR. Demographics including age, 

sex, and race were extracted from EHR demographic data. Height, weight, blood 

pressure, and smoking status were derived from tabular EHR data extracted from 

clinical encounters, where the value most closely preceding start of follow-up (within 

three years) was used, with the exception of height for which any value in the EHR was 

accepted. Prevalent diseases were defined using previously published groupings of 

International Classification of Diseases, 9th and 10th revision (ICD-9 and 10) diagnosis 

codes and CPT codes. A complete list of exposure definitions is shown in 

Supplementary Table 3. 

 Primary outcomes included the prediction targets for each risk score (i.e., 

myocardial infarction or ischemic stroke [MI/stroke] for PCE and AF for CHARGE-AF). 

AF was defined using a previously validated EHR-based AF classification scheme (PPV 

92%).17 Stroke and myocardial infarction were defined using the presence of ≥2 ICD-9 

or ICD-10 codes using previously validated code sets (PPV ≥85%).18 

 

Convenience Samples 

We additionally deployed the PCE and CHARGE-AF scores within samples derived 

from the same parent EHR but constructed solely on the basis of available score 

components to compare contrasting EHR-based sampling strategies (“PCE 

Convenience Sample” and “CHARGE-AF Convenience Sample”). Specifically, each 

Convenience Sample comprised all individuals with each component of the relevant 

score available within a three-year window (i.e., no requirement for longitudinal primary 
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care). In each Convenience Sample, the start of follow-up began at the earliest time all 

necessary data became available. Flow diagrams summarizing the construction of the 

Convenience Samples are shown in Supplementary Figure 3. Further details of 

Convenience Sample construction are described in Supplementary Methods 2. 

 

Natural language processing vital sign recovery 

Given relatively high missingness rates for baseline vital signs (>40%), we employed a 

natural language processing (NLP) algorithm to recover vital signs (i.e., height, weight, 

systolic and diastolic blood pressures) from unstructured notes. Our NLP methods are 

described in detail in Supplementary Methods 3. Briefly, we utilized Bio+Discharge 

Summary BERT, a deep contextual word embedding model that has been pretrained 

consecutively on large corpora of general English text (e.g., Wikipedia), biomedical text 

(PubMed abstracts and PubMed Central full-text articles),19 and physician-written 

Discharge Summaries (from the MIMIC-III v1.4 database).20,21 Such domain-specific 

pretraining has been shown to yield performance improvements on clinical NLP tasks 

like named entity recognition, which is relevant for feature recovery.19,20 To recover vital 

signs, we created a rule-based approach to automatically label the position of relevant 

features and their corresponding units in several different types of clinical notes (e.g., 

discharge summaries, outpatient progress notes) (Supplementary Table 4). We fine-

tuned Bio+Discharge SummaryBERT on approximately 120,000 instances of vital signs 

identified with the rule-based approach. We then imposed physiological constraints and 

performed unit harmonization on NLP extracted values. Fifty random values of each 

vital sign type extracted from a held out validation set were inspected by a study 
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cardiologist and had a PPV of 100% for representing the true vital sign of interest. We 

ran inference with this model on 9,522,262 notes for the 401,826 patients who had 

eligible notes in the three years prior to start of cohort follow-up, and utilized NLP 

recovered values in our prediction models for individuals in whom baseline values were 

missing in the tabular data. 

 

Statistical analysis 

We tabulated the number of cardiac imaging studies, cardiac diagnostic tests, and 

unstructured text notes available within the dataset. We also cross-referenced the 

number of individuals in C3PO in whom genetic data are available for analysis through 

simultaneous participation in the MGB Biobank biorepository. We compared sets of 

values obtained from both sources on the same day within 3 years of the start of follow-

up to assess agreement between vital signs obtained using tabular data versus NLP. 

We plotted the distribution of paired values, calculated Pearson correlations, and 

assessed agreement using Bland-Altman plots. If individuals had multiple same-day 

value pairs for comparison, only the pair most closely preceding start of follow-up was 

compared. 

We calculated the cumulative incidence of events at their respective time 

horizons (e.g., 5-year AF for CHARGE-AF, 10-year MI/stroke for PCE) using the 

Kaplan-Meier method. We also calculated event incidence rates per 1,000 person-years 

and corresponding confidence intervals using the normal approximation. For all 

longitudinal analyses, person-time ended at the earliest of an outcome event, death, last 

encounter of any type in the EHR, age 90, or the administrative censoring date for 
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C3PO (August 31, 2019, Supplementary Figure 1). 

 The linear predictors of the CHARGE-AF16 and PCE scores15 were calculated 

using their published coefficients. The analysis set for each score was restricted to 

individuals without the disease of interest at baseline and within the published age 

range for each score (i.e., 46-90 years for CHARGE-AF and 40-79 years for PCE). For 

the purposes of calculating CHARGE-AF, the coefficient associated with White race 

was attributed to individuals who self-reported as White, but not to individuals of other 

races.4,8,22 Although dedicated PCE models are available only for White and Black 

individuals, some work suggests that the models developed for White individuals 

perform better than those developed for Black individuals when deployed within 

individuals of other races.23 Therefore, for the purposes of calculating the PCE, the 

models developed for Black individuals were utilized for individuals of self-reported 

Black race, while the models developed for White individuals were utilized for 

individuals of all other races. We also performed secondary analyses in which the White 

equations were deployed only among individuals self-identifying as White. Scores were 

then converted into predicted event probabilities at their respective time horizons using 

their original published equations.  

We assessed model performance by fitting Cox proportional hazards models with 

the linear predictor of each model as the covariate of interest. We then tabulated the 

hazard ratio (HR) per standard deviation (SD) increase in score, model discrimination 

using the inverse probability of censoring weighted c-index,24 and model calibration. We 

assessed model calibration in four ways: 1) visual inspection of predicted versus 

observed event rates within each decile of predicted risk (with corresponding fitted 
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curves obtained using adaptive hazard regression25), 2) performing the Greenwood-

Nam-D’Agostino (GND) test, in which a greater chi-squared value and smaller p-value 

suggest evidence of miscalibration,26 3) calculating the calibration slope, defined as the 

beta coefficient associated with the linear predictor in a Cox proportional hazards model 

with the prediction target as the outcome and the linear predictor as the sole covariate 

and where a value of one indicates optimal calibration,27 and 4) quantifying the 

integrated calibration index (ICI), a measure of the average absolute prediction error 

weighted by the empirical risk distribution.25 We assessed calibration measures for the 

original models as well as after recalibration to the sample-level baseline hazard to 

ensure calibration-in-the-large.27,28 Confidence intervals for the ICI were obtained using 

bootstrapping (500-1,000 iterations based on stratum sample size). 

