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Abstract: How do we best constrain social interactions to prevent the transmission of communicable respiratory
diseases? Indiscriminate suppression, the currently accepted answer, is both unsustainable long term and implausibly
presupposes all interactions to carry equal weight. Transmission within a social network is determined by the topology
of its graphical structure, of which the number of interactions is only one aspect. Here we deploy large-scale numerical
simulations to quantify the impact on pathogen transmission of a set of topological features covering the parameter
space of realistic possibility. We first test through a series of stochastic simulations the differences in the spread of
disease on several classes of network geometry (including highly skewed networks and small world). We then aim to
characterise the spread based on the characteristics of the network topology using regression analysis, highlighting
some of the network metrics that influence the spread the most. For this, we build a dataset composed of more than
9000 social networks and 30 topological network metrics. We find that pathogen spread is optimally reduced by limiting
specific kinds of social contact – unfamiliar and long range – rather than their global number. Our results compel a
revaluation of social interventions in communicable diseases, and the optimal approach to crafting them.

1 Introduction

Many diseases spread via close physical interactions. The interpersonal contact patterns that underlie disease
transmission naturally form a network, where links join individuals that interact and disease spreads along these
links. Computational models of infectious disease transmission dynamics can provide scenario analysis during epidemic
outbreaks necessary to devise the effectiveness of public health interventions such as quarantine and vaccination. All
such epidemiological models make assumptions about the underlying network of interactions, often without explicitly
stating them. Contact network models, however, mathematically formalize this intuitive concept so that epidemiological
calculations can explicitly consider complex patterns of interactions [2].

Contact patterns among hosts are considered as one of the most critical factors contributing to unequal pathogen
transmission. Consequently, the field of social networks have proven very useful in modeling infectious diseases. Contact
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rates for example often vary because of differences in individual traits, including individual behavior, as well as changes
in the overall contact patterns along time and across space [9]. However, these sources of heterogeneity are currently
often not being considered for devising policies at country level. This is because the predominant SIR models fail to
take into account heterogeneous human behaviours that shape a country’s social network and cannot intervene on the
contagion dynamics with precision [24]. Even more, previous work has argued that models that assume an homogeneous
and mixed population can only lead to one type of intervention [24]. This is, interventions that indifferently concern
large subsets of the population or even the overall population (e.g. national lockdowns). Recent studies looking at
the most effective post lockdown interventions have also shown that these depend strongly on the underlying contact
network [5, 17, 4].

Models including explicit representations of network topologies have been advocated as a necessary improvement of
classical epidemiological models at least since early 2000 (see, for instance, [20]). However, models’ variants supporting
policy decision-making in the current crisis continue to ignore this stream of the literature; and the consequences of
not properly considering social networks for intervention are not systematically discussed [24]. We aim to partly fill
this gap through focusing on contact network epidemiology [25, 13, 10], simulating several sources of diversity of the
contact patterns that underlie disease transmission and showing their effects on the spread.

Recent works have shown that networks with equal number of nodes and edges, but different network structure
(e.g. different path lengths and clustering) lead to different infection curves [4]. However, most of the theoretical
literature [25, 33, 26, 1, 30, 18] focuses on the effect of individual network properties (e.g. the degree distribution,
or assortative mixing, or clustering), which are typically analyzed by means of controlled numerical experiments or
analytical calculations where only the property of interest is varied while keeping the rest fixed. In a realistic context,
however, altering the structure of a network means simultaneously changing different network metrics. This is because
when one perturbs a network, e.g. to increase the variance of the degree distribution, many other network metrics can
change at the same time, and it is difficult to disentangle the effect of different network metrics on the number of
infections. Even more, the size and complexity of the space of possible network characteristics makes the derivation of
optimal metrics of spread from empirical data infeasible, for any candidate model is bound to be underdetermined by
the scale and fidelity of available data. Rather we need large-scale numerical simulations spanning the full horizon of
empirically plausible network parameters within which any real world network is bound to lie. Here we simulate more
than 9000 social networks and compute 30 network metrics, using univariate and multivariate analysis to find the most
predictive metrics of the spread.

Paper layout The next subsection presents a summary of the methodology used and the main research findings.
Section 2 then introduces the methodology and simulation design choices in full detail. Section 3 presents all our
results and finally, Section 4 discusses the implications of our findings and outlines some conclusions.

1.1 Summary of methodology and research findings

Method We apply the standard compartmental SEIR model to stochastic networks. To do so, we consider a graph
representing individuals (nodes) and their interactions (edges). At a given time, an individual makes contact with a
subset of random individuals from their set of close contacts (denominated local interaction) with certain probability
and with a subset of individuals outside of their network (called global interactions) with a different probability.
More specifically, in our model (inspired from [29]), we consider two different types of social interactions: i) Local
interactions, i.e. with close contacts – individuals with whom one has non-cursory (e.g., repeated, sustained, and/or
physical) interactions on a regular basis, such as housemates, family members, close coworkers, close friends, etc. and

2

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 26, 2021. ; https://doi.org/10.1101/2021.05.24.21257706doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.24.21257706
http://creativecommons.org/licenses/by-nc-nd/4.0/


ii) Global interactions, i.e. with casual contacts – individuals with whom one has incidental, brief, or superficial contact
on an infrequent basis (e.g., at the grocery store, on transit, at a public event, in the elevator). Global interactions
are represented in the models in the form of a parallel mode of mean-field global transmission. We consider three
well-established classes of social networks representative of a variety of animal and human social networks [31]: i)
random homogeneous networks, also known as Erdos-Renyi, ii) heavy tailed networks or scale-free and iii) small world
networks. These structures partially include aspects commonly observed in human interactions such as heterogeneity,
heavy-tailed and broad degree distribution, transitivity, assortativity and community structure. Additionally, we employ
a community-based graph generator [14] to construct a more diverse set of topologies covering a large range of the
aforementioned parameters. For each graph, we compute 30 different topological network metrics, which we categorise
in global and local metrics depending on whether they are computed only on the basis of nodes’ neighbours (local), or
using the whole graph (global).

1.1.1 The effect of network connectivity

Our extensive simulations (>100 000 runs) show that diverse families of networks with the same average degree – the
conventional measure of transmission and the often assumed decisive characteristic of a network – can vary widely in
their disease burden (Figure 1.1.1). Specifically, we show that even for a fixed average degree the spread can change
drastically, i.e. from 10% to more than 60% infected for average degree of 4, and from 30% to more than 80% for
average degree of 20. This difference is particularly significant when the average degree is low (e.g. degree of 4).
Even though the density function in both plots depends on the distribution of networks that we have generated in our
experiments, it is noteworthy that there is great difference in the spread for networks with the same average degree.
Despite this difference in the spread for networks of the same average degree, most works that aim to study network
metrics that are predictive of the spread, or that estimate such metrics from real world datasets, focus on the degree
distribution [28].

The second major insight is that not all human interactions affect the spread equally [35, 6]. Figure 1.1.1 shows the
difference between i) weakly and strongly connected networks (as represented by the average degree) and ii) networks
with/without global interactions. The spread increases for all strongly and globally connected networks, even when
the amount of social interactions per time step is kept constant for all of these simulations. Again, global interactions
affect specially the results of low connectivity networks (degree of 4). This striking variation reflects a neglected truth
– social contacts differ in their effect on spread. Networks with the same volume of interaction per time step yield
different levels of disease burden dependent on the form, not just the volume of observed connectivity. Critical here is
the range of an interaction: the more local it is, the less the impact on overall spread [6].

In summary this first set of experiments show that obviating the underlying contact network through which disease
spreads greatly impacts disease spread projections and consequently the potential usefulness of social interventions.
Such a comprehensive characterisation of the impact on spread of each specific aspect of a network would allow to
identify social interventions with optimal efficiency. Optimality is here formally defined by the marginal reduction in
disease burden per ablated contact. The experiment additionally shows that pathogen spread is optimally reduced by
limiting specific kinds of social contact – unfamiliar and long range – rather than their global number.

