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Abstract :
Background:
Antimicrobial resistance (AMR) is a complex multifactorial outcome of health, socio-economic
and geopolitical factors. Therefore, tailored solutions for mitigation strategies could be more
effective in dealing with this challenge. Knowledge-synthesis and actionable models learned upon
large datasets are critical in order to diffuse the risk of entering into a post-antimicrobial era.
Objective:
This work is focused on learning Global determinants of AMR and predicting the susceptibility of
antibiotics at the isolate level (Local) for WHO (world health organization) declared critically
important pathogens Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli,
Acinetobacter baumannii, Enterobacter cloacae, Staphylococcus aureus.
Methods:
In this study, we used longitudinal data (2004-2017) of AMR having 633820 isolates from 70
Middle and High-income countries. We integrated AMR data with the Global burden of disease
(GBD), Governance (WGI), and Finance data sets in order to find the unbiased and actionable
determinants of AMR. We chose a Bayesian Decision Network (BDN) approach within the causal
modeling framework to quantify determinants of AMR. Finally Integrating Bayesian networks
with classical machine learning approaches lead to effective modeling of the level of AMR.
Results:
From MAR (Multiple Antibiotic Resistance) scores, we found that developing countries are at
higher risk of AMR compared to developed countries, for all the critically important pathogens.
Also, Principal Components Analysis(PCA) revealed that governance, finance, and disease
burden variables have a strong association with AMR. We further quantified the impact of
determinants in a probabilistic way and observed that health system access and government
effectiveness are strong actionable factors in reducing AMR, which was in turn confirmed by
what-if analysis. Finally, our supervised machine learning models have shown decent
performance, with the highest on Staphylococcus aureus. For Staphylococcus aureus, our model
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predicted susceptibility to Ceftaroline and Oxacillin with the highest AUROC, 0.94(with SE of
0.01% ) and 0.89(with SE of 0.002%) respectively.

Introduction:
Antimicrobial resistance is the reduction in the efficacy of antimicrobials in treating infections
due to pathogen evolution under strong selection pressures given the repeated and heavy
consumption of antibiotics1. Even though we have witnessed a significant improvement in global
health, there are still millions out there who do not have adequate access to health services.
Factors such as rising incomes, incessant infectious diseases, poor or marginalized populations
having limited access to primary health care, and consumption of antibiotics without any
prescription have been compounding the problem of antimicrobial resistance in the low-income
and middle-income countries2. Ensuring proper sanitation, better governance, increased focus on
public health care, and regulation of the private health care sector is a must to combat the spread
of antimicrobial resistance3. While its disastrous effect on health outcomes can be understood by
an estimated million deaths, the cost of treating resistant infections is estimated to reach US $100
trillion by the year 20504 5. To prevent these catastrophic consequences, it is essential to develop
evidence-based policies for AMR mitigation. The role of government (policymakers) is multifold
in improving antibiotic stewardship policies, increasing antibiotic use surveillance, and financing
these along with funding the development of new drugs 6 7.8 There arises a need to formulate
governance frameworks to help the policymakers in designing, monitoring national action plans
for tackling antimicrobial resistance at all levels: local, regional, national and global. It is thus
essential to understand and quantify the roles of these factors in the development of resistance.
Tackling antibiotic resistance is a high priority for WHO. A global action plan on antimicrobial
resistance9, including antibiotic resistance, was endorsed at the World Health Assembly in May
2015. The global action plan aims to ensure the prevention and treatment of infectious diseases
with safe and effective medicines. WHO has been leading multiple initiatives to address
antimicrobial resistance like World Antimicrobial Awareness Week, The Global Antimicrobial
Resistance Surveillance System (GLASS)10, Global Antibiotic Research and Development
Partnership (GARDP)11, Interagency Coordination Group on Antimicrobial Resistance (IACG)12