We plotted the cumulative risk of AF and MI/stroke according to level of predicted 

risk using CHARGE-AF and PCE, respectively, to assess the prognostic value of each 

score. For these analyses, we used thresholds <7.5% vs ≥7.5% for MI/stroke risk (i.e., 

the threshold used to determine candidacy for statin therapy in current American Heart 

Association/American College of Cardiology primary prevention guidelines29) and 

<2.5%, ≥2.5-5%, and ≥5% for AF risk (thresholds used in the original CHARGE-AF 

validation study16).  

 We repeated the analyses described above within the AF and MI/stroke 

Convenience Samples to compare the results of contrasting EHR sampling approaches. 

We assessed for differences in model calibration performance in C3PO versus the 

Convenience Samples by comparing calibration slopes and ICI values using 

bootstrapping (500-1,000 iterations based on stratum sample size). 
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Data availability 

MGB source data contain potentially identifying information and cannot be shared 

publicly. The JEDI data processing pipeline underlying C3PO is currently located in a 

private GitHub repository (https://github.com/broadinstitute/jedi), to which access will be 

granted upon request to the corresponding author. JEDI is in the process of being open-

sourced under a BSD 3-Clause License and will be made publicly available on GitHub 

upon completion.  

 

Results 

C3PO cohort 

In total, C3PO comprised 520,868 individuals (mean age 48 years, 61% women) with a 

median follow-up time of 7.2 years (quartile-1: 2.6, quartile-3: 12.9). Individuals in C3PO 

had a median of 30 office visits (14, 62), and 13 (6, 26) primary care office visits. By 

comparison, individuals in the Convenience Samples generally had shorter follow-up 

and substantially fewer office visits (Figure 2 and Supplementary Figure 4). Detailed 

characteristics of individuals included in C3PO and each Convenience Sample are 

shown in Table 1. A summary of the diverse array of diagnostic, imaging, narrative 

note, and genetic data types available for individuals in C3PO is shown in 

Supplementary Table 5.  

 

NLP-based vital sign recovery 
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Using tabular data alone, 286,009 individuals (54.9%) had height, weight, systolic and 

diastolic blood pressure available at baseline, which increased to 358,411 (68.8%) after 

deep learning-enabled NLP recovery (31% reduction in missingness, Figure 3). NLP 

recovery rates stratified by vital sign are shown in Supplementary Table 6.  

We compared NLP-derived and tabular vital sign data among individuals with 

values available from both sources on the same day. The distribution of vital sign values 

was nearly identical using NLP versus tabular data sources (Figure 4). The correlation 

between NLP-derived and tabular vital signs obtained on the same day was excellent 

(height r=0.99, weight r=0.97, systolic blood pressure r=0.95, diastolic blood pressure 

r=0.95, p<0.01 for all, Figure 4). Intra-individual agreement was generally good (height: 

-2.97cm to 2.99cm; weight: -8.64kg to 9.29kg; systolic blood pressure: -13.6mmHg to 

13.0mmHg; diastolic blood pressure: -8.3mmHg to 8.2mmHg). Bland-Altman plots did 

not suggest systematic bias (Figure 4).  

 

MI/stroke analyses – Pooled Cohort Equations 

After excluding individuals for missing PCE components, prevalent MI/stroke, absence 

of follow-up, or age outside 40-79 years, there were a total of 198,184 individuals who 

were included in incident MI/stroke analyses (Supplementary Figure 5). Of the 

198,184 individuals in the MI/stroke analysis, 49,289 (24.9%) would have been 

excluded in the absence of NLP-recovered data (Figure 3). At 10 years, there were 

10,201 total MI/stroke events (cumulative incidence of MI/stroke 8.0%, 95% CI 7.8-8.1; 

MI/stroke incidence rate 8.4 per 1,000 person-years, 95% CI 8.2-8.5). The sex- and 

race-specific PCE scores were each strongly associated with incident MI/stroke (HR per 
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1-standard deviation (SD) increase range 2.04-2.51), with moderate discrimination (c-

index range 0.724-0.768). Miscalibration was present, although relatively modest (GND 

χ2 range 21-487; ICI range 0.012-0.030). Recalibration to the sample average MI/stroke 

risk did not substantively improve calibration (GND χ2 range 18-1,689; ICI range 0.010-

0.034; calibration slope range 0.60-0.88). Details of PCE model fit, discrimination, and 

calibration are shown in Table 2. The distribution of predicted MI/stroke risk before and 

after recalibration is shown in Supplementary Figure 6. Cumulative risk of MI/stroke 

stratified by predicted risk using the original PCE models is shown in Supplementary 

Figure 7. Detailed assessments of PCE calibration before and after recalibration are 

shown in Supplementary Figures 8-9. Results were similar in models deploying the 

White PCE algorithms only in individuals identifying as White (Supplementary Table 

7). Model assessment with versus without NLP recovered values demonstrated similar 

performance but with greater precision in the NLP enabled analyses (Supplementary 

Table 8). 

 We performed an analogous assessment of the PCE models within the MI/stroke 

Convenience Sample, which comprised 340,226 individuals with complete data to 

calculate the PCE. Compared to C3PO, individuals in the MI/stroke Convenience 

Sample had lower rates of cardiovascular comorbidity and anti-hypertensive medication 

use (Table 1). However, the observed 10-year MI/stroke risk was higher (cumulative 

risk of MI/stroke 10.6%, 95% CI 10.5-10.7; MI/stroke incidence rate 11.7 per 1,000 

person-years, 95% CI 11.5-11.8). Cumulative risk curves demonstrated an abrupt rise in 

incident MI/stroke diagnoses shortly after the start of follow-up, which was not observed 

in C3PO (Figure 5). Discrimination of MI/stroke risk was similar to that observed in 
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C3PO (c-index range 0.727-0.770, Figure 6), but calibration was worse (GND χ2 range 

36-1,797; ICI range 0.028-0.046; calibration slope range 0.56-0.87, Figure 7 and 

Supplementary Figures 8-9). Recalibration to the baseline hazard of the Convenience 

Sample did not correct miscalibration (GND χ2 range 13-4,923; ICI range 0.012-0.047, 

Figure 7 and Supplementary Figures 8-9). 

