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Summary 21 

Background 22 

COVID-19 patients shed SARS-CoV-2 RNA in their faeces. We hypothesised that detection of 23 

SARS-CoV-2 RNA in wastewater treatment plant (WWTP) influent could be a valuable tool to 24 

assist in public health decision making. We aimed to rapidly develop and validate a scalable 25 

methodology for the detection of SARS-CoV-2 RNA in wastewater that could be 26 

implemented at a national level and to determine the relationship between the wastewater 27 

signal and COVID-19 cases in the community.  28 

Methods 29 

We developed a filtration-based methodology for the concentration of SARS-CoV-2 from 30 

WWTP influent and subsequent detection and quantification by RT-qPCR. This methodology 31 

was used to monitor 28 WWTPs across Scotland, serving 50% of the population. For each 32 

WWTP catchment area, we collected data describing COVID-19 cases and deaths. We 33 

quantified spatial and temporal relationships between SARS-CoV-2 RNA in wastewater and 34 

COVID-19 cases.  35 

Findings 36 

Daily WWTP SARS-CoV-2 influent viral RNA load, calculated using daily influent flow rates, 37 

had the strongest correlation (ρ>0.9) with COVID-19 cases within a catchment. As the 38 

incidence of COVID-19 cases within a community increased, a linear relationship emerged 39 

between cases and influent viral RNA load. There were significant differences between 40 

WWTPs in their capacity to predict case numbers based on influent viral RNA load, with the 41 

limit of detection ranging from twenty-five cases for larger plants to a single case in smaller 42 

plants. 43 

Interpretation 44 

The levels of SARS-CoV-2 RNA in WWTP influent provide a cost-effective and unbiased 45 

measure of COVID-19 incidence within a community, indicating that national scale 46 

wastewater-based epidemiology can play a role in COVID-19 surveillance. In Scotland, 47 

wastewater testing has been expanded to cover 75% of the population, with sub-catchment 48 

sampling being used to focus surge testing. SARS-CoV-2 variant detection, assessment of 49 

vaccination on community transmission and surveillance for other infectious diseases 50 

represent promising future applications.  51 
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Introduction 62 

The COVID-19 pandemic has necessitated the rapid implementation of surveillance 63 

programmes worldwide to track and control the spread of SARS-CoV-2. Initially, such 64 

programmes relied on syndromic surveillance, community testing, contact tracing and the 65 

monitoring of morbidity and mortality rates (1-3). Community testing relies on voluntary 66 

reporting of clinical signs and is only partially able to capture the pre-symptomatic, 67 

asymptomatic and pauci-symptomatic cases of SARS-CoV-2 infection that can contribute 68 

significantly to community transmission, and are therefore subject to biases, which can 69 

influence estimates of disease burden (1, 2). Syndromic surveillance based on hospital 70 

admissions is less biased, but is subject to delays between infection and admission (2), while 71 

implementing mass swab-testing on a nationally meaningful scale is not economically 72 

feasible for most countries (2).  73 

Early studies identified SARS-CoV-2 RNA in the faeces of infected individuals and COVID-19 74 

has subsequently been associated with a range of gastrointestinal symptoms (4). SARS-CoV-75 

2 has been detected in faeces from both asymptomatic and symptomatic individuals, with 76 

prolonged shedding observed up to 33 days after the initial onset of symptoms or 77 

hospitalisations (1, 4, 5). Consequentially, wastewater-based epidemiology (WBE) has been 78 

explored as a tool to track the spread of SARS-CoV-2 by many countries (1). Medema et al. 79 

(2020) detected SARS-CoV-2 in wastewater early in the pandemic and identified viral RNA in 80 

the wastewater of three Dutch cities and a major airport up to six days before the first 81 

reported clinical cases (6). WBE studies are now ongoing in over 50 countries (1, 7, 8). 82 

Although proving effective as a surveillance tool, understanding the impact of viral shedding 83 

dynamics in faeces, viral persistence in wastewater and wastewater flow rates on viral 84 

detection remain serious challenges. Differences between urban and rural wastewater 85 
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systems and accurate normalisation to population size also must also be considered (2). 86 

