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ABSTRACT

During the COVID-19 pandemic, predicting case spikes at the local level is important for a precise,1

targeted public health response and is generally done with compartmental models. The performance2

of compartmental models is highly dependent on the accuracy of their assumptions about disease3

dynamics within a population; thus, such models are susceptible to human error, unexpected events,4

or unknown characteristics of a novel infectious agent like COVID-19. We present a relatively5

non-parametric random forest model that forecasts the number of COVID-19 cases at the U.S.6

county level. Its most prioritized training features are derived from easily accessible, standard7

epidemiological data (i.e., regional test positivity rate) and the effective reproduction number (Rt)8

from compartmental models. A novel input training feature is case projections generated by aligning9

estimated effective reproduction number (pre-computed by COVIDActNow.org) with real time testing10

data until maximally correlated, helping our model fit better to the epidemic’s trajectory as ascertained11

by traditional models. Poor reliability of Rt is partially mitigated with dynamic population mobility12

and prevalence and mortality of non-COVID-19 diseases to gauge population disease susceptibility.13

The model was used to generate forecasts for 1, 2, 3, and 4 weeks into the future for each reference14

week within 11/01/2020 - 01/10/2021 for 3068 counties. Over this time period, it maintained a15

mean absolute error (MAE) of less than 300 weekly cases/100,000 and consistently outperformed16

or performed comparably with gold-standard compartmental models. Furthermore, it holds great17

potential in ensemble modeling due to its potential for a more expansive training feature set while18

maintaining good performance and limited resource utilization.19

Keywords COVID-19 · random forest · compartmental model · mobility · US county20
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1 Introduction21

The COVID-19 epidemic in the United States proved devastating economically as it is projected to cause 3.2 to 4.822

trillion USD in net U.S. GDP loss [1]. The epidemic has had a devastating toll on life, particularly among the elderly23

and members of ethnic minorities such as African Americans [2]. Throughout the COVID-19 pandemic, it has been24

necessary to forecast the progression of the pandemic at the U.S. county/county-equivalent (CCE) level so that local25

authorities can effectively implement public health measures such as social distancing or quarantines [3]. This need26

is particularly great due to findings that there is low reliability between state-wide and county-specific reported data,27

necessitating that the pandemic is tracked at the most granular level possible [4].28

Forecasts have been traditionally done with compartmental models such as Susceptible-Exposed-Infectious-Recovered29

(SEIR) [5, 6]. These models segment the population into various compartments for stages in progression of the disease30

of interest. Transitions between these compartments represent epidemic dynamics. These models can be used to solve31

for the time-path of the Rt, which is the estimated ratio of new infections caused by each currently infected individual,32

over the course of an epidemic; this in turn can be used to forecast future epidemic progression [6]. However, these33

models involve numerous assumptions in their design about disease spread dynamics and their interpretability and34

usability is limited by the quality of these assumptions [5, 6, 7].35

Thus, relatively non-parametric deep or machine-learning models, such as Random Forests (RFs), are attractive36

alternatives to compartmental models, as they avoid assumptions about the distribution of input data and generate37

forecasts based on observed empirical trends in this data [8, 9]. In addition to being non-parametric, RF-regressors38

are highly effective at extracting non-linear relationships from input data while being time efficient [10, 11]. First39

described by Breiman, RF-regressors are ensemble models of regression trees each trained on different subsets of40

input data, reducing the variance of predictors and minimizing overfitting [12]. In addition, RFs enable relatively easy41

estimations of variable importance [13], which can serve as an assessment of model performance. RFs have been42

successfully utilized in prior studies for predicting diarrheal infections, Dengue, H5N1 influenza, and West Nile virus43

[10, 14, 15, 16, 17]. They also have been applied for short-term forecasting of COVID-19 infections by Ribeiro et al.44

[11].45

We similarly apply an RF to project COVID-19 infections at the more granular CCE level up to 4 weeks in the future46

using a unique combination of features including population health and mobility, demographic, and COVID-19 testing47

data. Most importantly, a novel feature we develop is preliminary forecasts of cases by taking advantage of our48

observation that SEIR-generated Rt and cases have a similar trajectory over the course of an epidemic but Rt lags49

behind cases, making it predictive of cases in the lag period.50

2 Methods51

2.1 Data Acquisition52

Our time-series datasets begin on 03/31/2020 for 3068 U.S. CCEs with complete, consistent data that could be processed53

without error in our downstream pipelines. To normalize testing and case counts by population, these metrics were54

converted to incidence rate (IR) using the 2018 U.S. Census CCE-level population estimates in Eq. 1.55

IR =
Number of incident cases, tests, etc. during time period

County population, state population
× 100, 000 (1)

Table 1: Raw Training Data Sources and Normalizations. Description of datasets, variables extracted, regional level,
and applied normalization in the training dataset.