 

AF analyses – CHARGE-AF 

After excluding individuals for missing CHARGE-AF components, prevalent AF, 

absence of follow-up, or age outside 46-90 years, there were 174,644 individuals who 

were included in analyses of incident AF in C3PO (Supplementary Figure 5). Of the 

174,644 individuals in the AF analysis, 38,528 (22.1%) would have been excluded in the 

absence of NLP-recovered data (Figure 3). At 5 years, there were 7,877 AF events 

(cumulative incidence 5.8%, 95% CI 5.7-6.0; AF incidence rate 12.1 per 1,000 person-

years, 95% CI 11.8-12.3). The CHARGE-AF score was strongly associated with incident 

AF (hazard ratio [HR] per 1-standard deviation (SD) increase 2.56, 95% CI 2.50-2.61), 

with moderate discrimination (c-index 0.782, 95% 0.777-0.787), although CHARGE-AF 

substantially underestimated AF risk (GND χ2 1,856, ICI 0.028, 95% CI 0.027-0.030). 

Calibration was much improved after recalibration to the baseline AF hazard in C3PO 

(GND χ2 1,367; ICI 0.019, 95% CI 0.018-0.021; calibration slope 0.77, 95% CI 0.75-

0.79). Details of CHARGE-AF model fit, discrimination, and calibration are shown in 

Table 2. The distribution of predicted AF risk before and after recalibration is shown in 

Supplementary Figure 6. Cumulative risk of AF stratified by predicted AF risk using the 

recalibrated CHARGE-AF score is shown in Supplementary Figure 7. Detailed 
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assessments of CHARGE-AF calibration before and after recalibration are shown in 

Supplementary Figures 8-9. Model assessment with versus without NLP recovered 

values demonstrated similar performance but with greater precision in the NLP enabled 

analyses (Supplementary Table 8). 

 We performed an analogous assessment of CHARGE-AF within the AF 

Convenience Sample, which comprised 501,272 individuals with complete data to 

calculate the score. Similar to observations with MI/stroke, individuals in the AF 

Convenience Sample had lower rates of cardiovascular comorbidity and anti-

hypertensive medication use (Table 1), yet higher 5-year AF risk (cumulative risk 6.9%, 

95% CI 6.9-7.0; AF incidence rate 15.1 per 1,000 person-years, 95% CI 14.9-15.3). 

Cumulative risk curves again demonstrated an abrupt rise in incident AF diagnoses 

shortly after the start of follow-up, isolated to the Convenience Sample (Figure 5). 

Discrimination of AF risk using CHARGE-AF was similar to that observed in C3PO (c-

index 0.781, 95% CI 0.778-0.784, Figure 6), but calibration was substantially worse 

(GND χ2 7,188; ICI 0.036, 95% CI 0.035-0.036; calibration slope 0.69, 95% CI 0.68-

0.70, p<0.01 for comparisons of ICI and calibration slope to C3PO, Figure 7). 

Calibration remained less favorable in the Convenience Sample even after recalibration 

to the baseline hazard (GND χ2 8,322; ICI 0.028, 95% CI 0.027-0.029; Figure 7 and 

Supplementary Figures 8-9). 

 

Discussion 

In the present study, we demonstrate that selective sampling of individuals from a large 

multi-institutional EHR on the basis of longitudinal primary care encounters, and 
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recovery of missingness using deep learning, enable EHR-based prediction with validity 

exceeding a conventional EHR based cohort sampling approach.8,30,31 C3PO comprises 

over a half-million individuals receiving longitudinal care over a decade of follow-up and, 

owing to the fact that it more closely mirrors the design of epidemiologic cohort studies 

as compared to conventional EHR based sampling, is likely to facilitate more 

generalizable insights. When compared to Convenience Samples derived from the 

same parent EHR with no requirement for longitudinal primary care, C3PO appeared 

less biased and offered greater data density. Leveraging neural network-based NLP 

models using unstructured notes, we achieved a roughly 30% reduction in missingness 

of baseline vital signs.  

The JEDI data pipeline underlying C3PO, which we will make publicly available, 

provides a modular framework for processing and updating diverse EHR data in a 

manner conducive to an array of modeling approaches. We submit that JEDI, along with 

the principles underlying the development of C3PO, may enable future discovery by 

facilitating novel statistical and machine learning-based prediction and classification 

models utilizing diverse EHR data types available at scale and in a manner that reduces 

bias (Figure 8). The principles guiding the development of C3PO and the coding 

infrastructure for our analyses are widely extendable to external EHR data sets. 

 The development of C3PO advances previous work leveraging EHR datasets to 

derive disease insights. The large scale and diversity of available features typically 

offered by EHR repositories is particularly conducive to the development of machine 

learning models. Recently, Artzi et al.30 developed a machine learning model trained on 

over a half-million individuals to predict the development of gestational diabetes. 
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Chauhan et al.32 utilized an EHR dataset to develop a random forest-based prediction 

model to predict incident renal failure. EHR datasets have also been used to develop 

traditional statistical models, including risk scores for AF.4,8 In contrast to previous 

approaches, C3PO was specifically sampled in a manner intended to reduce selection 

bias inherent within most EHR-related study designs. 

 To that end, our observations suggest that EHR samples enriched for individuals 

receiving longitudinal primary care may offer a particularly efficient and valid setting for 

developing novel disease-related models. In the current study, we performed incident 

disease modeling using C3PO versus Convenience Samples including all individuals 

with complete data but with no requirement for longitudinal primary care. Both MI/stroke 

and AF incidence rates were higher in the Convenience Samples as opposed to C3PO, 

despite paradoxically lower rates of documented cardiovascular comorbidity. We 

suspect that selecting for individuals receiving longitudinal primary care improves 

detection of relevant clinical factors.  

Similarly, we observed abrupt increases in incident diagnoses shortly after the 

start of follow-up in the Convenience Samples. By defining the start of follow-up as the 

second of the two qualifying PCP visits required for inclusion in C3PO, we submit there 

is greater likelihood for prevalent conditions to be appropriately recorded within the EHR 

prior to the onset of time-to-event analyses, minimizing misclassification of prevalent 

disease as compared to the Convenience Sample. Taken together, overall risk model 

performance was more consistent with expectations when deployed within C3PO as 

opposed to the Convenience Samples. Specifically, discrimination performance of the 

PCE and CHARGE-AF scores in C3PO was comparable to metrics reported in each 
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score’s original validation study.15,16 Additionally, when compared to the Convenience 

Samples, model calibration was substantially favorable in C3PO, demonstrating a 

relationship between known risk factors and outcomes more consistent with prior 

evidence.15,16  

We acknowledge that selecting a primary care population may introduce 

alternative biases (e.g., more likely to receive primary prevention or have insurance), 

which requires further study. Of note, EHR sample construction predicated on the needs 

of a specific analysis may also produce datasets that are less adaptable to other 

analytic frameworks.10–12 In contrast, the C3PO sampling design is readily amenable to 

an array of epidemiologic analyses (e.g., cross-sectional, retrospective cohort, case-

control). 