1.1.2 The effect of network families

Figure 1.1.2 and 1.1.2 show the results in percentage of infections (total and peak) for different well-known families of
networks: i) Erdos Renyi, ii) scale-free and iii) small world. We can see that Erdos Renyi networks, the assumption made
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Network with global interactions

Network without global interactions

Average degree of 20

Proportion of networks from our simulations for different amount of infected individuals

Average degree of 10

Percentage of infected individuals
(all the social networks compared have the exact same number of social interactions per time step)

Average degree of 4

Figure 1: Proportion of networks from our simulations that result in a certain percentage of infected individuals,
grouping contact networks by average degree and presence of global connections. In the simulation without global
interactions individuals exclusively interact with their contact network, as opposed to the simulation with global
interactions where individuals at each time step have a 20% chance of interacting with a random individual in the
whole population and a 80% chance of meeting someone in their contact network. Importantly, for all the compared
networks each individual on average only meets one other individual per time step, so independently of the average
degree and globality all networks in this plot entail exactly the same number of social interactions per time step.

often in epidemiological models, overestimate the infections when compared to networks that resemble real-world ones
better. Scale-free often leads to less infections than Erdos Renyi but a higher peak of infection. Small world networks
are the most resilient to infections, especially for societies without global interactions. This shows that there exist
network geometries in which contact does not have to be minimised in order to reduce the spread of the pathogen
and that at fixed average degree there are topologies that are better than others. These cases are worth studying.

1.1.3 The effect of network metrics

Figure 1.1.3 shows a scatter plot of the relationship between several network metrics and the cumulative percentage
of infected. Both these plots and the correlation analysis in the result section show that novel topology metrics (e.g.
global efficiency and algebraic connectivity) show a stronger relationship than metrics proposed before, such as metrics
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Percentage of infected individuals
(all the social networks compared have the exact same number of social interactions per time step)

Proportion of networks from our simulations for different amount of infected individuals

Network with global interactions

Network without global interactions
Erdos Renyi

Scale-free

Small world

Figure 2: Proportion of networks from our simulations that result in a certain percentage of infected individuals,
grouping contact networks by well-known families.

of the degree distribution or the spectral radius. This motivates the need for computing such metrics from contact
tracing, using mobility data that is already available or simply through social studies for different populations.

We investigated the influence of metrics on the pathogen spread with a multivariate linear regression analysis. The
results are shown in Figure 1.1.3. We report adjusted R2 computed on the test set of 100 random holdouts with 80%
of data for training and 20% for testing. The first insight is that a combination of network metrics can accurately
predict the variability of the spread. When considering all metrics, the linear regression model obtains an adjusted R2

of 0.934 (in comparison to a nonlinear one that obtains 0.987). The small confidence intervals suggest highly stable
results. This figure also shows the predictive power of different groups of metrics. First, we can see that average
degree alone is not enough to predict the spread accurately. Considering additional degree metrics (skewness, entropy,
etc.) improves the predictive performance (R2 from 0.473 to 0.631), further improved when taking into account the
remaining local metrics (R2 from 0.631 to 0.710). However, the model built using only global efficiency achieves better
performance than the model that uses all degree metrics and the model that uses all local metrics (R2 of 0.747).
However, the data has strong multicollinearity, precluding us from drawing further conclusions from the coefficients of
these models. Interestingly, both degree distribution and local metrics are the metrics most often collected in studies
and considered in epidemiological simulations. Additional global metrics complement global efficiency and increase the
performance further. A non-linear regression model trained with global metrics alone was able to accurately predict
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Erdos Renyi

Scale-free

Small world

Proportion of networks from our simulations for different amount of infected individuals

Network with global interactions

Network without global interactions

Percentage of infected individuals
(all the social networks compared have the exact same number of social interactions per time step)

Figure 3: Proportion of networks from our simulations that result in a certain peak of infected individuals, grouping
contact networks by well-known families.

the spread as well as a model trained with all metrics. We have shown a wide set of scenarios where outcomes can be
reliably predicted from a model built using the topological properties of the underlying social network. We show this
to be true across a full range of empirically-informed plausible network configurations. These results, of course, point
to the question of what are the network metrics that represent the real world. Although some studies and datasets
aimed at this exist [28], these works often focus exclusively on metrics such as the average of the degree distribution.
Instead, we have shown that we urgently need reliable estimators of other crucial network metrics.

The univariate correlation analysis confirms that global efficiency, algebraic connectivity and the average closeness
of a network have the highest influence on the spread. All of these metrics relate to the path lengths between nodes
and global connectivity of the social graph. Both contact tracing or mobility data that are already being recorded
can be used for example to infer path lengths in different societies [27, 21, 22] and thus restrict the social graph of
simulations used in policy making.
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Figure 4: Scatter plots of a selection network metrics vs the cumulative percentage of infected for all the networks
(also including community-based networks).

2 SEIR on a contact network

We begin with an overview of compartmental models, the traditional approach to modeling infectious disease dynamics.
We then introduce contact and social network epidemiology, which model the spread of infectious disease through
heterogeneous populations. These methods, coupled with powerful computational methods, can help to address public
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Figure 5: Bar chart of the test set performance (y-axis, measured as adjusted R2 score) of the different regression
models built on groups of features (x-axis, each group including in parenthesis the total number of features). The chart
includes the confidence intervals computed over 100 random data holdouts (80% train and 20% test). All comparisons
are statistically significant for p<0.01.

health challenges and optimize epidemic control strategies.

We then describe the model used for the simulations, which is an extension of the widely-used compartmental SEIR
model to social networks. We further review some of the characteristics of human interaction networks and describe
the families of networks considered in this paper. Finally, we include a list of all the network metrics computed in this
work for the analysis of the most influential variables for the spread.

2.1 Compartmental modelling

Compartmental models subdivide host populations by disease status. The adjective compartmental comes from viewing
the disease states as compartments into and out of which individuals move throughout the epidemic. This is the case of
a simple and widely used model named SIR, which tracks the movement of hosts among three states: (1) susceptible
(S), meaning that the individual has never had the disease and is susceptible to being infected; (2) infected (I),
meaning that the individual currently has the disease and can infect other people; and (3) resistant (R), meaning that
the individual does not have the disease, cannot infect others, and cannot be infected.

The model then evolves in discrete time steps [12]: (1) Each susceptible individual draws a uniformly random person
from the population. If the person drawn is infected, then the susceptible individual changes his state to infected with
probability β. (2) Each infected individual changes his state to resistant with probability ν. (3) Each resistant individual
remains resistant. This model makes several important assumptions, e.g. infected hosts are assumed to have contacts
with random individuals from the population according to a Poisson process that yields an average contact rate of
β per unit time. Disease transmission then occurs if and only if the individual at the receiving end of the contact is
susceptible. Infectious hosts leave the infectious state at an average rate ν either by recovering and becoming immune
or by dying. In the limit of a large host population, this process can be modeled by the following coupled nonlinear
differential equations:

dS

dt
= −βSI,

dE

dt
= βSI − σE,

dI

dt
= σE − νI,

dR

dt
= νI, (1)
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where S(t), I(t), E(t) and R(t) are the numbers of susceptible, infected, exposed and recovered hosts, respectively.
The model ignores the birth and death of susceptibles, the total population size N is static.

Although compartmental SIR models have proven to be quite useful in modeling epidemics, they often do not
properly model some important aspects of disease spread, since they assume a fully mixed, homogeneous population
which may not adequately reflect reality.

2.2 Contact network epidemiology

Many diseases spread through human populations via close physical interactions. The interpersonal contact patterns
that underlie disease transmission can naturally be thought to form a network, where links join individuals who
interact with each other. During an outbreak, disease then spreads along these links. All epidemiological models make
assumptions about the underlying network of interactions, often without explicitly stating them. Contact network
models, however, mathematically formalize this intuitive concept so that epidemiological calculations can explicitly
consider complex patterns of interactions [2].

In a contact network, each person translates into a vertex, and contacts among people translate into edges that
connect appropriate vertices [25]. The number of edges emanating from a vertex is called the degree of the vertex
and indicates the number of possible contacts that can lead to disease transmission to or from an individual.

2.3 Network SEIR Model

We apply the standard compartmental SEIR model to stochastic networks. To do so, we consider a graph G representing
individuals (nodes) and their interactions (edges). Each node individual i in the graph has associated a current state:
state Xi can be S (susceptible), E (exposed), I (infected) or R (recovered). At a given time, an individual i makes
contact with a subset of random individuals from their set of close contacts (denominated local interaction) with
probability pl and with a subset of individuals outside of their network (called global interactions) with probability pg.
More specifically, in our model (inspired from [29]), we consider two different types of contacts:

• Close contacts – individuals with whom one has non-cursory (e.g., repeated, sustained, and/or physical)
interactions on a regular basis, such as housemates, family members, close coworkers, close friends, etc. This
set of close contacts the population is defined through the contact network.