Furthermore, wastewater samples are diverse and can contain PCR inhibitors; therefore, 87 

reproducible virus process controls are needed (2). Whilst there are a range of techniques 88 

for detecting viruses in wastewater, many are difficult to operationalise at a national scale. 89 

This study describes the development and implementation of a national WBE SARS-CoV-2 90 

surveillance programme. We compared and optimised commonly used viral concentration 91 

techniques, validated Porcine Respiratory and Reproductive virus (PRRSv) as a suitable 92 

process control and optimised RT-qPCR assays for SARS-CoV-2 detection in wastewater. This 93 

methodology was adopted by the Scottish Environment Protection Agency (SEPA) and has 94 

been used to routinely monitor viral levels at 28 wastewater treatment plant (WWTP) sites 95 

across Scotland, serving 50% of the Scottish population (2.66 million people). These sites 96 

include large conurbations, as well as low-density rural and remote island communities.  97 

We demonstrate that daily SARS-CoV-2 viral RNA load can be used to predict the number of 98 

cases detected in the WWTP catchment area, with a clear statistically significant 99 

relationship observed between these two variables above site-specific case thresholds.  100 

 101 

Methods 102 

WWTP site selection 103 

WWTP monitoring sites were selected by Scottish Water and SEPA to represent at least 50% 104 

of the population in each Scottish health board area (Table S2.1), using the minimum 105 

number of sites possible. 106 

Wastewater sample collection 107 

WWTP influent was collected at each site using a refrigerated autosampler that obtained 108 

representative influent samples over each 24-hour period. Sites were typically sampled once 109 
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a week, with increased frequency of sampling in response to changes in disease incidence in 110 

the community. Samples were transported and stored at 4oC prior to analysis, typically 111 

within 24-48 hours of collection.  112 

Wastewater concentration and detection of SARS-CoV-2  113 

Five viral concentration methods, Methods 1 – 5, based on filtration, precipitation and 114 

adsorption were trialled (see Supplementary Materials). Method 1 was further optimised by 115 

SEPA (Method 6) and used for routine wastewater monitoring. Viral RNA was extracted 116 

from concentrated wastewater samples using commercial kits. SARS-CoV2 was detected by 117 

RT-qPCR (E-gene during method development and N1-gene during routine monitoring).  118 

Data collection 119 

Two WWTP datasets were provided by SEPA via a publicly available portal (9). The first 120 

dataset reported sample date, location (WWTP name, coordinates, Health Board, and Local 121 

Authority), catchment area (CA) size (population band and population) and SARS-CoV-2 N1 122 

and E gene average concentrations (gene copies/l). The second dataset reported the daily 123 

WWTP influent flow (l/day) and three separate N1 gene replicates for each sample. SEPA 124 

also provided the WWTP dry weather (i.e. licenced) flow (l/day) and Scottish Water the CA 125 

shapefiles for the 28 sites.  126 

COVID-19 data in Scotland are collected by Public Health Scotland (PHS) and the dataset 127 

used in this study reports the date and location of first COVID-19 tests and first positive 128 

tests (i.e. such that ‘positivity’ is the proportion of individuals who test positive), with test 129 

results, and deaths, starting from March 1st, 2020. To protect patient anonymity, data were 130 

provided by PHS by “datazone”, a small-scale geographic unit identified by the National 131 

Records of Scotland (NRS) containing approximately 500 to 1000 individuals. Relevant 132 

shapefiles and population data were downloaded from the NRS portal (10), facilitating a 133 
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high resolution allocation of the number of tests, detected cases (i.e. positive tests), and 134 

COVID-19 related deaths for each of the CAs.  135 

Data analysis 136 

The objective was to understand the association between the concentration and daily viral 137 

RNA load of SARS-CoV-2 RNA in WWTP influent and the number of detected cases in the 138 

corresponding CA. The daily WWTP influent viral RNA load was calculated by multiplying the 139 

wastewater sample viral RNA concentration with the WWTP influent flow for the day of 140 

sampling. Since daily flow is not always available, SEPA included a flow estimate obtained 141 

with a linear regression model that considered ammonium concentration (provided by 142 