 Our findings also imply that deep learning models applied on unstructured data 

have the potential to substantially reduce missingness in traditional EHR analyses. We 

leveraged neural network-based NLP methods, fine-tuned using relatively small 

amounts of labeled data,33 to accurately extract vital signs for an additional 80,000 

individuals using unstructured text, reducing missingness by roughly one-third and 

increasing the precision of risk model performance estimates. We suspect that use of 

neural network-based approaches facilitated high accuracy despite a wide range of 

documentation patterns contained within notes spanning over 20 years – a substantial 

challenge to pattern matching approaches such as regular expressions. Importantly, 

when compared within individuals having features available from both tabular and NLP 

model sources, vital signs were consistently very highly correlated, with good 

agreement. We anticipate that analogous NLP models will be able to extract additional 
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clinical parameters, such as laboratory values, which continue to exhibit considerable 

missingness in C3PO. Although we submit that recovery of actual data where possible 

is preferable to other methods of accounting for missingness, future work is needed to 

better understand the effects of incorporating features recovered from deep learning 

models on downstream analyses, and how such approaches differ from substitution 

methods such as multiple imputation.34 

 We submit that large and comprehensive EHR samples like C3PO have the 

potential to facilitate broad-ranging discovery leveraging diverse data types, provided 

that sufficient infrastructure exists to efficiently process, store, and analyze data within a 

unified framework. To that end, we have developed the JEDI pipeline, which automates 

processing and unification of diverse EHR data types within a harmonized, indexed file 

system amenable to a variety of statistical and machine learning-based approaches. 

Specifically, C3PO includes over 2.95 million ECGs, 450,000 echocardiograms, and 

millions of free text notes. Through linkage to the MGB Biobank biorepository, we 

anticipate that biological samples will be available within over 40,000 individuals. 

Facilitated by the JEDI pipeline, we expect that future models built within C3PO 

leveraging some or all of these data types will result in more accurate and generalizable 

disease prediction and classification models. Furthermore, recent work has suggested 

substantial value in the ability to utilize longitudinal EHR data to model patient 

trajectories.35,36 By providing nearly a decade of follow-up and a median of over 30 

longitudinal office visits per person, we anticipate that C3PO will provide a very rich 

setting for trajectory modeling. Importantly, although the EHR data comprising C3PO is 

not sharable owing to concerns about data identifiability, the principles governing C3PO 
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are widely applicable to EHR datasets and the JEDI pipeline will be publicly available to 

catalyze future research efforts related to the development of clinical models using rich 

and diverse EHR data. 

 Our study should be interpreted in the context of design. First, despite our 

purposeful intent to reduce bias by selecting individuals receiving regular primary care 

within our hospital network, residual indication bias is inevitable using EHR data. 

Nevertheless, we demonstrate that the approach taken to developing C3PO appears to 

reduce bias. Second, although we successfully employed NLP to reduce missingness 

rates for vital signs by roughly one-third, missingness of other features (e.g., 

cholesterol) remains considerable. We anticipate that similar NLP approaches will have 

utility in reducing missing data further. Third, although we utilized previously validated 

algorithms to define the presence of disease, some degree of misclassification of 

exposures and outcomes remains likely. Fourth, we identified individuals for inclusion in 

C3PO using EHR-based codes to identify office visits and a manually curated list of in-

network primary care practice locations. Although two forms of validation support the 

accuracy of our selection methods, we acknowledge that the process is imperfect and 

would not easily extend to other EHRs. Fifth, most individuals included in C3PO are 

White, and therefore generalizability to populations with varying racial composition may 

be limited. However, we note that the absolute number of individuals of color within 

C3PO compares favorably to several other cohorts and EHR-based studies.37–39 Sixth, 

current results are observational and should not be used to infer causality.  

 In conclusion, we have developed C3PO, an EHR-based resource comprising 

over a half-million individuals within a large networked healthcare system. By sampling 
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the full range of EHR data for individuals receiving regular primary care, EHR samples 

such as C3PO offer the potential to substantially reduce biases related to patient 

selection and missing data. By providing a broad array of data types, longitudinal 

measurements, and a flexible data structure conducive to multiple modeling 

frameworks, we anticipate that C3PO – and similarly constructed EHR datasets – will 

facilitate impactful discovery research. 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 30, 2021. ; https://doi.org/10.1101/2021.05.26.21257872doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.26.21257872
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23

Disclosures: Dr. Philippakis receives sponsored research support from Bayer AG, IBM, 

Intel, and Verily. He has also received consulted fees from Novartis and Rakuten. He is 

a Venture Partner at GV and is compensated for this work. Dr. Ho receives sponsored 

research support from Bayer AG and Gilead Sciences. Dr. Ho has received research 

supplies from EcoNugenics. Dr. Friedman receives sponsored research support from 

Bayer AG and IBM. Dr. Anderson receives sponsored research support from Bayer AG 

and has consulted for ApoPharma and Invitae. Dr. Batra receives sponsored research 

support from Bayer AG and IBM, and consults for Novartis. Dr. Lubitz receives 

sponsored research support from Bristol Myers Squibb / Pfizer, Bayer AG, Boehringer 

Ingelheim, and Fitbit, and has consulted for Bristol Myers Squibb / Pfizer and Bayer AG, 

and participates in a research collaboration with IBM. Dr. Ellinor receives sponsored 

research support from Bayer AG and IBM Research and he has consulted for Bayer 

AG, Novartis, MyoKardia and Quest Diagnostics. Dr. Atlas receives sponsored research 

support from Bristol Myers Squibb / Pfizer and has consulted for Bristol Myers 

Squibb/Pfizer and Fitbit. Dr. Ashburner has received sponsored research support from 

Bristol Myers Squibb / Pfizer. Dr. Diedrich, Dr. Mielke, Dr. Eilken, Dr. Derix, and Ms. 

Ghadessi are employees of Bayer AG.  

 

Funding support: Dr. Khurshid is supported by NIH T32HL007208. Dr. Haimovich is 

supported by NIH R38HL150212. Dr. Atlas is supported by American Heart Association 

(AHA) grant 18SFRN34250007. Dr. Ashburner is supported by NIH K01HL148506 and 

AHA 18SFRN34250007. Dr. Ho is supported by NIH R01HL134893, R01HL140224, 

and K24HL153669. Dr. Lubitz is supported by NIH 1R01HL139731 and AHA 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 30, 2021. ; https://doi.org/10.1101/2021.05.26.21257872doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.26.21257872
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24

18SFRN34250007. Dr. Ellinor is supported by NIH 1R01HL092577, R01HL128914, 

K24HL105780, AHA 18SFRN34110082, and by the Foundation Leducq 14CVD01. Dr. 

Anderson is supported by NIH R01NS103924, U01NS069673, AHA 18SFRN34250007, 

and AHA-Bugher 21SFRN812095. This work was sponsored by Bayer AG.  