• Casual contacts – individuals with whom one has incidental, brief, or superficial contact on an infrequent basis
(e.g., at the grocery store, on transit, at a public event, in the elevator) – are also represented in these models
in the form of a parallel mode of mean-field global transmission.

When a susceptible individual interacts with an infectious individual they become exposed with probability β and
transition towards infected with rate of progression σ. The model takes three pathogen parameters: probability of
transmission β given contact, rate of progression σ and rate of recovery γ. These have been initialised to estimated
parameters for SARS-CoV-2.

The probability of transitioning from exposed to infected and from infected to recovered remain the same than in
the standard SEIR model (described in more detail in Section 2). However, the probability that a susceptible individual
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i moves to the exposed state needs to be specified by the contact network of the individual. We define it as:

Pr(Xi = S → E) =

[
β · Bi

(
pl ·

∑N
z=1 δ(Xz = I)

N
+ pg ·

∑
j∈Ci δ(Xj = I)

|Ci |

)]
δ(Xi = S), (2)

where δ is an indicator function such that δ(Xi = A) = 1 if the state of Xi is A, or 0 if not, Ci denotes the set of
close contacts of node i and Bi is a factor accounting for the budget of interactions of individual i to its contact

network at each time step. The terms
∑N

z=1 δ(Xz=I)
N and

∑
j∈Ci

δ(Xj=I)

|Ci | thus correspond respectively to the percentage
of infected individuals in the population and in the contact network of individual i , respectively. The product of the
network locality parameters (pl and pg) and the transmission parameter set the weight of transmission among close
(local) and casual (global) contacts in the modeled population.

If Bi is set to 1, then individual i makes contact with exactly 1 individual each time step of the simulation (either in
the contact network or outside of it with probabilities pl and pg). However, this makes the assumption that individuals
highly connected have the same interactions per time step than individuals with a small contact network. In other words,
it assumes an equal budget of interactions per individual, which may not be realistic in the case of super-spreaders.
In fact, previous work has shown a super-linear association between the number of contacts and their duration [8],
indicating the possibility that super-spreaders need to be defined not only in number of connections but also in intensity.
This is, the more distinct interactions one individual has, the larger is the average time dedicated to those interactions.

We set to compare both assumptions regarding this budget of human interactions in our simulations. However,
as it is obvious, we can not compare the result of two simulations with different total of human interactions, as
the simulation with larger number of interactions would most probably lead to a larger spread of the pathogen. To
appropriately compare the spread for an equal and unequal budget of interactions, we set to maintain the total number
of interactions across the population per time step. This is, we first test Bi = 1 ∀i , where all individuals are assumed
to be mixed similarly. We then compare these results to the case of Bi = |Ci |

k̄
, where k̄ is the average degree for the

population. This sets a linear relationship between Bi and |Ci |, with individuals with larger contact networks having
a larger interaction budget, while still maintaining the total number of interactions for the whole population. We
additionally experiment with different pl and pg, to see the difference that local/global interactions have on the spread.

Our proposed SEIR model on a social network has some limitations that we do not explore in this paper. For example,
the amount of local and global interactions would often differ among individuals, with super-spreaders probably having
a higher probability of global/random interactions. Instead of proposing Eq. (2) as a realistic model for the pathogen
transmission, we aim to show the difference that certain choices of the model can have in the simulation results.

2.4 Characteristics of human interaction networks

There are some properties that are shared by human interaction networks. We review some of these now:

• Heterogeneity: The degree (size of the contact network per individual) varies across individuals and groups of
like-individuals (e.g., age groups). Groups of individuals may differ in the numbers of within- and between-group
contacts they make.

• Broad degree distribution: Most individuals have roughly average connectivity (degree), but there is individual
variation around the mean degree (this is in contrast with, scale-free networks where most individuals have very
low degree and the mode is often well below the mean).
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• Heavy-tailed degree distribution: A small number of individuals have many more contacts than average, so
the degree distribution tends to have a relatively long right tail.

• Assortativity: There tends to be correlation in degree between adjacent nodes in the contact network. That is,
highly-connected individuals tend to have highly-connected contacts.

• Transitivity (or clustering): Individuals A and B are relatively likely to be contacts of each other if they both
share a mutual contact C.

• Community Structure: Contact networks often have communities of individuals (groups of nodes) that are
more likely to be contacts of each other than they are to be with individuals from another community.

2.5 Families of networks considered

We consider three classes of social networks: i) random homogeneous networks, also known as Erdos-Renyi, ii)
heavy tailed networks or scale-free and iii) small world networks. Part of these networks have been shown to be the
representative of a variety of animal and human social networks [31] and cover some of the characteristics outlined:

• Random homogeneous networks are the underlying assumption of most compartmental models. The degree
distribution can be approximated by a Poisson and peaks around the average, thus denoting a statistical
homogeneity of the nodes. These networks are governed only by stochasticity and thus do not represent any
structural properties that one would expect from a real world network, such as a high clustering coefficient [29].

• Scale-free networks are characterized by a highly skewed distribution of contacts such that most of the nodes
are weakly connected and a small number of nodes have very high connectivity [3]. There is empirical evidence
from different research areas that in fact some real world networks exhibit such a skewed degree distribution
[30, 23], varying over several orders of magnitude, although this is still debated for contact networks [2, 7]. The
degree distribution of these heterogeneous networks can often approximated by a power-law behavior, which
implies a non-negligible probability of finding nodes with very large degree.

• Small world networks are characterized by a degree distribution that is roughly symmetric about the mean, with
a high degree of node clustering and a short characteristic path length [34]. This model, although better suited
for social networks with high clustering coefficient, has a degree distribution and centrality measures decaying
exponentially fast away from the average value. The small-world model thus generates homogeneous networks
where the average of each metric is a typical value shared by all nodes of the network and with little variation.

However, the well-known mentioned families of networks do not cover all the aspects outlined for human interaction
networks. In order to generate a more diverse set of networks we additionally use a community-based graph generator
[14] that allows us to generate networks with all these parameters. Specifically, we perform a grid search of different
values for the following parameters: i) Number of communities, ii) strength of those communities (probability of
edges to be formed within communities), iii) the probability of also connecting to the neighbors of a node each nodes
connects to, iv) number of communities a node can belong to, v) the probability of a node belonging to the multiple
communities, vi) the strength of degree similarity effect on edge formation and vii) the strength of common neighbor’s
effect on edge formation edges.
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2.6 Network metrics computed

We have computed 30 different topological network metrics (i.e. that only use the adjacency matrix) for each of the
network graphs. These can be categorised under:

• Distance metrics: Wiener index, diameter, radius, local efficiency, global efficiency, eccentricity, closeness and
betweenness. From these last 3 we compute the average, std and skewness.

• Connection metrics: degree metrics (avg. degree, std. degree, max degree, min degree, branching factor,
skewness degree, kurtosis degree, entropy degree), is connected, number of connected components, assortativity,
clustering, transitivity and node connectivity.

• Spectral metrics: algebraic connectivity and spectral radius.

We categorise these metrics in global and local metrics depending on whether they are computed only on the basis
of nodes’ neighbours (local), or using the whole graph (global). Local metrics are all degree metrics, assortativity,
clustering, local efficiency and transitivity. Global metrics are the remaining ones.

3 Experiments

We first show how networks with exactly the same amount of individuals and human interactions can lead to very
different spread. All results use the same base simulator1 model and pathogen parameters. We then analyse all results
on this highly diverse set of networks to study the networks metrics that influence the spread the most. Thus, the
experiments and analysis in this paper can be divided into two differentiated parts: First, we simulate well-known families
of networks with different assumptions about interactions between individuals and analyse the results in terms of the
spread. Secondly, we compute a set of network metrics from the literature for each of these networks with the aim
of finding the most predictive network metric for the spread of the epidemic. In this second part we also complement
all the previous networks families with a network generator that is highly customisable, in order to generate an even
larger set of networks, all with different network topology. The code and metrics for all network topologies will be
made available at this project’s github page2.

3.1 Description of experiments

We have done experiments with the mentioned families of networks for different network sizes (N=500, 1000 and
2000) and levels of connectivity (mean degree of 4, 10 and 20). Previous work has found an average of 13.4 contacts
per day per person consistently for different European countries [28]. However, people will make changes in behavior
(e.g. reduce their number of contacts) in response to knowledge of an epidemic. These changes will not only reduce
the number of contacts of the entire population, but also change the mixing patterns in the population, which is why
we experiment with different average degree and types of human interactions.