with the motivation to improve awareness and understanding of antimicrobial resistance, to
strengthen surveillance and research, to reduce the incidence of infection, to optimize the use of
antimicrobial medicines and to ensure sustainable investment in countering antimicrobial
resistance. A political declaration endorsed by Heads of State at the United Nations General
Assembly in New York in September 2016 signalled the world’s commitment to taking a broad,
coordinated approach to address the root causes of antimicrobial resistance across multiple
sectors, especially human health, animal health, and agriculture. WHO is supporting the Member
States to develop national action plans on antimicrobial resistance, based on the global action
plan. Primary health care can play a vital role in tackling antimicrobial resistance. Community
engagement and empowerment are essential to prevent common health problems without the
unnecessary use of antimicrobials. Multisectoral action on antimicrobial resistance to limit the
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usage of antibiotics in the agricultural sector and ensuring equitable and good quality primary
health care to all can act as an effective response to the antimicrobial resistance 13 14.
In this work, we quantified the relationships between a wide range of factors, from governance,
healthcare access, finance, population density, to the type of sample and gender, and Global
AMR. We created a compendium of Bayesian AI models to predict drug-combination patterns
that are most likely to mitigate AMR in given machine learning models for resource,
drug-combinations, Priority pathogen list, and Critically Important Antibiotics. Also, we used
supervised machine learning models and predicted the susceptibility of antibiotics. Finally, we
vetted our findings with clinicians and policymakers and created the AMR stewardship web
application which can be accessed across the globe http://antibioticsteward.tavlab.iiitd.edu.in/.

Methods:
In this study, we developed a pipeline (Figure 1) to understand the robust connection amongst
AMR, disease burden, governance, finance, and other socioeconomic indicators. We then used
our results to better understand and predict the susceptibility of antibiotics amongst critical
pathogens.
Data Integration:
The AMR base data was extracted from the AMR surveillance competition 15 16 which had
633820 isolates . The characteristics for the same have been displayed in (Table1, Figure2, Supp
Fig 1). We then integrated the AMR data with the WGI (World Governance Indicators)17 data, the
GBD (Global Burden of Disease Study) data18, and the Finance data.
WGI data covers six dimensions of governance for over 200 countries over the period 1996-2018.
The six dimensions of governance are :1) Control of Corruption 2) Voice and Accountability 3)
Political Stability and Absence of Violence/Terrorism 4) Government Effectiveness 5) Regulatory
Quality6) Rule of Law, we picked estimate from each sheet corresponding to the
above-mentioned dimensions of governance. Here, Estimate refers to the “Estimate of governance
(ranges from approximately -2.5 (weak) to 2.5 (strong) governance performance)”. These were
then merged with the AMR data set by country and year, thus giving us the resultant AMR WGI
data set.
The GBD covariates data set consists of a total of 334 covariates data files for the period
1980-2017 .Types of covariates used include socioeconomic, demographic, health system access,
climate, and food consumption data . In the Gender, some covariates have information about
gender specificity and some have information common for both. So in the latter case, we
regenerated the same information for both genders and then combined the data in rows. Similarly,
all covariates have three types of Age-Group 1)All Ages 2) In the form of intervals 3)
Age-standardized in covariates where age groups are in the form of intervalsWe then grouped by
age, gender, country and summarised by taking the mean. After having made these changes in the
covariates files, these were then merged with the AMR data by country, age, and gender, taking
only the value of covariates, thus giving us the resultant AMR WGI GBD data set.
We reshaped the finance data such as columns country, year and then merged with the
above-mentioned AMR_WGI_GBD data set by country and year. We discarded all those
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variables which had more than 10% missing data, thus, giving us the resultant AMR_WGI_GBD_
FINANCE data set.

Data Imputation and Discretization:
We replaced the missingness in the AMR phenotypic data with ‘Not_Given’ and antibiotic with

“Not_Tested”(Supp Fig 5) and the missingness in the variables of merged(amr_wgi_gbd_finance)
datasets using a state-of-the-art Random Forest approach19 that took into account the associations
between variables while inputting the data. After the imputation of data, we divided every
numerical variable into three disjoint intervals i.e. Low, Medium, and High using a KNN based
algorithm for the purpose of discretization20.