Scottish Water), catchment population, and site as independent variables (Roberts and 143 

Fang, private communication). Analyses were repeated using both reported flow rates and 144 

these estimates (see Supplementary Material).  145 

The number of detected cases and the positive test rate were calculated by counting the 146 

number of positive and total tests over a time period ending on the day the sample was 147 

taken. This period was set to a week in the main analysis, while we tested the effect of 148 

varying it from zero days (i.e. counting only the reported cases on the day of wastewater 149 

sample collection) to 28 days on our results (see Supplementary Material).  150 

To test the association between observed cases (Yi,j) and daily WWTP viral RNA load (Xi,j), we 151 

fitted a linear mixed model: 152 

𝑌",$ = 	𝛽( + 𝛽*𝑋",$ + 𝑢$ + 𝑏$𝑋",$ + 𝜀"	, 153 

where b0 and b1 represent the fixed intercept and coefficient of the daily WWTP viral RNA 154 

load Xi,j. Parameters uj and bj are the random intercept and coefficient, associated with each 155 

group j (catchment). Before the estimation, the dependent and independent variables were 156 

square root transformed. 157 
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We evaluated the model using the conditional pseudo-R2, which measures the variance 158 

explained by both fixed and random effects (11) and analysed the resulting coefficients 159 

(intercept, b0 + uj, and slope, b1 + bj) to assess the consistency of the signal and the potential 160 

causes of the differences between WWTPs. We first fitted a series of univariable linear 161 

regression models with the site’s slope or intercept as the dependent variable and 162 

population, population density, number of wastewater samples, latitude, longitude, 163 

deprivation and access indices (10) as dependent variables. We then fitted a multivariable 164 

model to each coefficient, selecting as independent variables those returning a p-value 165 

below 0·2 in the univariable models. Variables were then further selected through a 166 

stepwise selection in order to eliminate the statistically insignificant ones.  167 

All data manipulation and analysis was done in R 4.0.1 (12) using packages tidyverse (13), 168 

lme4 (14), and MuMIn (15).  169 

 170 

Results 171 

Method optimisation and detection of SARS-CoV-2 RNA in WWTP influent  172 

Reliable quantification of SARS-CoV-2 in wastewater requires consistent viral RNA extraction 173 

across a broad range of concentrations. To investigate this, aliquots of a single wastewater 174 

sample were spiked with a serial dilution of heat-inactivated SARS-CoV-2. There was no 175 

association between viral concentration and the efficiency of RNA recovery across five 176 

orders of magnitude of SARS-CoV-2 concentration (Fig S1.1.A). We next validated PRRSv (a 177 

porcine enveloped nidovirus that can be cultured in vitro at Containment Level 2) as a 178 

suitable surrogate process control virus for SARS-CoV-2. The extraction efficiencies of heat-179 

inactivated SARS-CoV-2, live PRRSv and heat-inactivated PRRSv were comparable when used 180 

to spike a single wastewater sample (Fig S1.1.B). Extraction efficiencies were also 181 
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comparable between SARS-CoV-2 and heat inactivated PRRSv across wastewater samples 182 

from six individual WWTPs (Fig S1.1.C). Heat-inactivated PRRSv was chosen as a process 183 

control for all subsequent testing. 184 

Viral concentration methodologies based on filtration (Methods 1 - 3), PEG precipitation 185 

(Method 4) and adsorption (Method 5) were compared. The requirement to stir larger 186 

sample volumes for 8 h made the milk powder adsorption method insufficiently scalable 187 

and so it was excluded following initial pilot trials. Filtration and PEG precipitation resulted 188 

in comparable efficiencies of PRRSv recovery, however, more variability between technical 189 

replicates was observed using PEG precipitation (Fig S1.1.D).  190 

We compared liquid phase (influent and effluent) and solid phase (primary sludge and 191 

dewatered cake) samples for use in detection of SARS-CoV-2 RNA. Samples were taken 192 

weekly from a single plant, WWTP2, over a three-week period. Recovery of PRRSv from 193 

influent was 20% across the 3-week sample period (Fig S1.1.E), however SARS-CoV-2 RNA 194 

levels were below the limit of quantification (Fig S1.1.F). 195 

SARS-CoV-2 RNA was detected in all primary sludge samples and 2/3 dewatered cake 196 

samples from WWTP2 despite poor recovery of PRRSv from both sludge (0·5 – 3·5%) and 197 

dewatered cake (0·2 – 0·8%). No SARS-CoV-2 RNA was detected in the effluent from WWTP2 198 