Note that, independently of the mean degree of the population, all simulations have factored the same total of
interactions per time step (i.e. so that on average each individual makes one contact per time step). This allows us to

1https://github.com/ryansmcgee/seirsplus
2https://github.com/mperezortiz/topology_spread
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compare the results across different families of networks and levels of global/local interactions easily. Moreover, when
we compare different families of networks we always compare results where the average degree is the same, but there
is a different distribution of the edges of the contact network due to randomness and different network geometry.

For small-world networks the graph generator has a hyper-parameter that breaks clustering, increasing global
connections (g). We experiment with different values of g (from 0.0 to 0.8, meaning that 80% of connections are
random). Scale-free networks have clustering parameter (c), which we also experiment with.

We run each simulation until the pathogen has naturally died off (i.e. herd immunity is in place). All the parameters
for the pathogen has been set to those of covid-19. Specifically, β (transmission probability) is set to 0.155, σ to 1

5.2

and γ to 1
12.39 . We report several statistics on the results of the simulations: i) percentage of nodes infected during the

epidemic ii) peak of infected during the epidemic (also as a percentage of the total population) and iii) R0 (percentage
of secondary infections per node infected in the first part of the simulation).

For each network family (e.g. Erdos Renyi) we have generated 30 random networks, and for each of these networks
we have run the simulation 10 times. This is because there is both stochasticity in the generation of the graph as in the
simulation itself. Additionally, after running the first simulation on the network (we denote this as the first generation)
we have also reintroduced the pathogen and run the simulation on the remaining network in order to test whether herd
immunity was in place (we name this the second generation).

3.2 Results with differently connected networks

We first analyse the spread over differently connected networks (average degree and levels of global and local
connectivity) for an equal interaction budget. Again, this effectively means that for all the results presented, each
individual makes one contact per time step, the difference in the results thus stems from the average degree of the
population and the levels of local and global mixing. The results for different network sizes and connectivity can be seen
in Table 1, where N represents the number of nodes or individuals in the network and e the average degree (edges).
In this table we have aggregated all results for all network families (Erdos Renyi, Scale free and Small world) and we
assume that each node has an equal interaction budget as presented in Section 3. As it was expected, networks with
higher degree lead to a much higher percentage of infected before the pathogen naturally dies off and also a significantly
higher peak of infection (compare for example the results for e=4 and e=20). However, the second generation is less
pronounced (although if one sums up the infected from first and second generation for example for e=4 and e=20 the
latter one still leads to much higher infection, i.e. 29% infected vs 74% for N=1000).

Table 1 also includes results for different probabilities of local and global interaction (pl and pg). Note that we
always maintain pl + pg = 1 so that the same total number of human interactions is kept constant across the three
simulations. The difference between the three cases is noteworthy. By decreasing the locality of how the pathogen
spreads and allowing it to spread globally we can see that both the number of infections and the peak increase. Highly
connected networks (e=20) increase their infection by around 4% when we compare the results of the pg = 0.0 to
pg = 0.2. However, weakly connected networks (e=4) increase it by 25-30%. One can also appreciate the difference
between decreasing the average degree of the population (e.g. going from e=20 to e=4) in a globally connected
network (where there are random connections due to commuting, grocery shopping, etc.), where first generation
infection decreases from 73.6 to 47.3% when N=2000, vs in a local network with pg = 0.0, where it decreases from
67.7% to 11.7%.
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Simulation with pg = 0.0 and pl = 1.0
First generation Second generation

Infected (%) Peak (%) R0 Infected (%) Peak (%) R0

e=4 N=500 27.2± 5.7 5.4± 0.6 1.3± 0.1 16.0± 2.1 4.5± 0.3 3.0± 0.5

e=4 N=1000 17.9± 5.3 2.9± 0.4 1.3± 0.2 11.4± 2.3 2.5± 0.3 4.7± 1.1

e=4 N=2000 11.7± 4.5 1.6± 0.3 1.4± 0.2 7.7± 2.1 1.4± 0.2 6.7± 2.1

e=10 N=500 60.5± 9.3 8.7± 1.2 1.6± 0.2 11.0± 3.6 4.2± 0.3 1.7± 0.9

e=10 N=1000 57.5± 11.9 6.6± 1.4 1.6± 0.2 7.2± 3.1 2.2± 0.3 2.6± 1.5

e=10 N=2000 56.0± 13.8 5.5± 1.5 1.7± 0.2 4.4± 2.6 1.1± 0.2 3.4± 2.6

e=20 N=500 70.8± 6.2 10.8± 1.2 1.7± 0.2 8.3± 3.3 4.1± 0.2 1.1± 0.8

e=20 N=1000 68.9± 9.2 8.9± 1.5 1.7± 0.2 5.2± 3.6 2.1± 0.3 1.6± 1.8

e=20 N=2000 67.7± 11.9 7.8± 1.7 1.8± 0.2 3.1± 2.8 1.1± 0.2 2.1± 2.8

Simulation with pg = 0.1 and pl = 0.9
First generation Second generation

Infected (%) Peak (%) R0 Infected (%) Peak (%) R0

e=4 N=500 40.5± 6.5 6.2± 0.7 1.4± 0.2 14.9± 2.5 4.4± 0.3 2.7± 0.6

e=4 N=1000 33.3± 7.1 3.8± 0.6 1.4± 0.2 11.2± 2.6 2.4± 0.3 4.6± 1.3

e=4 N=2000 28.2± 8.5 2.5± 0.5 1.4± 0.2 8.4± 2.6 1.4± 0.2 7.4± 2.6

e=10 N=500 66.3± 5.0 9.5± 1.1 1.6± 0.2 9.1± 2.2 4.1± 0.1 1.3± 0.6

e=10 N=1000 64.6± 5.8 7.6± 1.1 1.7± 0.2 5.5± 2.0 2.1± 0.1 1.8± 1.0

e=10 N=2000 63.9± 6.3 6.6± 1.2 1.7± 0.2 3.2± 1.8 1.1± 0.1 2.2± 1.8

e=20 N=500 73.4± 2.8 11.2± 1.0 1.7± 0.2 7.3± 1.2 4.0± 0.1 0.8± 0.3

e=20 N=1000 72.5± 2.6 9.5± 1.1 1.8± 0.2 4.1± 1.0 2.0± 0.1 1.1± 0.5

e=20 N=2000 71.9± 2.6 8.6± 1.1 1.8± 0.2 2.2± 0.6 1.0± 0.0 1.2± 0.6

Simulation with pg = 0.2 and pl = 0.8
First generation Second generation

Infected (%) Peak (%) R0 Infected (%) Peak (%) R0

e=4 N=500 52.5± 4.9 7.3± 0.7 1.4± 0.2 12.3± 2.3 4.2± 0.2 2.1± 0.58

e=4 N=1000 49.2± 5.3 5.1± 0.6 1.5± 0.2 8.1± 2.2 2.2± 0.2 3.1± 1.11

e=4 N=2000 47.3± 5.6 3.9± 0.6 1.5± 0.2 5.4± 2.2 1.2± 0.2 4.4± 2.20

e=10 N=500 70.1± 2.9 10.3± 0.9 1.6± 0.2 8.0± 1.2 4.0± 0.1 1.0± 0.29

e=10 N=1000 69.0± 2.6 8.6± 0.8 1.7± 0.2 4.6± 1.0 2.0± 0.1 1.3± 0.51

e=10 N=2000 68.7± 2.3 7.6± 0.8 1.8± 0.2 2.4± 0.5 1.0± 0.0 1.4± 0.48

e=20 N=500 74.9± 1.7 11.7± 0.8 1.7± 0.2 6.8± 0.6 4.0± 0.0 0.7± 0.15

e=20 N=1000 74.1± 1.5 10.1± 0.8 1.8± 0.2 3.8± 0.4 2.0± 0.0 0.9± 0.21

e=20 N=2000 73.6± 1.3 9.2± 0.7 1.9± 0.2 2.1± 0.5 1.0± 0.1 1.1± 0.51

Table 1: Average ± standard deviation results for different network sizes (n nodes) and levels of connectivity (average
e edges per node) assuming an equal budget of interaction per node (Bi = |Ci |). These results are aggregated over
all three families of networks.