Raw Dataset Source Feature(s) Geographic Level Transformation Applied

Johns Hopkins University
(JHU) CSSE [18]

Weekly case increase CCE-level Rolling 7-day sum of case
IR (Eq. 1)

Facebook.com [19] Daily mobility relative to
average baseline, propor-
tion of users staying in
same location

CCE-level Rolling 7-day mean

2
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Table 1: (continued from previous page)

Raw Dataset Source Feature(s) Geographic Level Transformation Applied

COVID Tracking Project
[20]

Daily tests increase, test
positivity

State-level Rolling 7-day mean of test
IR (Eq. 1) and test positiv-
ity

COVIDActNow.org [21] Daily estimated Rt CCE-level and state-level None

Institute for Health
Metrics and Evaluation
(IHME) [22]

Infectious disease mor-
tality rates (tuberculosis,
AIDS, diarrheal disease,
lower respiratory disease,
meningitis, hepatitis)

CCE-level None

IHME [23] Respiratory disease
mortality rates (interstitial
lung disease, asthma,
coal pneumoconiosis,
asbestosis, silicosis,
pneumoconiosis, COPD,
chronic respiratory
disease, other pneumoco-
niosis, other respiratory
diseases)

CCE-level None

IHME [24] Mortality risk (0-5, 5-25,
25-45, 45-65, and 65-
85 age groups), life ex-
pectancy

CCE-level None

IHME [25] Diabetes prevalence rates CCE-level None

IHME [26] Obesity prevalence rates
(combined male and fe-
male)

CCE-level None

U.S. Census (2018 esti-
mates) [27]

Prevalence of African
Americans, Native Ameri-
cans, Hispanic Americans,
Multiracial Americans,
and individuals over 65
years of age

CCE-level None

2.2 Generation of Rt and Case Alignment Forecast Features56

For any given date in every U.S. CCE, we forecasted Rt and testing-normalized cases for 1, 2, 3, and 4 weeks into the57

future. First, a testing-normalized COVID-19 cases time-series was generated by dividing the “Weekly case increase”58

feature by the “Daily tests increase” feature (see Table 1). The normalized cases time-series and the "Daily estimated59

Rt" feature were used to generate Rt and case-prediction features, as shown in Fig. 1. All linear regression models60

were implemented with the linear_model.LinearRegression module [28].61

3
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Figure 1: Rt and case prediction feature generation for a CCE. This procedure is repeated for 7-, 14-, 21-and 28-day
forecasts. In Fig. 1A and Fig. 1B, Rt for the CCE and its state are both separately considered; whichever achieves the
highest Pearson correlation of any forward shift x that is <50 days (i.e. optimal shift) is used for the regression model in
Fig. 1B. The extrapolation in Fig. 1E is calculated by linear regression models trained on the last 14 defined values of
each curve; curves are extrapolated to the target end date (i.e. 7, 14, 21, or 28 days in the future). For Fig. 1F, curves in
prediction time have forecasted values relative to real time; thus, for 28-day forecasts, values are those forecasted 28
days into the future.

4
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2.3 RF Training and Forecasting62

The final dataset includes all features in Table 1 for each U.S. CCE; however, "Weekly case increase" and "Daily63

estimated Rt" features are replaced with the Fig. 1F features for 7-, 14-, 21-, and 28-day forecasts. All features are64

normalized by removing their mean and scaling to unit variance. Training was performed via incremental learning for65

each Sunday from 11/01/2020 to 01/10/2021. For training and validation of the model, we filter out feature data that66

occurs on or after the Sunday of interest and randomly split the remaining data with a 9:1 ratio, respectively. A separate67

random forest regression model was trained with the training subset for each forecast target (7, 14, 21, or 28 days); the68

target outcome was the "Weekly case increase" from Table 1 shifted backwards to appropriately simulate future cases.69

Feature data that occurs on the Sunday of interest is used to test the model(i.e. make forecasts), but not to train it.70

RF regression models are ensemble machine learning algorithms that were first described by Breiman [12]. They create71

multiple regression trees trained on unique bootstrap samples of the training dataset with a random subset of the input72

features. The output of all trees is averaged to create the final projection. We used the Scikit-learn (version 0.23.2)73

implementation with default hyperparameters and 20 estimators [28].74

75

2.4 Model Evaluation76

The permutation importance of all features input into the RF models was calculated as described by Breiman as the77

decrease in mean squared error of the model when a feature of interest is randomly shuffled [12]. We used two metrics,78

MAE and R-squared (R2), to evaluate the accuracy of our model’s forecasts relative to actual case counts for both the79

training dataset and forecasts outside of the training dataset. These metrics are calculated as follows:80

R2 = 1−
∑

i (yi − ŷi)
2∑

i (yi − ȳi)
2 (2)

81

MAE =

∑n
i=1 |yi − ŷi|

n
(3)