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 30, 2021. ; https://doi.org/10.1101/2021.05.26.21257872doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.26.21257872
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25

References 

  1.  Cowie MR, Blomster JI, Curtis LH, Duclaux S, Ford I, Fritz F, Goldman S, 
Janmohamed S, Kreuzer J, Leenay M, et al. Electronic health records to facilitate 
clinical research. Clin Res Cardiol Off J Ger Card Soc. 2017;106:1–9.  

2.  Attia ZI, Noseworthy PA, Lopez-Jimenez F, Asirvatham SJ, Deshmukh AJ, Gersh 
BJ, Carter RE, Yao X, Rabinstein AA, Erickson BJ, et al. An artificial intelligence-
enabled ECG algorithm for the identification of patients with atrial fibrillation during 
sinus rhythm: a retrospective analysis of outcome prediction. Lancet Lond Engl. 
2019;394:861–867.  

3.  Tison GH, Zhang J, Delling FN, Deo RC. Automated and Interpretable Patient ECG 
Profiles for Disease Detection, Tracking, and Discovery. Circ Cardiovasc Qual 
Outcomes. 2019;12:e005289.  

4.  Hulme OL, Khurshid S, Weng L-C, Anderson CD, Wang EY, Ashburner JM, Ko D, 
McManus DD, Benjamin EJ, Ellinor PT, et al. Development and Validation of a 
Prediction Model for Atrial Fibrillation Using Electronic Health Records. JACC Clin 
Electrophysiol. 2019;5:1331–1341.  

5.  Li F, Jin Y, Liu W, Rawat BPS, Cai P, Yu H. Fine-Tuning Bidirectional Encoder 
Representations From Transformers (BERT)-Based Models on Large-Scale 
Electronic Health Record Notes: An Empirical Study. JMIR Med Inform. 
2019;7:e14830.  

6.  Zhang Y, Padman R, Patel N. Paving the COWpath: Learning and visualizing 
clinical pathways from electronic health record data. J Biomed Inform. 
2015;58:186–197.  

7.  Raghunath S, Ulloa Cerna AE, Jing L, vanMaanen DP, Stough J, Hartzel DN, 
Leader JB, Kirchner HL, Stumpe MC, Hafez A, et al. Prediction of mortality from 
12-lead electrocardiogram voltage data using a deep neural network. Nat Med 
[Internet]. 2020 [cited 2020 May 20];Available from: 
http://www.nature.com/articles/s41591-020-0870-z 

8.  Khurshid S, Kartoun U, Ashburner JM, Trinquart L, Philippakis A, Khera AV, Ellinor 
PT, Ng K, Lubitz SA. Performance of Atrial Fibrillation Risk Prediction Models in 
Over 4 Million Individuals. Circ Arrhythm Electrophysiol. 2021;14:e008997.  

9.  Raghunath S, Pfeifer JM, Ulloa-Cerna AE, Nemani A, Carbonati T, Jing L, 
vanMaanen DP, Hartzel DN, Ruhl JA, Lagerman BF, et al. Deep Neural Networks 
Can Predict New-Onset Atrial Fibrillation From the 12-Lead Electrocardiogram and 
Help Identify Those at Risk of AF-Related Stroke. Circulation. 
2021;CIRCULATIONAHA.120.047829.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 30, 2021. ; https://doi.org/10.1101/2021.05.26.21257872doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.26.21257872
http://creativecommons.org/licenses/by-nc-nd/4.0/


 26

10.  Danaei G, Tavakkoli M, Hernán MA. Bias in observational studies of prevalent 
users: lessons for comparative effectiveness research from a meta-analysis of 
statins. Am J Epidemiol. 2012;175:250–262.  

11.  Raman SR, Curtis LH, Temple R, Andersson T, Ezekowitz J, Ford I, James S, 
Marsolo K, Mirhaji P, Rocca M, et al. Leveraging electronic health records for 
clinical research. Am Heart J. 2018;202:13–19.  

12.  Danaei G, García Rodríguez LA, Cantero OF, Logan RW, Hernán MA. Electronic 
medical records can be used to emulate target trials of sustained treatment 
strategies. J Clin Epidemiol. 2018;96:12–22.  

13.  Nalichowski R, Keogh D, Chueh HC, Murphy SN. Calculating the benefits of a 
Research Patient Data Repository. AMIA Annu Symp Proc AMIA Symp. 
2006;1044.  

14.  The HDF Group. Hierarchical Data Format, version 5, 1997-2019.   
http://www.hdfgroup.org/HDF5/.  

15.  Goff DC, Lloyd-Jones DM, Bennett G, Coady S, D’Agostino RB, Gibbons R, 
Greenland P, Lackland DT, Levy D, O’Donnell CJ, et al. 2013 ACC/AHA Guideline 
on the Assessment of Cardiovascular Risk: A Report of the American College of 
Cardiology/American Heart Association Task Force on Practice Guidelines. 
Circulation. 2014;129:S49–S73.  

16.  Alonso A, Krijthe BP, Aspelund T, Stepas KA, Pencina MJ, Moser CB, Sinner MF, 
Sotoodehnia N, Fontes JD, Janssens ACJW, et al. Simple risk model predicts 
incidence of atrial fibrillation in a racially and geographically diverse population: the 
CHARGE-AF consortium. J Am Heart Assoc. 2013;2:e000102.  

17.  Khurshid S, Keaney J, Ellinor PT, Lubitz SA. A Simple and Portable Algorithm for 
Identifying Atrial Fibrillation in the Electronic Medical Record. Am J Cardiol. 
2016;117:221–225.  

18.  Wang EY, Hulme OL, Khurshid S, Weng L-C, Choi SH, Walkey AJ, Ashburner JM, 
McManus DD, Singer DE, Atlas SJ, et al. Initial Precipitants and Recurrence of 
Atrial Fibrillation. Circ Arrhythm Electrophysiol. 2020;13:e007716.  

19.  Lee J, Yoon W, Kim S, Kim D, Kim S, So CH, Kang J. BioBERT: a pre-trained 
biomedical language representation model for biomedical text mining. 
Bioinformatics. 2019;btz682.  

20.  Alsentzer E, Murphy JR, Boag W, Weng W-H, Jin D, Naumann T, McDermott MBA. 
Publicly Available Clinical BERT Embeddings. ArXiv190403323 Cs [Internet]. 2019 
[cited 2021 May 18];Available from: http://arxiv.org/abs/1904.03323 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 30, 2021. ; https://doi.org/10.1101/2021.05.26.21257872doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.26.21257872
http://creativecommons.org/licenses/by-nc-nd/4.0/


 27

21.  Johnson AEW, Pollard TJ, Shen L, Lehman L-WH, Feng M, Ghassemi M, Moody 
B, Szolovits P, Celi LA, Mark RG. MIMIC-III, a freely accessible critical care 
database. Sci Data. 2016;3:160035.  