Discussion of results The first conclusion from our experiments is thus that not all human interactions affect the
spread equally. In particular, higher levels of global connectivity increase the spread significantly, even when we are
comparing the same amount of human interactions per time step. This is shown in our simulations in two ways: i) with
networks of different average degree and ii) with simulations in which we vary pg. Thus, in a highly connected society,
non-pharmaceutical interventions (such as social bubbles that may decrease the average degree for the population)
may have less effect on decreasing the spread.

3.3 Results on well-known network families

We study now the effect of different well-known network families for equal and unequal interaction budgets. Let us
begin with the equal interaction budget. In this case, at each time step, each individual contacts exactly one individual
from their network (independently of the network size) with probability pl and from the rest of the population with
probability pg. The results for different network families can be seen in Table 1, where we have aggregated all results
for the different network sizes and levels of connectivity.
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Simulation with pg = 0.0 and pl = 1.0
First generation Second generation

Infected Peak R0 Infected Peak R0
Erdos Renyi 54.7± 20.7 7.0± 3.0 1.6± 0.2 7.1± 4.0 2.4± 1.3 2.4± 2.2

Scale-free c=0.0 52.5± 22.1 7.1± 2.9 1.6± 0.3 7.7± 4.6 2.6± 1.3 2.7± 2.5

Scale-free c=0.1 52.0± 22.6 7.2± 3.0 1.6± 0.3 7.8± 4.7 2.6± 1.3 2.8± 2.6

Scale-free c=0.2 51.3± 22.8 7.1± 2.9 1.6± 0.3 7.7± 4.7 2.6± 1.3 2.7± 2.3

Scale-free c=0.3 50.6± 23.5 7.0± 3.0 1.5± 0.3 7.9± 4.7 2.6± 1.3 2.9± 2.5

Scale-free c=0.4 50.2± 23.4 7.0± 3.0 1.6± 0.3 7.9± 4.6 2.6± 1.3 2.8± 2.1

Scale-free c=0.5 49.5± 24.0 6.9± 3.0 1.5± 0.3 7.9± 4.4 2.6± 1.3 2.8± 2.3

Scale-free c=0.6 49.0± 24.0 6.8± 3.0 1.5± 0.3 7.9± 4.4 2.6± 1.3 2.8± 2.0

Scale-free c=0.7 48.4± 24.9 6.8± 3.0 1.5± 0.3 7.9± 4.5 2.6± 1.3 2.7± 2.0

Scale-free c=0.8 47.4± 24.7 6.6± 3.0 1.5± 0.3 7.9± 4.4 2.6± 1.4 2.8± 2.1

Small-world q=0.0 19.8± 12.9 3.7± 2.0 1.5± 0.2 13.9± 6.0 3.0± 1.3 5.9± 3.4

Small-world q=0.1 36.5± 21.0 4.5± 2.3 1.6± 0.2 11.0± 4.3 2.7± 1.3 4.5± 2.4

Small-world q=0.2 44.5± 22.9 5.3± 2.5 1.6± 0.2 8.9± 4.0 2.5± 1.3 3.3± 1.6

Small-world q=0.3 48.8± 23.2 5.9± 2.8 1.6± 0.2 8.1± 4.3 2.5± 1.3 2.8± 1.7

Small-world q=0.4 50.9± 23.0 6.3± 2.9 1.6± 0.2 7.8± 4.3 2.5± 1.3 2.7± 2.0

Small-world q=0.5 52.3± 22.7 6.7± 3.0 1.6± 0.2 7.5± 4.3 2.5± 1.3 2.6± 2.1

Small-world q=0.6 53.4± 22.2 6.8± 3.0 1.6± 0.2 7.5± 4.5 2.5± 1.3 2.6± 2.1

Small-world q=0.7 53.8± 22.0 6.9± 3.1 1.6± 0.2 7.4± 4.5 2.5± 1.3 2.6± 2.3

Small-world q=0.8 54.0± 21.9 6.9± 3.0 1.6± 0.2 7.3± 4.3 2.5± 1.3 2.6± 2.5

Simulation with pg = 0.1 and pl = 0.9
First generation Second generation

Infected Peak R0 Infected Peak R0
Erdos Renyi 60.9± 14.7 7.7± 2.7 1.6± 0.2 6.3± 3.5 2.4± 1.3 1.9± 1.6

Scale-free c=0.0 58.9± 16.3 7.8± 2.7 1.6± 0.2 7.0± 4.2 2.5± 1.3 2.4± 2.3

Scale-free c=0.1 59.0± 16.4 7.8± 2.7 1.6± 0.3 7.2± 4.6 2.5± 1.3 1.5± 2.5

Scale-free c=0.2 58.4± 16.9 7.7± 2.7 1.6± 0.3 7.1± 4.3 2.5± 1.3 2.5± 2.4

Scale-free c=0.3 57.8± 17.8 7.7± 2.8 1.6± 0.3 7.2± 4.5 2.5± 1.3 2.5± 2.7

Scale-free c=0.4 57.0± 18.7 7.7± 2.9 1.6± 0.3 7.5± 4.6 2.5± 1.3 2.7± 3.1

Scale-free c=0.5 56.6± 18.7 7.6± 2.8 1.6± 0.3 7.5± 4.6 2.5± 1.3 2.7± 2.9

Scale-free c=0.6 56.0± 19.5 7.6± 2.9 1.6± 0.3 7.6± 4.7 2.6± 1.3 2.7± 2.8

Scale-free c=0.7 55.0± 20.3 7.4± 2.9 1.6± 0.3 7.7± 4.6 2.6± 1.3 2.9± 2.9

Scale-free c=0.8 54.3± 21.4 7.3± 3.0 1.6± 0.3 7.7± 4.9 2.6± 1.3 2.8± 2.9

Small-world q=0.0 43.0± 19.2 4.9± 2.3 1.6± 0.2 10.7± 4.0 2.6± 1.3 4.3± 2.1

Small-world q=0.1 50.4± 19.3 5.8± 2.4 1.6± 0.2 8.9± 4.2 2.5± 1.3 3.4± 2.3

Small-world q=0.2 54.7± 18.4 6.4± 2.6 1.6± 0.2 7.9± 4.3 2.5± 1.3 2.8± 2.2

Small-world q=0.3 57.2± 17.4 6.9± 2.8 1.6± 0.2 7.3± 4.1 2.4± 1.3 2.6± 2.3

Small-world q=0.4 59.1± 15.9 7.2± 2.7 1.6± 0.2 6.9± 3.9 2.4± 1.3 2.3± 1.9

Small-world q=0.5 60.2± 15.4 7.5± 2.8 1.6± 0.2 6.6± 3.8 2.4± 1.3 2.2± 1.9

Small-world q=0.6 60.8± 15.0 7.6± 2.8 1.6± 0.2 6.4± 3.6 2.4± 1.3 2.0± 1.7

Small-world q=0.7 61.2± 14.7 7.6± 2.8 1.6± 0.2 6.4± 3.6 2.4± 1.3 2.0± 1.7

Small-world q=0.8 61.3± 14.6 7.7± 2.8 1.6± 0.2 6.3± 3.6 2.4± 1.3 2.0± 1.7

Simulation with pg = 0.2 and pl = 0.8
First generation Second generation

Infected Peak R0 Infected Peak R0
Erdos Renyi 66.2± 9.8 8.5± 2.4 1.7± 0.2 5.3± 2.8 2.4± 1.3 1.4± 0.9

