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Abstract— Alzheimer’s disease (AD) is a non-treatable and
non-reversible disease that affects about 6% of people who
are 65 and older. Brain magnetic resonance imaging (MRI)
is a pseudo-3D imaging modality that is widely used for AD
diagnosis. Convolutional neural networks with 3D kernels (3D
CNNs) are often the default choice for deep learning based
MRI analysis. However, 3D CNNs are usually computationally
costly and data-hungry. Such disadvantages post a barrier
of using modern deep learning techniques in the medical
imaging domain, in which the number of data can be used
for training is usually limited. In this work, we propose three
approaches that leverage 2D CNNs on 3D MRI data. We test
the proposed methods on the Alzheimer’s Disease Neuroimaging
Initiative dataset across two popular 2D CNN architectures. The
evaluation results show that the proposed method improves the
model performance on AD diagnosis by 8.33% accuracy or
10.11% auROC, while significantly reduce the training time by
over 89%. We also discuss the potential causes for performance
improvement and the limitation. We believe this work can serve
as a strong baseline for future researchers.

Index Terms — CNN, 3D, MRI, Diagnosis

I. INTRODUCTION

Alzheimer’s disease (AD) is a disease that affects approx-
imately 29.8 million people worldwide in 2015 [1]. In 2018,
US official death certificates recorded 122,019 deaths from
AD, making AD the sixth leading cause of death in the
United States and the fifth leading cause of death among
Americans age 65 and older [2]. Currently, no treatment
can stop or reverse the progression of AD [3]. Thus, early
diagnosis is crucial for Alzheimer’s disease.

Brain magnetic resonance imaging (MRI) is the imaging
modality that is widely used for AD diagnose. An MRI is a
pseud-3D image composed of 2D imaging slices (Figure 1
Left). The voxels in MRIs are corresponding to the phys-
ical locations in patients’ brains. Conventional computer-
aided diagnosis tools for AD classification rely on using
pre-defined, hand-crafted features. However, ADs are often
heterogeneous. Thus, pre-defined features may not be robust
enough for modeling various AD phenotypes. Convolutional
neural networks (CNN), as a promising tool, are rapidly
applied in the medical imaging domain recently [4]–[11].
Compared with traditional methods, CNNs learn features
directly from images, which makes CNN features more
robust than pre-defined features.

Fig. 1: A skull-stripped brain MRI (left) and the correspond-
ing dynamic image (right).

Korolev et al. proposed the first CNN model for AD
classification in 2017 [12]. Their method uses two custom
3D CNN models for AD classification on AD classifica-
tion using the ADNI dataset. The networks achieve similar
performance with traditional AD classification methods that
utilizing hand-crafted features. Cheng et al. [13] suggested
to ensemble multiple 3D CNNs for AD classification. They,
firstly, extracts local image patches from the whole image.
Then, multiple 3D CNNs are trained using local patches from
different locations separately. Finally, an FC layer is added
on top of the multiple 3D CNNs for final prediction. Yang et
al. [14] introduced an explainable version of [12] by using
class activation mapping methods [15], [16]. All the existing
methods are using 3D CNN networks as the building block
for AD classification. However, it is well-known that 3D
CNNs are computationally costly and hard to be optimized
with small datasets [17], [18].

In this study, we propose to use 2D CNN models as
alternative approaches for MRI classification. The methods
leverage 2D CNN models on 3D imaging data by using dif-
ferent fusion strategies. We evaluated the proposed methods
on the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
dataset [19] across two popular architectures. Our experimen-
tal result shows that 2D CNN models can achieve similar or
better results compared with 3D CNNs, while significantly
reducing the model computational cost by reducing over 89%
training time. We consider our contributions to this work as
the following:
• propose using 2D CNNs as an alternative approach for

AD classification using 3D MRI;
• improve the AD classification performance by 8.33%
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Fig. 2: An illustration of a max-pooling process of one 3×3
filter (stride 3 and padding 0) from input to output.

accuracy or 10.11%, while reducing the training time
up to 89%;

• discuss the proposed method in detail and provide a
clear research direction to future researchers.