22.  Shulman E, Kargoli F, Aagaard P, Hoch E, Di Biase L, Fisher J, Gross J, Kim S, 
Krumerman A, Ferrick KJ. Validation of the Framingham Heart Study and 
CHARGE-AF Risk Scores for Atrial Fibrillation in Hispanics, African-Americans, 
and Non-Hispanic Whites. Am J Cardiol. 2016;117:76–83.  

23.  Rodriguez F, Chung S, Blum MR, Coulet A, Basu S, Palaniappan LP. 
Atherosclerotic Cardiovascular Disease Risk Prediction in Disaggregated Asian 
and Hispanic Subgroups Using Electronic Health Records. J Am Heart Assoc 
[Internet]. 2019 [cited 2021 Feb 2];8. Available from: 
https://www.ahajournals.org/doi/10.1161/JAHA.118.011874 

24.  Uno H, Tian L, Cai T, Kohane IS, Wei LJ. A unified inference procedure for a class 
of measures to assess improvement in risk prediction systems with survival data. 
Stat Med. 2013;32:2430–2442.  

25.  Austin PC, Harrell FE, Klaveren D. Graphical calibration curves and the integrated 
calibration index (ICI) for survival models. Stat Med. 2020;39:2714–2742.  

26.  Demler OV, Paynter NP, Cook NR. Tests of calibration and goodness-of-fit in the 
survival setting. Stat Med. 2015;34:1659–1680.  

27.  Stevens RJ, Poppe KK. Validation of clinical prediction models: what does the 
“calibration slope” really measure? J Clin Epidemiol. 2020;118:93–99.  

28.  D’Agostino RB, Grundy S, Sullivan LM, Wilson P, CHD Risk Prediction Group. 
Validation of the Framingham coronary heart disease prediction scores: results of a 
multiple ethnic groups investigation. JAMA. 2001;286:180–187.  

29.  Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, 
Himmelfarb CD, Khera A, Lloyd-Jones D, McEvoy JW, et al. 2019 ACC/AHA 
Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the 
American College of Cardiology/American Heart Association Task Force on Clinical 
Practice Guidelines. Circulation. 2019;140:e596–e646.  

30.  Artzi NS, Shilo S, Hadar E, Rossman H, Barbash-Hazan S, Ben-Haroush A, Balicer 
RD, Feldman B, Wiznitzer A, Segal E. Prediction of gestational diabetes based on 
nationwide electronic health records. Nat Med. 2020;26:71–76.  

31.  Cole T, Veeravagu A, Zhang M, Azad TD, Desai A, Ratliff JK. Anterior Versus 
Posterior Approach for Multilevel Degenerative Cervical Disease: A Retrospective 
Propensity Score-Matched Study of the MarketScan Database. Spine. 
2015;40:1033–1038.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 30, 2021. ; https://doi.org/10.1101/2021.05.26.21257872doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.26.21257872
http://creativecommons.org/licenses/by-nc-nd/4.0/


 28

32.  Chauhan K, Nadkarni GN, Fleming F, McCullough J, He CJ, Quackenbush J, 
Murphy B, Donovan MJ, Coca SG, Bonventre JV. Initial Validation of a Machine 
Learning-Derived Prognostic Test (KidneyIntelX) Integrating Biomarkers and 
Electronic Health Record Data To Predict Longitudinal Kidney Outcomes. 
Kidney360. 2020;1:731–739.  

33.  Devlin J, Chang M-W, Lee K, Toutanova K. BERT: Pre-training of Deep 
Bidirectional Transformers for Language Understanding. ArXiv181004805 Cs 
[Internet]. 2019 [cited 2021 Apr 2];Available from: http://arxiv.org/abs/1810.04805 

34.  Sterne JAC, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, Wood AM, 
Carpenter JR. Multiple imputation for missing data in epidemiological and clinical 
research: potential and pitfalls. BMJ. 2009;338:b2393–b2393.  

35.  Norgeot B, Glicksberg BS, Trupin L, Lituiev D, Gianfrancesco M, Oskotsky B, 
Schmajuk G, Yazdany J, Butte AJ. Assessment of a Deep Learning Model Based 
on Electronic Health Record Data to Forecast Clinical Outcomes in Patients With 
Rheumatoid Arthritis. JAMA Netw Open. 2019;2:e190606.  

36.  Burckhardt P, Nagin DS, Padman R. Multi-Trajectory Models of Chronic Kidney 
Disease Progression. AMIA Annu Symp Proc AMIA Symp. 2016;2016:1737–1746.  

37.  Miyasaka Y, Barnes ME, Gersh BJ, Cha SS, Bailey KR, Abhayaratna WP, Seward 
JB, Tsang TSM. Secular trends in incidence of atrial fibrillation in Olmsted County, 
Minnesota, 1980 to 2000, and implications on the projections for future prevalence. 
Circulation. 2006;114:119–125.  

38.  Heeringa J, van der Kuip DAM, Hofman A, Kors JA, van Herpen G, Stricker BHC, 
Stijnen T, Lip GYH, Witteman JCM. Prevalence, incidence and lifetime risk of atrial 
fibrillation: the Rotterdam study. Eur Heart J. 2006;27:949–953.  

39.  Seshadri S, Beiser A, Kelly-Hayes M, Kase CS, Au R, Kannel WB, Wolf PA. The 
lifetime risk of stroke: estimates from the Framingham Study. Stroke. 2006;37:345–
350.  

40.  Steyerberg EW, Vergouwe Y. Towards better clinical prediction models: seven 
steps for development and an ABCD for validation. Eur Heart J. 2014;35:1925–
1931.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 30, 2021. ; https://doi.org/10.1101/2021.05.26.21257872doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.26.21257872
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29

Table 1. Baseline characteristics  

 C3PO* 
(N=520,868) 