Scale-free c=0.0 65.1± 10.5 8.5± 2.4 1.7± 0.2 5.8± 3.4 2.4± 1.3 1.6± 1.4

Scale-free c=0.1 65.3± 10.3 8.6± 2.4 1.7± 0.2 5.7± 3.2 2.4± 1.3 1.6± 1.3

Scale-free c=0.2 64.9± 10.7 8.5± 2.4 1.6± 0.2 5.8± 3.5 2.4± 1.3 1.7± 1.5

Scale-free c=0.3 64.4± 11.3 8.5± 2.5 1.7± 0.2 6.0± 3.4 2.4± 1.3 1.8± 1.7

Scale-free c=0.4 64.0± 11.9 8.5± 2.6 1.6± 0.3 6.1± 3.5 2.4± 1.3 2.0± 1.9

Scale-free c=0.5 63.7± 11.8 8.4± 2.4 1.6± 0.2 6.2± 3.6 2.4± 1.3 1.9± 1.8

Scale-free c=0.6 63.0± 12.7 8.3± 2.5 1.6± 0.3 6.4± 3.8 2.5± 1.3 2.0± 1.9

Scale-free c=0.7 62.5± 13.4 8.2± 2.5 1.6± 0.2 6.5± 3.9 2.5± 1.3 2.1± 2.1

Scale-free c=0.8 62.1± 13.6 8.1± 2.6 1.7± 0.3 6.6± 4.0 2.5± 1.3 2.2± 2.2

Small-world q=0.0 58.4± 13.5 6.6± 2.3 1.7± 0.2 7.5± 3.6 2.4± 1.3 2.6± 1.7

Small-world q=0.1 61.6± 12.1 7.2± 2.4 1.7± 0.2 6.7± 3.5 2.4± 1.3 2.1± 1.4

Small-world q=0.2 63.4± 11.3 7.6± 2.4 1.7± 0.2 6.2± 3.3 2.4± 1.3 1.9± 1.3

Small-world q=0.3 64.7± 10.4 8.0± 2.4 1.7± 0.2 5.8± 3.2 2.4± 1.3 1.7± 1.0

Small-world q=0.4 65.6± 9.8 8.2± 2.4 1.7± 0.2 5.6± 3.0 2.4± 1.3 1.6± 0.9

Small-world q=0.5 66.2± 9.3 8.3± 2.4 1.7± 0.2 5.4± 2.8 2.4± 1.3 1.5± 1.0

Small-world q=0.6 66.6± 9.1 8.4± 2.4 1.7± 0.2 5.3± 2.8 2.4± 1.3 1.4± 0.8

Small-world q=0.7 66.6± 9.3 8.5± 2.4 1.7± 0.2 5.3± 2.9 2.4± 1.3 1.4± 0.8

Small-world q=0.8 66.6± 9.3 8.5± 2.4 1.7± 0.2 5.3± 2.9 2.4± 1.3 1.4± 0.9

Table 2: Average ± standard deviation results for different network families assuming an equal budget of interaction
per node. These results are aggregated over all network sizes and levels of connectivity.

The first striking observation is that Erdos Renyi generally leads to a higher percentage of infected than standard
scale-free networks3. This is consistent with different results in the literature [19], which show that Erdos Renyi
networks over-estimate the infection when compared to networks that resemble real-world ones better. This may be

3Here we refer to scale-free with c=0.0 and small-world with q=0.0, as these are additional hyper-parameters of the graph
generators that change the network topology.
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Simulation with pg = 0.0 and pl = 1.0
First generation Second generation

Infected Peak R0 Infected Peak R0
Erdos Renyi 61.6± 11.6 8.3± 2.4 1.7± 0.2 5.1± 2.6 2.4± 1.3 1.3± 0.8

Scale-free c=0.0 60.4± 7.3 12.2± 1.8 2.3± 0.4 3.8± 2.0 2.3± 1.3 0.6± 0.2

Scale-free c=0.1 60.3± 7.4 12.3± 1.9 2.4± 0.4 3.8± 2.0 2.3± 1.3 0.7± 0.3

Scale-free c=0.2 59.9± 7.6 12.4± 1.9 2.4± 0.5 3.8± 2.0 2.3± 1.3 0.7± 0.3

Scale-free c=0.3 59.6± 7.8 12.4± 2.0 2.5± 0.5 3.8± 2.0 2.3± 1.3 0.7± 0.3

Scale-free c=0.4 59.1± 8.3 12.4± 2.1 2.6± 0.6 3.9± 2.1 2.3± 1.3 0.7± 0.4

Scale-free c=0.5 59.0± 8.6 12.4± 2.2 2.6± 0.5 3.9± 2.1 2.4± 1.3 0.7± 0.4

Scale-free c=0.6 58.8± 9 12.3± 2.2 2.6± 0.5 4.0± 2.1 2.4± 1.3 0.8± 0.4

Scale-free c=0.7 58.4± 9.4 12.2± 2.1 2.6± 0.5 4.1± 2.2 2.4± 1.3 0.8± 0.5

Scale-free c=0.8 57.8± 10.2 11.9± 2.2 2.5± 0.5 4.3± 2.3 2.4± 1.3 0.9± 0.7

Small-world q=0.0 20.2± 13.3 3.7± 2.0 1.5± 0.2 14.1± 6.0 3.1± 1.4 6.0± 3.5

Small-world q=0.1 37.0± 21.3 4.6± 2.3 1.6± 0.2 11.0± 4.3 2.7± 1.3 4.5± 2.4

Small-world q=0.2 45.8± 22.5 5.5± 2.6 1.6± 0.2 8.8± 4.1 2.5± 1.3 3.3± 1.7

Small-world q=0.3 50.2± 22.1 6.2± 2.8 1.6± 0.2 8.0± 4.2 2.5± 1.3 2.9± 2.0

Small-world q=0.4 53.0± 20.9 6.6± 2.8 1.6± 0.2 7.5± 4.3 2.5± 1.3 2.7± 2.3

Small-world q=0.5 55.2± 19.4 7± 2.9 1.6± 0.2 7.1± 4.1 2.4± 1.3 2.4± 2.2

Small-world q=0.6 56.2± 18.4 7.2± 2.9 1.6± 0.2 6.9± 4.0 2.4± 1.3 2.4± 2.1

Small-world q=0.7 57.2± 17.5 7.4± 2.9 1.6± 0.2 6.7± 3.9 2.4± 1.3 2.2± 1.9

Small-world q=0.8 57.5± 17.5 7.4± 2.9 1.6± 0.2 6.7± 3.9 2.4± 1.3 2.2± 2.1

Simulation with pg = 0.1 and pl = 0.9
First generation Second generation

Infected Peak R0 Infected Peak R0
Erdos Renyi 65.0± 8.8 9.0± 2.0 1.7± 0.2 4.7± 2.4 2.4± 1.3 1.1± 0.4

Scale-free c=0.0 61.8± 5.8 12.2± 1.5 2.3± 0.4 3.7± 1.9 2.3± 1.3 0.6± 0.2

Scale-free c=0.1 61.5± 6 12.3± 1.6 2.4± 0.4 3.7± 1.9 2.3± 1.3 0.6± 0.2

Scale-free c=0.2 61.2± 6.1 12.4± 1.7 2.4± 0.4 3.8± 2.0 2.3± 1.3 0.6± 0.4

Scale-free c=0.3 61.2± 6.1 12.5± 1.7 2.5± 0.4 3.7± 1.9 2.3± 1.3 0.6± 0.2

Scale-free c=0.4 60.5± 6.5 12.4± 1.8 2.5± 0.5 3.7± 1.9 2.3± 1.3 0.6± 0.3

Scale-free c=0.5 60.5± 6.7 12.3± 1.9 2.5± 0.5 3.8± 2.0 2.3± 1.3 0.7± 0.3

Scale-free c=0.6 60.4± 6.9 12.2± 1.8 2.5± 0.5 3.8± 2.0 2.3± 1.3 0.7± 0.3

Scale-free c=0.7 60.3± 7.1 12.1± 1.8 2.5± 0.5 3.9± 2.0 2.3± 1.3 0.7± 0.3

Scale-free c=0.8 60.2± 7.5 12± 1.9 2.5± 0.5 3.9± 2.0 2.3± 1.3 0.7± 0.3

Small-world q=0.0 43.3± 19.3 4.9± 2.3 1.6± 0.2 10.8± 4.0 2.6± 1.3 4.4± 2.1

Small-world q=0.1 51.5± 19 5.9± 2.5 1.6± 0.2 8.6± 4.2 2.5± 1.3 2.2± 2.2

Small-world q=0.2 56.1± 16.8 6.6± 2.6 1.6± 0.2 7.5± 3.9 2.5± 1.3 2.7± 2.1

Small-world q=0.3 59.1± 14.7 7.2± 2.6 1.7± 0.2 6.7± 3.6 2.4± 1.3 2.2± 1.8

Small-world q=0.4 61.1± 13.3 7.6± 2.6 1.7± 0.2 6.1± 3.2 2.4± 1.3 1.9± 1.4

Small-world q=0.5 62.3± 12.4 7.9± 2.6 1.7± 0.2 5.8± 3.1 2.4± 1.3 1.7± 1.2

Small-world q=0.6 63.0± 11.4 8.1± 2.5 1.7± 0.2 5.6± 3.0 2.4± 1.3 1.6± 1.0

Small-world q=0.7 63.5± 11.4 8.2± 2.5 1.7± 0.2 5.4± 2.8 2.4± 1.3 1.5± 1.0

Small-world q=0.8 63.4± 11.1 8.3± 2.5 1.7± 0.2 5.4± 3.0 2.4± 1.3 1.5± 0.9

Simulation with pg = 0.2 and pl = 0.8
First generation Second generation

Infected Peak R0 Infected Peak R0
Erdos Renyi 67.4± 6.8 9.6± 1.7 1.8± 0.2 4.3± 2.1 2.3± 1.3 0.9± 0.3