II. APPROACH

The key idea of the proposed method is to convert 3D
imaging data to a 2D related format using various fusion
strategies. The conversion can be done at the image-level
or the feature-level by using different temporal pooling
methods.

A. Temporal Pooling
Temporal pooling can be used for converting 3D MRIs to

2D images by replacing the values on the temporal dimension
(or the slice dimension) with a single value. For instance,
given an MRI, I , with the shape of W ×H ×Z (Z ≥ 1), a
temporal pooling method, P , is applied to the Z-dimension
of I . After the temporal pooling operation, the output shape
of P (I) is W × H × 1. Temporal pooling can be applied
on both the image-level and the feature-level. Two types of
temporal pooling methods are used in this study: 1) max-
pooling and 2) dynamic image pooling.

1) Max-Pooling: Max-pooling is one of the most com-
monly used pooling operations using the maximum value
from a region to represent the region. Figure 2 shows an
demonstration of max-pooling on the 2D space. A max-
pooling operation, (Pmax), is applied to an image with shape
of 9 × 9. The max-pooling operation has a receptive 3 × 3
kernel with stride 3 and padding 0, and the operation outputs
an image with the shape of 3× 3.

In general, the out shape of a 2D max-pooling operation
can be computed as:

dim(Pmax(I,K)) = (

⌊
H + 2p− f

s
+ 1

⌋
,

⌊
W + 2p− f

s
+ 1

⌋
),

(1)
where I is the input image with shape of H ×W , K is a
2D max-pooling function with a receptive filed of f × f , p
is padding, and s is stride. A max-pooling operation can be
applied to any dimensions. In this study, we use 1D max-
pooling on the slice dimension of MRIs. The output shape
of in our case is:

dim(Pmax(I
′,K ′)) = (H ′,W ′,

⌊
Z ′ + 2p− f ′

s
+ 1

⌋
), (2)

Fig. 3: An illustration of dynamic image pooling. If the
index of the blue slice (SliceB) smaller than the index
of the green slice (SliceG), DynamicImage × SliceB <
DynamicImage× SliceG.

Fig. 4: An illustration of different fusion strategies. Early
fusion (Top) converts 3D images to 2D before feeding the
data into a feature extractor. Late fusion (Bottom) converts
3D images to 2D after feeding the data into a feature
extractor.

where I ′ is an MRI with a shape of (H ′,W ′, Z ′), and K ′

is a 1D max-pooling function with the receptive filed of f ′.
We use p = 0, f ′ = Z ′, and s = 1 in this study.

2) Dynamic Image Pooling: Dynamic image pooling [20],
[21] is a novel temporal pooling method that originally
proposed for video clips summarization. Given a video clip,
V = [x1, x2, x3, ..., xn], with a shape of w×h×n (n is the
number of frames). Dynamic image pooling learns a dynamic
image, µ with a shape of w × h, that is able to rank all the
frames in the video clip, such that:

i < j ⇔ µT · xi < µT · xj ,∀i, j, (3)

where i and j are indices of two frames. The image µ can
be learned using RankSVM [22], [23] or any linear ranking
function.

In this study, we treat MRIs as video clips and we treat
each slices of an MRI as a frame in video clips. Thus,
dynamic image pooling can be applied on the slice dimension
of MRIs. Figure 1 Right shows an example of the output of
dynamic image pooling on MRI data. Figure 3 shows an
example of how to use dynamic image to rank two slices
from the same MRI. More specifically, if the index of the
blue slice (SliceB) smaller than the index of the green slice
(SliceG), DynamicImage×SliceB < DynamicImage×
SliceG.

B. Fusion Location

Usually, when utilizing 2D CNNs on 3D images, we can
apply two fusion strategies that convert 3D images to 2D at
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Fig. 5: An illustration of different architectures that are used in this study.

two different locations: 1) early fusion and 2) late fusion.
Figure 4 shows the illustrates the ideas of both strategies.

In early or late fusing strategies, the words “early” and
“late” are respective to a CNN feature extractor. An early
fusion strategy converts a 3D image to 2D before feeding the
image to the feature extractor. A temporal pooling operation
is usually applied on the pixel-level.