WHO Declared Highly Important Pathogens Selection:
Further, we filtered data as per the WHO declared critically important21 and highly important
pathogens. The pathogens we took into consideration included Pseudomonas aeruginosa,
Klebsiella pneumoniae, Escherichia coli, Acinetobacter baumannii, Enterobacter cloacae,
Staphylococcus aureus. We considered their samples pertaining to high-income and
middle-income countries (Table 2).

Analysis:
We executed an exhaustive set of analysis which includes generative machine learning,
discriminative machine learning  and counterfactual (what-if) analysis.

MAR Score :
The MAR (Multiple Antibiotic Resistance)22 index of a single isolate is defined as a/b, where, a is
the number of antibiotics to which the isolate is resistant to and b is the number of antibiotics
tested.

Bayesian Network Analysis:
Bayesian networks 23 that learn the latent structure in complex data, represent it as compact
graphical representations and allow for inferential and intervention modeling. Interpretability and
explainability are the key challenges in AI-based decision models. Recent years have seen a
revival of causal networks 24that can be learned directly and reliably from data as a quintessential
approach towards achieving explainability and trust for complex problems faced by society. In
this study, the Bayesian network was learned directly from complex multivariate data for
explainable intervention modeling 25 26.
Firstly, we took all the variables of WGI GBD FINANCE AMR and learned a one-time Bayesian
network. Then the Markov blankets of all antibiotics were calculated from the one-time network.
The final network was learned considering only the Markov blanket variables. The inferences
were then calculated from this network.
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What-if Analysis:
We imagined the hypothetical situation of the variables and performed counterfactual analysis
27using the R package Counterfactual28 to answer the hypothetical ‘what if’ questions. For
example, what would be the resistance of antibiotics if countries with poor health system access
prevailed the characteristics of countries which have advanced health system access.

Prediction of Antibiotic Susceptibility using Supervised Machine Learning :
Identification of isolates susceptible to certain antibiotics is essential in fighting against
antibiotic-resistant pathogens. So we extracted GBD, WGI, finance indicators (which were in the
Markov blanket of antibiotics in the Pathogen wise Bayesian network), demographic and clinical
information of isolates as a predictor of antibiotic susceptibility. Data was partitioned into training
(80%) and testing (20%) sets and the class imbalance was corrected using the Synthetic Minority
Oversampling Technique(SMOTE)29,30 Different supervised machine learning models
Random-Forest(RF), Support vector machine (SVM), logistic, naive-Bayes, were learned for
predicting the response to mental health indicators using the Scikit-learn library in Python.

Results:
To identify the Actionable Global determinants of AMR, we first recognised the pattern of AMR
spread across the globe. We took into consideration the WHO declared critically important
pathogens and performed a network analysis to identify a pathogen wise AMR mitigator. For each
identified mitigator, we determined the impact in Middle and High-income countries separately.
This was followed by a counterfactual analysis to measure the hypothetical inferences. Finally,
using identified GBD, WGI, and finance determinants we predicted the susceptibility of
antibiotics in the selected pathogens.

Global Prevalence of  Multiple Antibiotic Resistance of Critically Important Pathogens:
To understand the spread pattern of Antibiotic resistance of different pathogens, we calculated the
Multiple Antimicrobial Resistance (MAR) countrywise (Figure 3). This revealed that every
pathogens had a different pattern of resistance spread. For Enterococcus, MAR was found in the
range [0.24, 0.57] with the highest value in Vietnam (0.57) and the lowest value in Venezuela
(0.24). For Acinetobacter baumannii, MAR value was found in the range (0, 0.86) with the
highest value in Vietnam (0.86). For E coli, MAR value was found in the range [0.032, 0.45] with
highest values in Indonesia (0.45), India (0.40) and the lowest value in Norway (0.032). For
Klebsiella pneumoniae, MAR was found in the range of [0.09, 0.64] with the highest value in
Serbia (0.64) and the lowest value in Japan (0.09). For Pseudomonas aeruginosa, MAR value was
observed in the range [0.016, 0.75] with the highest value in El Salvador (0.75) and the lowest
value in Norway (0.016).