(n=3 replicates taken weekly over 3 consecutive weeks). Although sludge and/or dewatered 199 

cake may be a more sensitive sample type for detection of SARS-CoV-2, due to sampling 200 

difficulty and differences in sludge processing methods among WWTPs, influent samples 201 

were chosen for subsequent testing. Furthermore, some WWTPs treat sludge from other 202 

sites and hence sludge may not always be representative of the WWTP CA. 203 

Method 1 was selected to determine if SARS-CoV-2 RNA could be detected and quantified in 204 

wastewater collected from WWTPs in Scotland during the start of the pandemic. Influent 205 
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samples from six wastewater treatment plants, WWTP1 – WWTP6, were tested (Fig S1.2). 206 

Samples were taken on 27th March 2020, shortly before the first COVID-19 mortality peak in 207 

Scotland. A strong positive SARS-CoV-2 RNA signal of 18,000 genome equivalents per litre 208 

was detected in sample WWTP5 (Fig S1.2.A). SARS-CoV-2 RNA levels in each of the other five 209 

plants fell below our limit of quantification. Method 1 was further optimised by SEPA 210 

(Method 6; Supplementary Materials) and used for routine wastewater monitoring. Of note, 211 

detection of the N1-gene by RT-qPCR was found to be more sensitive than the E-gene (Fig 212 

S1.2.B) and therefore N1-gene detection was adopted for the national programme. 213 

Data analysis 214 

The weekly number of SARS-CoV-2 reported cases, deaths and positivity are shown in Fig 215 

1A. As of 29/1/2021, 989 wastewater samples, with three replicates each, have been 216 

analysed across 28 WWTPs, with the earliest samples taken from late May 2020 (Fig 1B). 217 

The number of samples per WWTP ranged from 12 (Stornoway, Outer Hebrides) to 112 218 

(Shieldhall, Greater Glasgow). The CAs are distributed across Scotland (Fig 1C) and despite 219 

covering only 1·2% of Scotland’s land mass, they cover 50% of the population. Daily WWTP 220 

influent flow data was missing for 18% of the samples.  221 

As evident in Fig 2, wastewater RNA viral concentration (panels A, C and E) and daily WWTP 222 

viral RNA load (panels B, D, and F) mimic the trends of the daily positive test rate (number of 223 

positive tests over the total) and the daily incidence curves, respectively. This was 224 

independent of the CA population size (Fig S2.1 to S2.5 for remaining WWTPs).  225 

Preliminary correlation analyses showed that WWTP daily viral RNA load is highly correlated 226 

with the number of COVID-19 cases detected in the CA, while the wastewater viral 227 

concentration was highly correlated with the positive test rate (Fig S2.6 and Fig S2.7). The 228 
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correlations improve as the number of contributing days for case counts before sampling 229 

increases from zero to five, at which point it stabilises.  230 

The full mixed model explained 78% of the variance in the number of cases in the CA 231 

(conditional R2 = 0·78), while the daily viral RNA load as a fixed effect explained 45% of the 232 

variance (marginal R2 = 0·45). The null hypothesis that the sites’ random slope variance was 233 

zero, i.e. each site had the same slope gradient, was rejected with a Chi2 test (p ~ 0). By 234 

varying the length of the time period used to calculate the number of cases, the conditional 235 

R2 ranged from 0·71 to 0·89, with an average of 0·76 across the 29 periods considered (Fig 236 

S2.8).  237 

The mixed model fit by site is reported in Fig 3 (and Fig S2.9). While the daily WWTP viral 238 