Oppositely, a late fusion strategy converts a 3D image to
2D after feeding it to a feature extractor. More specifically,
each imaging slice of a 3D image is feeding into a 2D CNN
feature extractor one after another. Multiple blocks of feature
maps are generated at this step. Then, a temporal pooling
method is applied to all the blocks of feature maps and
converts them to a single block of feature maps. Finally,
the fused block of feature maps is feed into the classifier for
final prediction.

C. Network Architectures and Implementation

We implement the proposed method using three different
architectures with different combinations of fusion strategies
and temporal pooling methods. More specifically, we have
one for early fusion strategy with dynamic image pooling and
two for late fusion strategies with max-pooling and dynamic
image pooling, respectively.

Each architecture contains an ImageNet pre-trained CNN
feature extractor and a classifier. The pre-trained feature
extractor is frozen during the training stage, while the
classifier is fully optimizable. The classifier contains a 1× 1

TABLE I: Detailed Architecture

Model Feature Extractor Fusion Strategy Pooling Method

Alex Early-Dyn AlexNet Early Dynamic Image
Alex Late-Max AlexNet Late Max-Pooling
Alex Late-Dyn AlexNet Late Dynamic Image
Res Early-Dyn ResNet-18 Early Dynamic Image
Res Late-Max ResNet-18 Late Max-Pooling
Res Late-Dyn ResNet-18 Late Dynamic Image

Conv layer and two FC layer with 512 neurons and 2
neurons, respectively. The Conv layer aims to convert the
ImageNet pre-trained features to AD-specific classification
feature (Figure 5).

For each architecture, we use two different backbone
feature extractors, AlexNet and ResNe-18, separately. All the
Conv layers of the AlexNet and ResNet-18 models are used
as the feature extractors. In total, six models with different
architectures are trained in this work (Table I). We implement
the networks in Pytorch [24]. Weighted cross-entropy is used
as the loss function. Adam [25] optimizer with learning rate
of 0.0001 is used for all the models.

III. EVALUATION

A. Dataset

We use a subset from the ADNI dataset for our work.
In total, 100 cases are used in this study, 51 cognitively
normal (CN) samples and 49 AD samples. The dataset size
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TABLE II: Detailed Performance of Different Models

Model ACC auROC F1 Prec Recall AP

3D-ResNet [12] 0.84 0.82 0.82 0.86 0.79 0.78

Alex Early-Dyn 0.90 0.89 0.89 0.93 0.86 0.86
Alex Late-Max 0.91 0.91 0.91 0.97 0.85 0.90
Alex Late-Dyn 0.90 0.88 0.90 0.94 0.88 0.88

Res Early-Dyn 0.83 0.81 0.82 0.85 0.80 0.78
Res Late-Max 0.84 0.76 0.84 0.85 0.80 0.78
Res Late-Dyn 0.88 0.86 0.86 0.91 0.85 0.84

of this study is similar to [12] and [13]. Data augmentation
is applied on-the-fly for training samples, with a random
combination of horizontal flip and rotations by 0, 90, 180,
or 270 degrees. The data augmentation method effectively
increase our training set size by a factor of 8. All the
samples are skull stripped. Each sample contains a spatially
normalized, masked, and N3-corrected T1 MRI with a shape
of 110 × 110 × 110. We randomly split the dataset to
training/testing sets with a 4:1 ratio on the patient-level. No
samples for the same patient in both training and testing sets.

B. Baseline and Evaluation Metrics

We compare our methods (i.e., the six different 2D CNN
models) with [12], a 3D-ResNet model. In total, seven
models are compared in this study. Each model was trained
for 100 epochs with the same training/testing split. Accuracy
(ACC), the area under the curve of Receiver Operating
Characteristics (auROC), F1 score (F1), Precision (Prep),
Recall (Recall) and Average Precision (AP) are used as the
evaluation metrics.

C. Classification Performance

Table II shows the evaluation result for all the compared
models. The table reveals that four out of six our models
surpass the performance of the baseline model. The best
performance is achieved by Alex Late-Max model, which uses
AlexNet as the feature extractor and uses late fusion strategy
with max-pooling. The model has a 91% accuracy and a 0.91
auROC, which is 8.33% and 10.96% higher than the baseline
on accuracy and auROC, respectively.