Component Level Bayesian Network Revealed Strong Connection of Antibiotics with
Independent WGI, Finance, GBD datasets. :
In order to check the directional relationship among the independent datasets i.e. WGI, GBD,
Finance and AMR, we performed Principal component analysis (PCA) in the Numerical data set

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 28, 2021. ; https://doi.org/10.1101/2021.05.26.21257778doi: medRxiv preprint 

https://www.zotero.org/google-docs/?is6mn4
https://www.zotero.org/google-docs/?pdaQcv
https://www.zotero.org/google-docs/?18Hekz
https://www.zotero.org/google-docs/?B1Z1nv
https://doi.org/10.1101/2021.05.26.21257778
http://creativecommons.org/licenses/by-nc-nd/4.0/


and multiple correspondence analysis (MCA) in Categorical data sets. We picked 2 components
which captured higher variance of datasets and with the help of these 2 components, on a one
time network (Figure 4) we found a strong association of governance, finance and GBD principal
components with Antibiotics components.

Probabilistic Impact Quantification of Governance, Finance, Socioeconomic and Burden of
Disease on Antibiotic Resistance :
For WHO declared critical pathogens we learned a robust bootstrapped network. From the
Network Inference governance of the country and health system access, we found a strong
influence of AMR in all pathogens. We found the probability of cefepime resistance in E coli
pathogens to be 21% higher in a country where voice and accountability (Refer Supplementary
Definitions) was low as compared to a country where voice and accountability was high. The
probability of piperacillin resistance in Acinetobacter baumannii pathogens is 50% lower in a
country where there is a high level of government effectiveness. The probability of cefepime
resistance is 12.98% lower in the pathogens Pseudomonas aeruginosa and 13% lower in the
pathogens Staphylococcus aureus in a country where there is high level of government
effectiveness as compared to a country having a low level of government effectiveness. Similarly,
the probability of amikacin resistance was 12.17% lower in the pathogens Pseudomonas
aeruginosa and 11.6% lower in the pathogens Staphylococcus aureus in a country where there was
a high level of government effectiveness as compared to a country having a low level of
government effectiveness. We also found that good health system access in a country significantly
decreases ceftriaxone and meropenem resistance in many pathogens of bacteria. The probability
of ceftriaxone resistance in countries with good health system access was observed to be 14.74%
lower in E Coli, 36% lower in Acinetobacter baumannii, 12.47% lower in Enterobacter Cloacae,
15% lower in Klebsiella pneumoniae while the probability of meropenem resistance in Klebsiella
pneumoniae was observed to be 3.43% higher in countries with good health system access.
Improvements in water sanitation and hygiene (WASH) are critical elements of preventing
infections and reducing the spread of antimicrobial resistance (AMR) as identified in the Global
Action Plan to combat AMR. In our analysis, we found out that the probability of cefepime
resistance in Klebsiella pneumonia was 19.87% higher in countries where the level of Unsafe
Wash Sanitation was high. Our analysis also quantified the effect of fruit consumption on
cefepime resistance in Klebsiella pneumoniae. High food consumption decreased the chance of
cefepime resistance by 13.04% (Table 3).