RNA load coefficients, or slope, are an indicator of the strength of the relationship between 239 

viral RNA load and cases, the intercept provides an estimate of the limit of detected cases in 240 

each CA. The median [interquartile] estimated slope across sites was 5·2 × 106 [4·50-5·37 × 241 

106], and was positive in all sites, including the confidence interval (Fig 4A). The median 242 

[interquartile] intercept was 2·01 [0·90-3·77]. The intercept varied substantially between 243 

WWTPs of different size: median 0·84 [0·63-0·90] for the smaller sites (< 10,000 population), 244 

2·25 [1·72-3·78] for the medium-sized sites (10,000 to 100,000 population), and 5·30 [3·2-245 

6·95] for the larger sites (> 100,000 population). This translates to a threshold of less than 246 

one recorded case from which the relationship between viral RNA load and cases is 247 

detectable in small catchments, five recorded cases in the medium-sized catchments and 248 

twenty-five cases in the large catchments. Among the latter group, Dalmuir and 249 

Meadowhead were outliers, with higher intercept and lower slope compared with similar-250 

sized catchments (Fig 4C).  251 
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The variables that best explain differences in mixed model slopes across WWTPs were the 252 

population size and the number of samples taken, although geographical longitude (not 253 

significant) was retained after multivariable model stepwise selection (Table 1). The CA 254 

population size and deprivation index were significant in explaining the differences in the 255 

mixed model intercepts (see Fig S2.10 for single variable plots).  256 

 257 

Discussion 258 

SARS-CoV-2 WBE has rapidly become an important surveillance tool for COVID-19 around 259 

the world. This work uniquely describes the establishment of a WBE programme covering 260 

50% of a country’s population across a wide range of WWTP sizes, including large cities and 261 

small remote rural and island communities. We have used granular geospatial data to 262 

determine accurate estimates of recorded COVID-19 cases within each CA. We demonstrate 263 

the existence of a strong and measurable statistically significant relationship between the 264 

SARS-CoV-2 daily WWTP viral RNA load and the number of detected cases in the week 265 

preceding wastewater sample collection.  266 

The precision of this estimate varies between sites, with differences in the slope mostly 267 

attributed to the size of the population being served. Our results identified a stronger 268 

relationship between cases and viral RNA load in the larger WWTPs. The identified threshold 269 

for detection was typically under 25 cases, and for some smaller WWTPs, a single detected 270 

community case was sufficient to yield a positive wastewater result. Compared to similar-271 

sized WWTPs, Meadowhead and Dalmuir were outliers (Fig 4C); given their size, the slopes 272 

imply a poorer relationship between detected cases and WWTP daily viral RNA load, and 273 

intercepts a poorer sensitivity than expected. These WWTPs are defined by fragmented and 274 

highly dispersed CAs compared to most WWTPs of this size. Thus network architecture may 275 
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be important, and sub-catchment sampling may be necessary for large, fragmented, and/or 276 

dispersed networks. Deprivation also had a significant impact on the intercept, possibly due 277 

to differences in case reporting and/or viral RNA load per case. Combined, these factors 278 

meant that the limit of detection of cases per 100,000 population was highly variable 279 

between WWTPs: median 6·5 [4·6-10·7] for the smaller sites, 19·0 [8·0-27·9] for the 280 

medium-sized sites, and 10·3 [6·0-23·0] for the larger sites. 281 

Studies in other countries have identified similar trends in SARS-CoV-2 levels in wastewater 282 

and COVID-19 cases in the CA, including in the USA (16), Australia (17), France (18), and 283 

Spain (19). Importantly, we demonstrate how WBE can be adopted across a range of 284 

catchments, from densely populated urban areas (Edinburgh and Glasgow), to smaller 285 

towns, rural areas and islands. In contrast to previous studies, we demonstrate the value of 286 

obtaining flow measurements from WWTPs to calculate daily viral RNA loads, which display 287 

a stronger correlation with detected community case numbers, compared with viral 288 

concentration data alone (Fig S2.6). This strong correlation demonstrates that degradation 289 

of viral RNA within the wastewater network is minimal over the considered time scale, as 290 

reported by other studies (20).  291 

Our typically low limits of detection show that wastewater surveillance can be particularly 292 

valuable for areas reaching low prevalence and is therefore suitable as a logistically 293 

sustainable and cost-effective early warning system, making a targeted community testing 294 

strategy viable. For WWTPs collecting wastewater from cities, it is harder to isolate small 295 

clusters of infections. This hurdle can be overcome by sampling a site “upstream” to the 296 