Scale-free c=0.0 62.7± 5.0 12.1± 1.3 2.3± 0.4 3.7± 1.9 2.3± 1.3 0.6± 0.2

Scale-free c=0.1 62.4± 5 12.2± 1.4 2.3± 0.3 3.7± 1.9 2.3± 1.3 0.6± 0.2

Scale-free c=0.2 62.2± 5.1 12.2± 1.4 2.3± 0.4 3.7± 1.9 2.3± 1.3 0.6± 0.2

Scale-free c=0.3 62.0± 5.1 12.3± 1.5 2.4± 0.4 3.7± 1.9 2.3± 1.3 0.6± 0.2

Scale-free c=0.4 61.8± 5.3 12.3± 1.6 2.5± 0.5 3.7± 1.9 2.3± 1.3 0.6± 0.2

Scale-free c=0.5 61.8± 5.2 12.3± 1.6 2.5± 0.5 3.7± 1.9 2.3± 1.3 0.6± 0.2

Scale-free c=0.6 61.7± 5.6 12.2± 1.5 2.5± 0.4 3.7± 1.9 2.3± 1.3 0.6± 0.2

Scale-free c=0.7 61.5± 5.6 12.1± 1.5 2.5± 0.5 3.8± 1.9 2.3± 1.3 0.6± 0.2

Scale-free c=0.8 61.5± 5.8 12± 1.5 2.4± 0.5 3.8± 1.9 2.3± 1.3 0.7± 0.2

Small-world q=0.0 58.0± 13.4 6.5± 2.3 1.6± 0.2 7.7± 3.7 2.5± 1.3 2.7± 1.7

Small-world q=0.1 61.7± 11.7 7.3± 2.4 1.7± 0.2 6.6± 3.5 2.4± 1.3 2.0± 1.2

Small-world q=0.2 64.2± 9.9 7.8± 2.3 1.7± 0.2 5.8± 3.0 2.4± 1.3 1.7± 0.9

Small-world q=0.3 65.2± 9.1 8.2± 2.2 1.7± 0.2 5.5± 2.8 2.4± 1.3 1.5± 0.9

Small-world q=0.4 66.3± 8.4 8.5± 2.2 1.7± 0.2 5.2± 2.7 2.4± 1.3 1.3± 0.7

Small-world q=0.5 67.1± 7.8 8.8± 2.1 1.7± 0.2 4.9± 2.4 2.4± 1.3 1.2± 0.6

Small-world q=0.6 67.1± 7.8 8.8± 2.1 1.7± 0.2 4.9± 2.4 2.4± 1.3 1.2± 0.5

Small-world q=0.7 67.3± 7.7 9± 2.1 1.7± 0.2 4.8± 2.4 2.4± 1.3 1.1± 0.5

Small-world q=0.8 67.5± 7.5 9± 2.1 1.7± 0.2 4.8± 2.4 2.4± 1.3 1.1± 0.5

Table 3: Average ± standard deviation results for different network families assuming a budget of interaction dependent
on the degree of each node. These results are aggregated over all network sizes and levels of connectivity.

not intuitive at first, since scale-free networks represent networks with nodes with very high connectivity (e.g. super-
spreaders). The hypothesis in the literature is that, assuming long lasting sterile immunity, highly connected nodes
usually get infected quickly and then become immune, and given that they are highly connected they help slow down
the spread [15]. It is noteworthy in any case that the infection progresses faster and a higher peak is achieved for
scale-free networks, even when the total number of infected is lower. Increasing the clustering of scale-free networks
(hyper-parameter c) decreases the spread even further as it is expected. This means that even in a network with
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a non-negligible percentage of highly connected individuals it helps to decrease global connections and increase the
locality.

Small-world networks lead to the lowest infection rates. We observe, again, a more pronounced second generation
of infections (still, total infection stays relatively low). However, the properties and structure of this network can
be broken easily by increasing the amount of global connections (hyper-parameter q). A high percentage of random
connections (q=0.8) leads to infection rates similar to those of Erdos Renyi networks. Once again, we can compare
the results for different values of pl and pg. In fact, increasing global interactions by setting pg = 0.2 for scale-free
and small world effectively means that all results get closer and closer to those of Erdos Renyi, and also that the herd
immunity threshold increases (from 54% to 66% for Erdos Renyi).

We now compare these results to those with an unequal budget interaction, where highly connected individuals also
have a larger number of interactions per time step, while the total of interactions for the population is maintained. The
results are shown in Table 3. Interestingly, the same conclusions that we drawn from Table 2 still apply here: Erdos
Renyi networks lead to larger spread than Scale-free, in this case by a larger margin. However, Scale-free networks
lead to larger peak of infections. Small world networks lead to the least amount of infections. However, comparing
each row in Table 2 to its corresponding row in Table 3 we can appreciate an increase in the infections when a
heterogeneous budget of human interactions is assumed for the population. Note that in this paper we set a linear
relationship between the budget of interactions and the degree of the individual. However, previous work has shown a
super-linear relationship, meaning that the differences between Table 2 and 3 could be even more pronounced.

Discussion of results Erdos Renyi networks, the assumption of most epidemiological models, often over-estimate
the infection when compared to networks that resemble real-world ones better. Powerlaw often show less infections
than Erdos Renyi but a higher peak. Small world networks are consistently resilient to pathogen spread. However,
slightly increasing the globality of small world networks while keeping the same number of interactions leads to a
significantly higher infection rate. A heterogeneous budget of human interactions leads to an increased number of
infections compared to a homogeneous one.

3.4 Influence of network metrics on the spread

We now put together all the contact networks that we have generated and used in our simulations. This includes not
only all the well-known families of networks that we analysed in our previous section but also the community-based
networks. The total of networks analysed in this experiment is 9061. We thus build a large dataset of social networks.
For each one of these networks we have computed the 30 network metrics mentioned before, together with some
statistics of the spread, i.e. average percentage of individuals infected and peak of infection across 10 simulations. We
analyse how different network metrics influence the spread of the pathogen for a large range of network topologies.

3.4.1 Univariate analysis

A correlation analysis can be found in Table 4. The conclusions are as follows:

• Global efficiency is the most predictive metric overall (not only of total of infected but also of the peak). The
relationship seems to be linear, as indicated by the Pearson correlation. Average closeness follows. Both of these
metrics are novel to the literature.
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Equal distr. of interactions Unequal distr. of interactions
Pearson corr. Spearman rank corr. Pearson corr. Spearman rank corr.