Counterfactual Analysis Quantified the Reduction in Ceftriaxone Resistance if Countries
with Poor Health System Access follow Advanced Health system Access:
From Bayesian network analysis, we observed that the health system access has impacted the
Ceftriaxone resistance with high magnitude consistently for all pathogens So, we performed a
counterfactual analysis on the ceftriaxone resistance in the Middle and High-income countries.
For the pathogen Enterobacter Cloacae, counterfactual effect (what would be the ceftriaxone
resistance if poor health system follows the characteristics of advanced health system access) of
health system access on ceftriaxone e resistance was observe (Figure 5)to be consistent in the
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Middle and High-income countries with median quantile effect in Middle-income countries to be
0.007 with 95% CI [-0.05, 0.0.7] and in High-income countries to be 0.02 with 95% CI [0.003,
0.04]. For Acinetobacter baumannii and E Coli, we found the counterfactual effect of health
system access on ceftriaxone in the Middle-income countries to be much higher than that in the
High-income countries. The median quantile effect in the Middle-income countries was observed
to be -0.9 with 95% CI [-0.17,-0.02] in the case of Acinetobacter baumannii and -0.03 with
95%CI [-0.16, 0.10] in the case of E Coli. The median quantile effect in the High-income
countries was observed to be 0.05 with 95% CI [-0.03, 013] in the case of Acinetobacter
baumannii and -0.004 with 95% CI [-0.03, 0.02] in the case of E Coli. although we have
performed same counterfactual analysis for meropenem resistance which was also found be
highly associated with health system access however we have not found any monotonic trend in
this case (Supp Fig 4)

Prediction of Antibiotic Susceptibility:
Overall we found that the Random Forest Model was the best performing model (Supp Fig 2).
Amongst all the pathogens, interestingly our prediction models have performed best for the
Staphylococcus aureus (Figure 6) which is known as the most dangerous amongst the common
staphylococcal bacteria that often cause skin infections. For Staphylococcus aureus our model
predicted ceftaroline and oxacillin with highest AUROC 0.94 and 0.89 respectively (from RF
model). We also found that our model performed well for the cefepime and ceftazidime
susceptibility prediction for Klebsiella pneumoniae with AUCROC 0.88, 0.92 respectively (from
RF model). From our prediction models we have also found that meropenem susceptibility is
highly predictable for the Escherichia coli (AUROC=0.93) compared to other pathogens like
Pseudomonas aeruginosa (AUROC=0.75), Klebsiella pneumoniae (AUROC=0.81), Acinetobacter
baumannii (AUROC=0.75). On further analysis of the feature importance of prediction model
(RF) for meropenem susceptibility we found that Echerichia coli and, interestingly, health system
access of a country to be the most important feature(Supp Fig 3). Although our model has not
shown high performance for pathogens like Pseudomonas aeruginosa, overall our models have
shown decent and actionable performance.