WWTP (i.e. within the sewerage network) to improve spatial resolution. This is currently 297 

taking place in Scotland, with local health boards using sub-catchment wastewater sampling 298 

to direct surge testing.  299 
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For smaller catchments, the size and the spatial resolution is already fine enough to inform 300 

community interventions, however a potential issue here is the variability in the signal. 301 

Specifically, we observed sudden spikes in the viral RNA load or viral concentration in many 302 

small WWTPs (Fig 2, E and F; Fig S2.4; Fig S2.5). While smaller catchments might be more 303 

sensitive to individual variations in shedding, these spikes might also be caused by one or 304 

two households being infected in a short period of time. Given the sensitivity of these 305 

smaller WWTPs to a small number of cases, this may explain these sudden variations in the 306 

SARS-CoV-2 daily viral RNA load.  307 

Whilst we have shown that daily viral RNA load has the best correlation with detected cases, 308 

daily WWTP flow measurements are not always available. This may be more of a problem in 309 

smaller WWTPs, where flow rates regularly exceed the working range of the flow meter or 310 

in low resource settings, however our model retained substantial detection power when 311 

daily flow was estimated using easily obtained ammonium concentrations, with the 312 

conditional R2 dropping by only 2% (R2= 0·76).  313 

To better understand the relationship between WWTP viral RNA load and infected 314 

individuals, we need to consider the level of viral shedding in faeces and how this varies 315 

over time. Whilst SARS-CoV-2 RNA can be detected in the faeces of hospitalised patients for 316 

over four weeks (21, 22), our work and that of others (23) implies a relatively short period of 317 

time over which infected individuals substantially contribute to the wastewater signal. This 318 

was observed in two distinct sensitivity analyses, one on correlations and the other on 319 

mixed model performance (see Supplementary material). Specifically, the correlation 320 

between cases and viral RNA load (and between positive test rate and viral concentration) 321 

stabilises once detected cases are included up to and including the five days prior to 322 

wastewater sampling. Furthermore, even with declining incidence, when the cumulative 323 
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effect of older infections would be expected to have a greater contribution to the overall 324 

signal if shedding duration was long, the conditional R2 of the mixed models did not 325 

deteriorate significantly (0·76 compared to 0·78 when incidence was increasing), and was 326 

consistent with a short period of peak viral shedding. Unfortunately, there is currently very 327 

limited data on faecal shedding of SARS-CoV-2 RNA in non-hospitalised individuals. Our 328 

understanding of the relationship between the WWTP viral RNA load and infected 329 

individuals is further complicated by the biases in community testing and movement 330 

(although restricted during lockdowns) of individuals between CAs.  Specifically, testing of 331 

symptomatic individuals is unlikely to fully reflect the population incidence, with an analysis 332 

of English data suggesting that approximately 1 in 4 cases were being reported via 333 

community testing up to November 2020 (24).  334 

The value of our results extends beyond the first year of the COVID-19 pandemic. We have 335 

demonstrated how COVID-19 WBE can be implemented at a national scale across a diverse 336 

range of urban and remote communities. At the time of writing, this programme has been 337 

expanded to cover 75% of the population of Scotland and is being used by local health 338 

boards to direct surge testing within the community. This programme will continue to be 339 

important during the rollout of COVID-19 vaccinations, particularly with respect to disclosing 340 

areas of on-going disease transmission and surveillance for novel SARS-CoV-2 variants (25, 341 

26). It also provides public health authorities with an unbiased surveillance network for 342 

other viral and bacterial infections, including antimicrobial resistance genes, shed in faeces. 343 