Network metrics Infected Peak Infected Peak Infected Peak Infected Peak
algebraic conn. 0.57 0.57 0.66 0.45 0.66 0.63 0.17 -0.06
assort. corr. 0.08 -0.06 -0.06 -0.07 -0.15 -0.14 0.12 -0.13

avg betwenness -0.32 -0.39 -0.22 -0.28 -0.41 -0.35 -0.34 -0.32
avg closeness 0.82 0.87 0.83 0.87 0.85 0.81 0.74 0.65
avg degree 0.76 0.82 0.75 0.75 0.69 0.73 0.36 0.40

avg eccentricity -0.33 -0.92 -0.27 -0.89 -0.45 -0.90 -0.32 -0.66
branching factor 0.15 0.08 0.37 0.19 0.23 -0.58 0.39 -0.56

clustering -0.34 -0.39 -0.31 -0.31 -0.36 -0.40 -0.10 0.06
entropy degree 0.49 0.20 0.41 0.27 0.32 0.08 0.75 0.57
is connected -0.07 0.14 0.02 0.05 0.14 0.23 -0.33 -0.29

kurtosis degree -0.34 -0.09 -0.26 0.01 -0.06 -0.09 0.14 0.66
local eff. -0.16 -0.23 -0.14 -0.16 -0.26 -0.28 0.07 0.18
node conn. 0.38 0.47 0.41 0.33 0.48 0.53 -0.16 -0.22

skew betwenness -0.18 -0.14 -0.11 -0.03 0.00 -0.14 0.44 0.65
skew closeness 0.23 0.26 0.32 0.23 0.32 0.32 0.31 0.21
skew degree -0.22 -0.09 -0.13 0.02 0.00 -0.08 0.42 0.67

skew eccentricity 0.01 0.02 0.03 0.01 0.01 -0.03 0.00 0.08
spectral radius 0.55 0.32 0.51 0.42 0.35 0.15 0.80 0.79
std betwenness -0.30 -0.26 -0.14 -0.10 -0.09 -0.23 0.32 0.54
std closeness 0.10 -0.15 0.09 0.03 -0.04 -0.25 0.73 0.66
std degree 0.37 0.26 0.38 0.37 0.21 0.13 0.82 0.91

std eccentricity -0.45 -0.54 -0.42 -0.44 -0.42 -0.54 0.03 0.04
transitivity -0.14 -0.18 -0.19 -0.16 -0.31 -0.26 -0.30 -0.05
global eff. 0.84 0.87 0.85 0.87 0.87 0.81 0.75 0.66
diameter -0.34 -0.89 -0.27 -0.84 -0.46 -0.90 -0.32 -0.55
radius -0.32 -0.80 -0.26 -0.80 -0.44 -0.79 -0.32 -0.76

Table 4: Average ± standard deviation results for different network families assuming an equal budget of interaction
per node. These results are aggregated over all network sizes and levels of connectivity.

• Metrics such as the spectral radius are not as predictive of infections as was suggested in the literature (at least
not on their own). The same is applicable to clustering and transitivity.

• Some metrics seem to be predictive of the infected, but not of the peak. This is the case of the average degree,
and more specifically for a unequal budget of interactions.

• There are some metrics that are not linearly correlated but show great correlation in rank, for example diameter,
radius and avg eccentricity, with up to 0.92 negative correlation.

• The skewness of the degree distribution (related to super spreaders) alone is not enough for predicting the
spread.

We display in Figure 1.1.3 some of these network metrics (x axis) versus the percentage of infected (y axis). The
first row shows some metrics of the degree distribution, which alone do not seem sufficient to predict infections. The
next row (spectral radius and clustering) shows metrics that have been proposed in the literature as predictive of the
spread. We can see that these metrics, alone, also do not show a clear relationship with infections. Finally, the last row
shows metrics that are novel (global efficiency and algebraic connectivity) which have a clear influence on the spread.

Discussion of results The correlation analysis shows that global efficiency and average closeness are the most
predictive network metrics. This contradicts previous studies which suggested average of the degree distribution,
clustering and spectral radius to be most informative. Studies aimed at measuring the average degree across the
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population exist, however we show that even for a fixed average degree the spread can change drastically (i.e. from
10% to 50% infection for average degree of 4, and from 30% to more than 80% for average degree of 20).

3.4.2 Multivariate analysis

We investigated the influence of metrics on the pathogen spread with a multivariate linear regression analysis. The
results are shown in Figure 1.1.3. We report adjusted R2 computed on the test set of 100 random holdouts with 80%
of data for training and 20% for testing. R2 is a goodness-of-fit measure for linear regression models that indicates
the percentage of the variance in the dependent variable that the independent variables explain collectively. The R2

obtained using all the network metrics is 0.934. This value indicates that the independent variables help us explain the
spread almost perfectly. The remaining variance of the data could be partly due to the randomness of the simulation.
This figure also shows the predictive power of different groups of metrics. First, we see that average degree alone is
not enough to predict the spread accurately. Considering additional degree metrics (skewness, entropy, etc.) improves
the predictive performance (R2 from 0.473 to 0.631), further improved when taking into account the remaining local
metrics (R2 from 0.631 to 0.710). However, the model built using only global efficiency achieves better performance
than the model that uses all degree metrics and the model that uses all local metrics (R2 of 0.747). Additional global
metrics complement global efficiency and increase the performance further. A non-linear regression model trained with
global metrics alone was able to accurately predict the spread as well as a model trained with all metrics.

However, there is a very strong multicollinearity (indicated by the condition number) in these models, which makes
the interpretation of the models not reliable, which is why we do not interpret the linear regression coefficients.
Multicollinearity is a common problem when estimating linear linear models. It occurs when there are high correlations
among predictor variables, leading to unreliable and unstable estimates of regression coefficients. In order to reduce
multicollinearity and be able to interpret the final regression model we perform a exhaustive feature selection that tests
a large amount of combinations of features (all sets from 3 to 12 features) using 3 fold cross-validation. We observe
that many different sets of features still explain the data variance greatly (with an R2 of 0.837 for only 3 selected
features) and reject that multicolinearity was present. This indicates that there are combinations of these features
that can reliably explain the variance in the spread.

Discussion of results A combination of network metrics can accurately predict the variability on the spread for both
equal and unequal budget of human interactions. Linear regression analysis shows that global efficiency has the highest
influence on the spread. This metric relate to the path lengths between nodes and global connectivity of the social
graph. Both contact tracing or mobility data that are already being recorded can be used for example to infer path
lengths in different societies.

4 Conclusions

Among other research findings, our simulations show i) how much the topology of social networks can highly influence
pathogen spread, ii) that reducing incidental casual contact reduces significantly the spread, iii) that small world
network topologies are resilient to infections, iv) the usefulness of a principled multivariate approach for evaluating
metrics predictive of the spread and v) the superiority of metrics that relate to the graph path length over metrics
of the degree distribution. Our simulations also highlight the importance of modeling a wide range of parameters of
a social network (and not only the average but also the distribution), for example the degree and contact network
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per individual, mobility, connectivity, etc. This could be done either through behavioural studies, contact tracing or
mobility data that is already being recorded. Measuring these for a population would lead to much more accurate
epidemiological simulations and social interventions. Our results also show that the effect of a social intervention
depends on the underlying social network. This is of crucial importance. A social intervention will almost always vary in
its effect on each property of a social network. For example, closing public spaces reduces long range connectivity but
not necessarily short range connectivity. Social interventions can be then seen as transitions from one complex social
network organisation to another, not merely attenuations or amplifications of any given network. As different previous
works have already pointed out, to maximise the impact of social interventions, we need complex, prescriptive models
of social networks.

The space of optimal interventions could be large, diverse, and non-intuitive: the same intervention can have radically
different (indeed opposing effects) across different real-world networks, and the same outcome may require radically
different interventions to achieve. Given the observed wide space of scenarios, interventional inference is likely to
require an exploration of the graph properties of the networks scenarios assessed to derive maximal efficient change
in those properties that leads to the desired optimal outcome. It is thus clear that we need a wide range of complex
network analysis epidemiological tools, as well as a platform that allows to do so systematically. Even if we do not
know what are the topologies of real-world networks (and this certainly can change across societies and regions), it
is worth exploring the space of complex interactions scenarios in a systematic manner. This could lead to a subset of
interventions that perhaps collapse in trend regardless of the network and help restrict the decision making space.

Contact-tracing data specifically provide information to reconstruct transmission chains and understand outbreak
dynamics [32, 16]. These data can in turn generate valuable intelligence on key epidemiological parameters and risk
factors for transmission [27], which paves the way for more-targeted and cost-effective interventions. Determining
a complete mixing network requires knowledge of every individual in a population and every relationship between
individuals. For all but the smallest populations, this is an impractically time-consuming task. However, since long lasting
sterile immunity may not be guaranteed, this may be crucial to understand how different behavioural factors and social
networks influence the spread. Specifically, these network metrics can be captured from a subgraph of the population
instead of the whole network. They may be useful to design more accurate simulations and to recommend interventions
or to target/correct aspects of connectivity that will actually control infection spread, while maintaining economic
activity. Among the studied families of social graphs, small world networks excel in their resilience to infections.

We believe that further study into the effect of different social interventions on the spread and global efficiency
of the network are needed. We think that such a line of research could potentially lead to crafting measures that
define the optimal interventions in terms of spread per social contact. A promising metric could be the participation
coefficient [11], which could be extracted from contact tracing, and would give an indication of how "provincial" each
node in the graph is. Interventions aimed at the most connected nodes (e.g. vaccination) could potentially decrease
global efficiency to a large extent.
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