Discussion:
Antibiotic resistance is rising to alarmingly high levels in all parts of the world. New resistance
mechanisms are emerging and spreading globally, threatening our ability to treat common
infectious diseases31. A growing list of infections such as pneumonia, tuberculosis, blood
poisoning, gonorrhoea and foodborne diseases are becoming harder and sometimes impossible to
treat as antibiotics become less effective32. The emergence and spread of the resistance are worse
in those regions where the antimicrobial medicines can be bought for human or animal use
without a prescription. Similarly, in countries without standard treatment guidelines, antibiotics
are often over-prescribed by health workers and veterinarians and overused and misused by the
public. Certain economic and governance factors such as Political Stability and Absence of
Violence/Terrorism, Control of Corruption, Voice and Accountability, Government Effectiveness,
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Regulatory Quality and Rule of Law play a key role in designing such frameworks which can
help curtail the spread of Anti-microbial resistance.
By consolidating four different datasets (the AMR, GBD, WGI and Finance data sets) into one,
this study aims to find the actionable global determinants. Taking into consideration the
prevalence of MAR score across the globe, our findings report that MAR score is non-uniform
across the globe for critically important pathogens. This finding calls upon devising policies that
are effective at each country level.
Using AI techniques like Bayesian Network Analysis, we found a strong connection of AMR with
the WGI, Finance and GBD datasets which motivated us to proceed with Counterfactual analysis
of Ceftriaxone. As per the results, the counterfactual effect of Health system Access on
Ceftriaxone in the Middle-income countries turned out to be much higher than that in the
High-income countries33.
With the on-going advancements in medicine, we have breakthrough treatment techniques from
complex organ transplants to robotic surgeries. All of these have been possible by keeping
bacterial infections under control. But the rising instances of Antibiotic resistance, which are
accelerated by the misuse and overuse of antibiotics, may render simple bacterial diseases
untreatable. The time calls upon strategies at every stratum of the society to reduce the impact and
limit the spread of the resistance. Global governance systems34 and finance regulators, industrial
stakeholders, medical experts and scientists need to stand united to tackle this problem first hand.
The Global Reference List 35includes priority indicators pertaining to four domains namely health
status, service coverage, health systems and risk factors which countries can use to monitor their
health priorities at national and sub-national levels. Providing timely access to the healthcare
system, judicious and lawful uses of medicinal resources, awareness regarding public hygiene
with strict action against unlawful practices, such as drug distribution without prescription, should
be taken at all costs.
There are a few limitations of our work. Some confounders are still missing such as government
effectiveness and health-system influenced AMR. Thus, a complete pathway has not been
explained due to the dearth of data. We had data only for 70 countries which included only
Middle-income and High-income countries. But Governance finance-related Intervention might
also be required in case of Low-income countries. Our work is focused on high-level
policy-making, so it does not include biological aspects such as Microbiome role for AMR.
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Figure 1 : Flowchart showing pipeline used in our analysis. Firstly country level
socio-economic, socio-demographic, Environmental, Food Consumption, Disease Burden and
Governance data was integrated with isolated level AMR datasets . Then the Structural Model
was used to identify most actionable factors of AMR, then these actionable factors were feeded
to predict antibiotic susceptibility using Supervised Machine Learning Models.
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Figure 2 : A) Bar plots showing Frequency distribution of sample collected from different
sources, sample was collected from 116 different sources here we have plotted top five highest
frequency sources. B) In this study data was collected from 70 middle and high income
countries, here we have plotted gender wise frequency distribution of top 5 highest frequency
countries . C) Bar Plot showing sample speciality of samples.
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Female Male Overall

Gender

278128 (43.88%) 348136 (54.93%) 633820

Age.Group

0 to 2 Years 15329 (42.83%) 20012 (55.91%) 35793

13 to 18 Years 6348 (47.06%) 7043 (52.21%) 13490

19 to 64 Years 130162 (44.04%) 163201 (55.22%) 295537

3 to 12 Years 12613 (46.88%) 14052 (52.22%) 26907

65 to 84 Years 86561 (41.63%) 119801 (57.62%) 207922

85 and Over 23406 (54.29%) 19364 (44.91%) 43114

Year

2004 9433 (46.93%) 10655 (53.01%) 20101

2005 10473 (48.04%) 11274 (51.71%) 21801

2006 13967 (46.65%) 15876 (53.03%) 29940

2007 18264 (45.70%) 21409 (53.57%) 39964

2008 16303 (44.33%) 19925 (54.18%) 36773

2009 18575 (44.55%) 22514 (54.00%) 41692

2010 14476 (44.59%) 17341 (53.42%) 32462

2011 11622 (44.66%) 13931 (53.53%) 26023

2012 22432 (42.16%) 29477 (55.40%) 53206

2013 29962 (42.73%) 38850 (55.40%) 70125

2014 30492 (43.23%) 39482 (55.98%) 70529

2015 27992 (43.21%) 36104 (55.73%) 64785

2016 29744 (42.74%) 39290 (56.45%) 69598

2017 24393 (42.93%) 32008 (56.33%) 56821

Table 1 : AMR Data was Spatio-temporal spanned from 2004 to 2017 for 70 different
countries. Table represent the gender wise sample distribution for different years and
also different age-groups .
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Priority
category of
Pathogens Pathogens

Samples in High
Income Country Samples in Middle Income Country

Critical
Pseudomonas
aeruginosa 11373 13266

Critical
Klebsiella
pneumoniae 11901 15437

Critical Escherichia coli 14864 18125

High
Staphylococcus
aureus 21456 27314

Critical
Acinetobacter
baumannii 4468 5816

Critical
Enterobacter
cloacae 7462 6860

Table 2 : Priority category of pathogens & samples in high income countries & middle
income countries
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Figure 3: Global prevalence of antibiotic resistance in different pathogens. We calculated the
MAR score for the isolated then calculated the country-wise mean of MAR score, which
explained the resistance pattern.
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Figure 4: Bayesian network of principal components reveals strong connection of AMR with
WGI, Finance, GBD.
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pathogens Variables
(Parent)