Until the COVID-19 pandemic, WBE was predominantly limited to the surveillance of a 344 

narrow range of viruses (e.g. polio, norovirus, Hepatitis A/E) in low resource, sewered 345 

settings (27-29). This study demonstrates the rapid inception, development, validation and 346 
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operationalisation of a national COVID-19 WBE programme to provide highly cost-effective 347 

community surveillance during the pandemic. 348 
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Figures  359 

 360 

Figure 1. A, Number of weekly COVID-19 cases, deaths (multiplied by ten), and positive test 361 

rate in Scotland; B, weekly number of wastewater samples across the 28 study sites; C, 362 

spatial distribution of the 28 wastewater treatment plant sites with their catchment area 363 

(orange). Shape denotes the total number of samples by site (square: less than 20, circle: 21 364 

to 40, triangle: 41 to 60, plus: 61 to 80, cross: over 80).  365 
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 366 

Figure 2. Trends of the first test positivity rate (green) and SARS-CoV-2 N1 gene 367 

concentration (brown, gc/l) in wastewater samples (panels A, C, and E); trends of COVID-19 368 
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incidence per 100,000 people (blue), deaths per 1,000,000 people (purple), and N1 gene 369 

daily load (brown, gc/day) in wastewater samples (panels B, D, and F). For positive test rate, 370 

cases, and deaths, points represent the daily value, and lines the seven-day rolling mean. 371 

For N1 gene concentration and daily load, points represent each reading of the samples, and 372 

the line was obtained by fitting a locally estimated scatterplot smoothing (LOESS) function. 373 

Data for three sites of different size are visualised here: Nigg (Grampian, panel A and B), 374 

Philipshill (Lanarkshire, panel C and D), and Fort William (Highland, panel E and F). The 375 

remaining 25 are shown in the Supplementary Material. Vertical lines mark the changes in 376 

restrictions: local or minor policy changes (orange dotted lines), the introduction of the 377 

regional tier system (dashed red line) and the post-Christmas national lockdown (black thick 378 

line).  379 

 380 
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381 

Figure 3. Linear regression mixed model fit for the 28 wastewater treatment plants, ordered 382 

by their catchment population size. Each WWTP regression is plotted with independent axes 383 

limits, see Figure S.2.8. for a version of the plot with fixed axes. 384 
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386 

Figure 4. Linear mixed model coefficients: slopes (panel A) and intercept (panel B), ordered 387 

by coefficient size. Points correspond to the mean and bars correspond to confidence 388 

interval. Panel C shows the relationship between slope and intercept, with points and labels 389 

coloured by catchment population size. 390 
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Tables 392 

Dependent 
variable 

Independent 
variable 

Univariable linear model Multivariable linear model 

Coefficient p Coefficient p 

Mixed 
model 
groups 
slopes 

Number of samples 0·42 0·012 0·30 0·042 

Population 0·56 <0·001 0·47 0·003 

Density 0·27 0·129 (dropped by stepwise selection) 

Latitude 0·15 0·435 - - 

Longitude 0·31 0·179 0·28 0·109 

Deprivation index 0·15 0·373 - - 

Access index -0·44 0·007 (dropped by stepwise selection) 

Multivar. intercept - - 0·15 0·132 

Mixed 
model 
groups 
intercepts 

Number of Samples 0·20 0·236 - - 

Population 0·53 <0·001 0·45 0·002 

Density 0·48 0·001 (dropped by stepwise selection) 

Latitude -0·16 0·370 - - 

Longitude -0·25 0·242 - - 

Deprivation index 0·37 0·009 0·27 0·030 

Access index -0·42 0·005 (dropped by stepwise selection) 

Multivar. intercept - - 0·01 0·908 

 393 

Table 1. Results of the univariable and multivariable linear models to determine the 394 

variables that influence the mixed model slope and intercept for different sites. Deprivation 395 

and access indices measure the relative deprivation and the access to healthcare services 396 

respectively of a datazone. They were included as potential causes of bias in case detection. 397 

The R2 of the two multivariable linear models was 0.45 for the slope, and 0.50 for the 398 

intercept (both p < 0.001).  399 

400 
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