C3PO – MI/stroke 
(N=198,184)† 

MI/stroke  
Convenience 

Sample 
(N=340,226)† 

C3PO – AF  
(N=174,644)† 

AF Convenience 
Sample 

(N=501,272)† 

 Mean ± SD, Median (quartile 1, quartile 3), or N (%) 
Age (years) 48.4 ± 17.1 57.0 ± 10.3 56.2 ± 10.4 60.9 ± 10.0 61.4 ± 10.5 
Women 315,577 (60.6%) 116,448 (58.8%) 195,039 (57.3%) 106,279 (60.9%) 288,334 (57.5%) 
White 389,755 (74.8%) 154,712 (78.1%) 270,002 (79.4%) 140,746 (79.6%) 422,266 (84.2%) 
Black 38,104 (7.3%) 13,805 (7.0%) 21,248 (6.2%) 11,103 (6.4%) 22,787 (4.5%) 
Hispanic or Latino 33,762 (6.5%) 9,401 (4.7%) 15,142 (4.5%) 6,804 (3.9%) 14,115 (2.8%) 
Asian or Pacific Islander 21,701 (4.2%) 7,807 (3.9%) 13,219 (3.9%) 6,003 (3.4%) 14,329 (2.9%) 
Mixed 27 (0.05%) 11 (0.06%) 24 (0.07%) 7 (0.04%) 23 (0.04%) 
Other 18,774 (3.6%) 5,716 (2.9%) 8,937 (2.6%) 4,467 (2.6%) 9,023 (1.8%) 
Unknown 18,745 (3.6%) 6,732 (3.4%) 11,654 (3.4%) 5,514 (3.2%) 18,729 (3.7%) 
Height (cm) 167.4 ± 10.4 - - 166.6 ± 10.4 167.4 ± 10.3 
Weight (kg) 78.3 ± 20.3 - - 79.4 ± 19.5 79.8 ± 19.8 
Systolic blood pressure (mmHg) 123 ± 17 126 ± 17 127 ± 18 128 ± 17 130 ± 19 
Diastolic blood pressure (mmHg) 75 ± 10 - - 76 ± 10 77 ± 11 
Current smoker 27,202 (5.2%) 14,720 (7.4%) 12,652 (3.7%) 14,031 (8.0%) 22,020 (4.4%) 
Anti-hypertensive use 147,898 (28.4%) 77,827 (39.3%) 119,954 (35.3%) 78,219 (44.8%) 173,235 (34.6%) 
Diabetes 58,159 (11.2%) 29,307 (14.8%) 43,966 (12.9%) 27,953 (16.0%) 52,180 (10.4%) 
Heart failure 12,555 (2.4%) - - 3,334 (1.9%) 16,786 (3.3%) 
Myocardial infarction 17,937 (3.4%) - - 6,641 (3.8%) 18,260 (3.6%) 
Total cholesterol (g/dL) 189 ± 39 195 ± 39 194 ± 40 - - 
HDL cholesterol (g/dL) 55 ± 18 57 ± 18 57 ± 18 - - 
Follow-up, years 7.2 (2.6, 12.9) 7.3 (2.8, 11.9) 7.4 (3.5, 11.8) 6.5 (2.5, 11.1) 5.4 (2.2, 9.8) 
*Values shown exclude missing data 
†Only variables relevant for each risk score (CHARGE-AF for AF, PCE for MI/stroke) are depicted  
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Table 2. Risk score performance in C3PO versus Convenience Samples 

Model Hazard ratio  
(per 1-SD 
increase) 

C-index‡ GND �§ Recalibrated 
GND �2§|| 

ICI# Recalibrated ICI#|| Calibration 
slope** 

C3PO 
PCE  
(White women)* 2.51 (2.43-2.59) 0.768 

(0.760-0.775) 487, p<0.01 1689, p<0.01 0.018 (0.017-0.020) 
p<0.01 

0.034 (0.031-0.037) 
p<0.01 

0.67 (0.65-0.70) 
p=0.02 

PCE  
(Black women)* 2.39 (2.17-2.64) 0.724 

(0.702-0.746) 69, p<0.01 257, p<0.01 0.030 (0.023-0.036) 
p<0.01 

0.057 (0.050-0.064) 
p<0.01 

0.60 (0.53-0.67) 
p=0.36 

PCE  
(White men)* 2.17 (2.11-2.24) 0.738 

(0.730-0.746) 361, p<0.01 618, p<0.01 0.024 (0.022-0.027) 
p<0.01 

0.032 (0.029-0.035) 
p<0.01 

0.70 (0.68-0.73) 
p=0.59 

PCE  
(Black men)* 2.04 (1.85-2.25) 0.725 

(0.698-0.751) 21, p=0.02 18, p=0.03 0.012 (0-0.025) 
p=0.06 

0.010 (0-0.024) 
p=0.83 

0.88 (0.77-1.00) 
p=0.84 

CHARGE-AF* 2.56 (2.50-2.61) 0.782 
(0.777-0.787) 1856, p<0.01 1367, p<0.01 0.028 (0.027-0.030) 

p<0.01 
0.019 (0.018-0.021) 

p<0.01 
0.77 (0.75-0.79) 

p<0.01 
Convenience Samples  
PCE  
(White women)† 2.44 (2.39-2.49) 0.770 

(0.764-0.775) 1797, p<0.01 4923, p<0.01 0.032 
(0.031-0.034) 

0.047 
(0.044-0.049) 0.64 (0.62-0.65) 

PCE  
(Black women)† 2.29 (2.13-2.46) 

0.732 
(0.716-0.748) 213, p<0.01 562, p<0.01 

0.046 
(0.040-0.053) 

0.074  
(0.067-0.081) 0.56 (0.51-0.61) 

PCE  
(White men)† 2.18 (2.13-2.22) 0.744 

(0.739-0.749) 1291, p<0.01 1493, p<0.01 0.041 
(0.038-0.043) 

0.039 
(0.037-0.042) 0.70 (0.68-0.71) 

PCE  
(Black men)† 2.01 (1.88-2.15) 0.727 

(0.705-0.749) 36, p<0.01 13, p=0.17 0.028 
(0.018-0.037) 

0.012  
(0.0026-0.022) 0.87 (0.79-0.95) 

CHARGE-AF† 2.40 (2.38-2.43) 0.781 
(0.778-0.784) 7188, p<0.01 8322, p<0.01 0.036  

(0.035-0.036) 
0.028 

(0.027-0.029) 0.69 (0.68-0.70) 

*PCE (White women): 4,231, 107,998, 7.1 (2.8, 10); PCE (Black women): 617, 8,450, 7.7 (2.9, 10); PCE (White men): 4,928, 76,304, 6.2 (2.3, 10); PCE (Black men): 425, 5,432, 6.7 (2.5, 10); CHARGE-
AF: n events=7,877, N total=174,644, median follow-up, years (Q1,Q3): 5.0 (2.3,5.0) 
†PCE (White women): 10,259, 182,349, 7.5 (3.6, 10); PCE (Black women): 1,119, 12,690, 7.2 (3.2, 10); PCE (White men): 12,891, 136,629 , 6.2 (2.6, 10); PCE (Black men): 843, 8,558 , 6.0 (2.6, 10); 
CHARGE-AF: n events=26,907, N total=501,272, median follow-up, years (Q1,Q3): 5.0 (2.0,5.0) 
‡C-index calculated using the inverse probability of censoring weighting method24 
§Greenwood-Nam-D’Agostino (GND) test, a test of calibration.26 Lower chi-squared values suggest better calibration (across equally-sized samples). Significant p-values indicate evidence of 
miscalibration.   
||Values after recalibration to the baseline hazard of the sample (see text) 
#Integrated calibration index, a quantitative measure of the average difference between predicted event risk and observed event incidence, weighted by the empirical distribution of event risk.25 Smaller 
values indicate better calibration. P-values indicated pairwise comparison of ICI with the corresponding Convenience Sample. 
**A measure of calibration applicable to models that are calibrated-in-the-large.27,40 A calibration slope equal to one is optimally calibrated. P-values indicated pairwise comparison of calibration slope with 
corresponding Convenience Sample. 
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Figure 1. Overview of C3PO construction and data pipeline 