Antibiotics
(Child)

Pr(Antibiotics=Resis
tant|Variable=Low)

Pr(Antibiotics=Resistant|Variab
le=High)

E Coli Mean_Temp_Long_Term Cefepime 0.15 0.32

Voice and Accountability Cefepime 0.33 0.12

Fruits_G_Adj Cefepime 0.2 0.2

Health_System_Access_Capped Cefriaxone 0.3302 0.1828

Health_System_Access_Capped Ceftazidime 0.1357 0.189

Dengue_Outbreak Ceftazidime 0.0978 0.1652

Health_System_Access_Capped Meropenem 0.0139 0.006

Acinetobacter
baumannii

Mean_Temp_Long_Term Piperacillin
Tazobactam

0.5 0.7489

Government_Effectiveness Piperacillin
Tazobactam

0.79 0.29

Hospital_Bed_per1000 Meropenem 0.66 0.47

Health_System_Access_Capped Meropenem 0.38 0.67

Health_System_Access_Capped Ceftriaxone 0.7 0.34

EnteroBacter
Cloacae

Rota Coverage Prop Meropenem 0.0238 0.0319

Health System Access Capped Meropenem 0.05 0.0262

Sev Scaler Diarrhea Cefepime 0.09 0.2218

Health System Access Capped Cefrtiaxone 0.4107 0.286

Health System Access Capped Minocycline 0.1255 0.0508

Klebsiella
pneumonia

Health System Access Capped Cefriaxone 0.39 0.24

GFDD_EI_04 Cefriaxone 0.2856 0.1

Fruits_G_ADJ Cefepime 0.4111 0.2807

Mean_Temp_Long_term Cefepime 0.2865 0.3339

Unsafe_Wash_Sanitation Cefepime 0.2134 0.4121

Health System Access Capped Ceftazidime 0.1984 0.3516

Dengue_Outbreak Ceftazidime 0.2186 0.25

pop_Dens_under_150_Psqkm_P
ct

Ceftazidime 0.226 0.3005
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Fruits_G_ADJ Piperacillin
Tazobactam

0.229 0.2195

Health System Access Capped Piperacillin
Tazobactam

0.1996 0.2046

Health System Access Capped Amoxicillin
Clavulanate

0.2889 0.2697

Rule of Law Amoxicillin
Clavulanate

0.3396 0.119

pop_Dens_under_150_Psqkm_P
ct

Amoxicillin
Clavulanate

0.2205 0.3291

Health System Access Capped Meropenem 0.0587 0.093

Pseudomonas
aeruginosa

Health System Access Capped Meropenem 0.1826 0.2413

Hospital Beds per 1000 Meropenem 0.2865 0.2381

Health System Access Capped Cefepime 0.2151 0.1353

Government Effectiveness Cefepime 0.2 0.0702

Government Effectiveness Amikacin 0.1417 0.02

Staphylococcu
s aureus

Government Effectiveness Cefepime 0.2 0.07

Government Effectiveness Amikacin 0.1417 0.0257

Health System Access Capped Cefepime 0.2151 0.1353

Health System Access Capped Meropenem 0.1826 0.2413

Hospital Beds Per 1000 Meropenem 0.2865 0.2381

Table3: Inferences from pathogen wise bayesian network .
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Figure 5: Counterfactual analysis answered the question what could be resistance of
Ceftriaxone and if countries with “Poor health system access” have “High health system
access”. Analysis was performed separately for the middle and high income countries.
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Figure 5: AUROC of prediction models for Staphylococcus aureus. Error bar in the figure
denotes the 95% CI  AUROC.
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