Regarding the fusion strategies and pooling methods, there
is no clear winner. However, we think late fusion with
dynamic image pooling is generally a good combination re-
gardless of the choice of a feature extractor. The performance
of the late fusion with a dynamic image pooling method
is relatively consistent among the two feature extractors,
with only a 2% difference for most of the evaluation met-
rics. However, the performance differences between feature
extractors for other fusion methods are much larger when
compared between different feature extractors.

D. Model Training Time

We train all the models using an Nvidia GTX 1080 GPU
card. Each model was trained for 100 epochs. We use batch
size 16 for all of our models and batch size 8 for the baseline
model, which is the largest batch size we can fit into the

TABLE III: Training Time of Different Models

Model Training Time (Mins)

3D-ResNet [12] 3916

Alex Late-Dyn 213
Res Late-Dyn 421

GPU memory. Table III shows the end-to-end training time
for the baseline model and ours late fusion with dynamic
image pooling models.

The table reveals that our models significantly reduces the
training time compared with the baseline model. The baseline
model was trained for over 65 hours and achieved an 84%
accuracy and a 0.82 auROC. Our model with 2D ResNet-18
backbone only needed about 7 hours and got an even better
performance, such that an 88% accuracy and a 0.86 auROC.

One thing worth noting is that since we use the pre-trained
feature extract fixed during our training, we can further
reduce the training time by pre-generating the image feature
maps. In such a way, we only need to train the classifier.
According to our experiments, the classification training with
pre-generated feature maps can be done within 30 minutes.

IV. DISCUSSION

Compared with the traditional 3D CNN approach, the pro-
posed 2D CNN models can achieve better performance while
significantly reduce the training time. We believe both the
performance improvement and the training time reduction are
primarily caused by reducing model complexity. Empirically,
2D CNNs usually have less trainable parameters than 3D
CNN models. Thus, a 2D CNN model may require less
training data and easier to be optimized. Besides, transfer
learning can be easily applied to 2D CNN models since
there are many large datasets are available for pre-training.
However, it is difficult to apply transfer learning on to 3D
CNNs due to the lack of pre-training dataset.

It is surprising that all of our models with AlexNet feature
extractor are outperformed the baseline model, while only
one ResNet backbone model has a better performance than
the baseline. One reasonable explanation is that AlexNet
is shallower than ResNet-18, with 5 Conv layers vs. 18
Conv layers, respectively. The image features extracted by
an AlexNet may contain more low-level information than
ResNet-18, while the features of ResNet-18 may contain
more high-level information that towards the object level.
Since the feature extractors are pre-trained using the natural
imaging dataset and frozen during our training, the low-level
information may be more informative for our project because
the differences between MRIs and natural images. Thus,
models using AlexNet backbone have better performances
than the ones using ResNet-18 backbone.

One limitation of this work is the dataset used in this study
is small. Though the size is similar with the one used in [12],
the small dataset size may limit the 3D model’s performance
since it may not be sufficient to tune the 3D model end-to-
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end. Thus, one of the future research directions of this work
is to work on a large dataset.

During the experiments, we found that both of the pro-
posed methods and the baseline method would get perfor-
mance decrease when using MRIs without skull-stripping
as input. One possible explanation is that the pixel values
of skulls are remarkably higher than brain tissues in MRIs.
During the fusion stage, it is likely that more information
from skull areas is selected. However, such information may
not be useful for Alzheimer’s disease diagnosis. Similarly,
the feature extraction part of a 3D CNN model can also be
considered as a special form of temporal pooling. Hence,
the 3D method may also suffer from the same reason. Thus,
another future research direction is to improve classification
performance using MRIs without skull-stripping.

V. CONCLUSION

In this study, we propose to use 2D CNN models combined
with different temporal pooling strategies for the Alzheimer’s
disease diagnosis. Compared with the conventional 3D CNN
approach, the proposed method is able to improve the clas-
sification performance by 8.33% or 10.11% for the accuracy
or auROC, respectively. In addition, the proposed methods
reduce the training time up to 89%, from 65 hours to 7
hours. We believe the proposed methods can serve as a strong
baseline for future researchers.
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