Depicted is a graphical overview of the construction of the Community Care Cohort 
Project (C3PO). C3PO comprises the electronic health record (EHR) data of 520,868 
individuals aged 18-90 at the start of sample follow-up, selected from an ambulatory 
EHR database on the basis of receiving periodic primary care (i.e., ≥2 visits within 1-3 
consecutive years, see text). C3PO is structured as an indexed file system containing 
protected health information-minimized data of various types (bottom panel). The C3PO 
database can readily accommodate updating of existing data, integration of new data 
features, and construction of composite disease phenotypes based on multiple data 
features. 
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Figure 2. Distribution of office visits in C3PO versus Convenience Samples  

 
Depicted are boxplots demonstrating the distribution of office visits (panel a) and primary care physician (PCP) office visits 
(panel b) in the C3PO analysis samples (AF [blue] and MI/stroke [green]) versus the respective Convenience Samples 
(AF [red] and MI/stroke [purple]). In each boxplot, the black bar denotes the median number of office visits per individual, 
the box represents the interquartile range, and the whiskers represent points beyond the interquartile range. Points 
greater than quartile 3 plus 1.5 times the interquartile range and points smaller than quartile 1 minus 1.5 times the 
interquartile range are not depicted. 
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Figure 3. Sample size yield of NLP based missing data recovery  

 
Depicted are relevant sample sizes before and after application of our deep Natural Language Processing (NLP) model to 
extract missing baseline blood pressure values in C3PO. In panel a, the y-axis depicts the total number of individuals with 
a baseline blood pressure and the hashed line indicates the total sample size of C3PO. In panel b, the y-axis depicts the 
total number of individuals with a complete Pooled Cohort Equations (PCE) score at baseline and the hashed line 
indicates the total number of individuals eligible for PCE analysis (i.e., within age 40-79 years, with available follow-up 
data, and without prevalent MI/stroke). In the panel c, the y-axis depicts the total number of individuals with a complete 
CHARGE-AF score at baseline and the hashed line indicates the total number of individuals eligible for CHARGE-AF 
analysis (i.e., within age 45-94 years, with available follow-up data, and without prevalent AF). 
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Figure 4. Agreement between tabular and natural language processing-extracted vital 
signs 
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Depicted is agreement between vital signs obtained from tabular data and those 
obtained from our NLP model among individuals with values obtained on the same day. 
Panels a depict height values, panels b depict weight values, panels c depict systolic 
blood pressures, and panels d depict diastolic blood pressures. For individuals with 
multiple eligible values, only the pair most closely preceding start of follow-up was used. 
Left panels show the distribution of values obtained from tabular versus NLP sources. 
Middle panels show the correlation between tabular values (x-axis) and NLP values (y-
axis). Right panels are Bland-Altman plots showing agreement between paired tabular 
and NLP values. The x-axis depicts increasing mean of the paired values, and the y-
axis depicts the difference between the paired values, where positive values denote 
tabular values greater than corresponding NLP values and negative values denote 
tabular values lower than corresponding NLP values. The colored horizontal lines depict 
the mean difference between sources, and the hashed horizontal lines depict 1.96 
standard deviations above and below the mean. The values corresponding to the 
bounds and percentage of values contained within those bounds is printed on each plot. 
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Figure 5. Cumulative event risk in C3PO vesus Convenience Samples 

 
Depicted is Kaplan-Meier cumulative risk of MI/stroke (panel a) and AF (panel b) observed in C3PO (blue [left] and green 
[right]) versus the Convenience Samples (red [left] and purple [right). The number of individuals remaining at risk over 
time is labeled below each plot. Note an initial rapid inflection in MI/stroke and AF incidence observed in the Convenience 
Samples but not in C3PO.  
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Figure 6. Model discrimination in C3PO and Convenience Samples  

 
Depicted are time-dependent receiver operating characteristic curves for the Pooled 
Cohort Equations (PCE, left panels) and the CHARGE-AF score (right panels) in C3PO 
(top panels) versus the respective Convenience Samples (bottom panels). Each plot 
shows the discrimination performance of each risk score for its respective prediction 
target (i.e., 10-year MI/stroke for the PCE, 5-year incident AF for CHARGE-AF). Since 
the PCE score comprises four models stratified on the basis of sex and race, the curves 
for each score are represented separately (see legend). The c-index calculated using 
the inverse probability of censoring weighting method24 is depicted for each model.
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Figure 7. Model calibration in C3PO and Convenience Samples 

 
Depicted is model calibration performance in C3PO versus the Convenience Samples. Panel a depicts the calibration 
slope for the PCE models (x-axis, left) and CHARGE-AF (x-axis, right) in C3PO (blue, green) versus the Convenience 
Samples (red, purple). The y-axis depicts the calibration slope, a measure of the relationship between predicted event risk 
and observed event incidence, where a slope of one indicates an optimal relationship (horizontal hashed line), with 
corresponding 95% confidence intervals. Panels b and c compare calibration error in C3PO versus the Convenience 
Samples. Calibration error is depicted on the y-axis using the Integrated Calibration Index (ICI, see text), where lower 
values indicate better absolute agreement between predicted risk and observed event incidence. Panel b depicts ICI 
values using the original models, while panel c depicts ICI values after recalibration to the baseline hazard of each 
sample. In all plots, statistically significant differences between values in C3PO versus the Convenience Sample (p<0.05) 
are depicted with an asterisk. 
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Figure 8. Conceptual overview of C3PO analysis methods 

 
Depicted is a graphical overview of the potential analyses enabled by the Community Care Cohort Project (C3PO). By 
integrating diverse data types (e.g., diagnoses, imaging, vital signs, diagnostic test data, genetics), C3PO may enable 
methods such as traditional statistical modeling and deep learning to facilitate more accurate disease risk prediction 
models and enable deep phenotyping including disease subgroup identification. 
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