We also used these metrics to calculate the error for equivalent forecasts by the JHU Infectious Disease Dynamics group82

(IDD), the JHU Applied Physics Lab (APL), and One Quiet Night (OQN) forecasting models [29, 30, 31]. These were83

selected as they are parts of the U.S. Centers for Disease Control and Prevention (U.S. CDC) ensemble model, have84

relatively high performance, and forecast for a large breadth (2349) of U.S. counties along with the RF model [32].85

3 Results and Discussion86

3.1 Analysis of Rt and Case Alignment Forecasts87

When the case time-series for a CCE was normalized by population and state-level testing data, it often showed a very88

similar shape to the CCE and/or state Rt time-series, as shown in Fig. 1. This should be expected, as both time-series89

indicate new infection load over the course of an epidemic, although Rt lags behind cases, which we suspect is because90

Rt represents infection load in the present moment, but these infections will not be detected via testing until much later91

due to viral incubation periods of 2-14 days and test result reporting delays [33]. In the 01/10/2021 dataset, the average92

optimal shift for the most highly correlated Rt time-series, whether state or CCE, was 34 days forward.93

94

However, there were many CCEs where this relationship was weak. We observed that 1782 CCEs’ selected, optimally95

shifted Rt time-series have a Pearson correlation with the case time-series < 0.5. They also have a mean population96

density of 89 people/mi2, vs. the 273 people/mi2 mean over the entire set of 3068 CCEs. Thus, we attribute the low97

correlations to poor and/or inconsistent testing efforts and data quality in rural CCEs. Further supporting this is our98

observation that in CCEs where we select their state’s Rt time-series as opposed to their own, the mean population99

density is also relatively low at 210 people/mi2.100

In concurrence with Omori et al., we found that normalization of the case time-series with testing data is critical to101

expose underlying changes in COVID-19 progression, as seen in Fig. 2 [34]. However, our approach is limited by use102

of state-level testing data as opposed to CCE-level testing data, which was inaccessible to us. However, state-level103

testing data has the advantage of including individuals who are not tested in their CCE of residence due to inequity in104

regional testing access.105
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Figure 2: Rt Time-Series’ Lag Behind Case Time-Series Used to Forecast Cases in Lag Period. In Harris County, TX,
when the CCE Rt time-series from 05/22/2020 to 07/10/2020 has a maximum Pearson correlation with the CCE’s
testing and population normalized case time-series for the same period when shifted forward 10 days (B); also, this
correlation is higher than that obtained by any shift of the state Rt time-series. Thus, the shifted CCE Rt time-series is
linearly regressed against cases (C). This model is applied to unshifted CCE Rt time-series to generate a case-prediction
time-series; the last 10 days of both these time-series are predictive of the next 10 days of cases beyond 07/10/2020.

6
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3.2 RF Feature Prioritization and Training Performance106

On average over the 11 epi weeks, RFs always prioritized population-normalized, state-level test numbers, test positivity,107

and case and Rt alignment forecasts as seen in Fig.3. This validates the model, as these features most directly108

measure COVID-19 progression. Importantly, of all 8 alignment forecasts, those for the desired forecast target were109

always prioritized highest. Conversely, demographic, population health, and population mobility features are relatively110

inconsequential; on average across Fig. 3A-D, these 46 features’ share of the total sum of all 56 features’ permutation111

scores is just 14.33%.112

Figure 3: Top 7 RF Features for Each Forecast Target. For each forecast target, RF feature permutation importances
were averaged over all 11 epi weeks and the top 7 features are shown in the subfigures above along with their standard
deviation as error bars.

On the training datasets for all 4 forecast targets and all 11 epi weeks, R2 was very stable, averaging 0.97 with a113

standard deviation of 0.00. For the corresponding validation datasets, R2 fell to 0.92 with a standard deviation of114

0.02. Thus, overfitting is not extreme and, considering the RFs’ relatively high MAE and R2 on actual case data in115

comparison to other models as seen in Fig. 4-5, is not detrimental to our objectives.116

3.3 RF Forecasting Performance vs. Other Models117

As may be observed in Fig. 4 and Fig.5, over the 11 reference weeks for which forecasts were generated by the RF118

models, MAE and R2 remain relatively consistent compared to the OQN and JHU models. The RF’s R2 is competitive119

with and often higher than the R2 for other models, notably November 2020. Cases in November were harder to model120

accurately, as November saw a 40% increase in cases in the 3068 counties in its fourth week relative to its first week,121

whereas December only saw an 8% decrease in cases for its equivalent comparison period. Periods of relatively low122

performance are generally shared by all models, indicating that case load changes during these weeks are simply less123

predictable.124

7
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For each epi week, case projections from each model were collected and compared to actual cases that occurred during125

these weeks as reported by JHU [18]. The results were calculated and visualized in Fig. 4-5.

Figure 4: Performance Evaluation Using MAE. The errors between projections and real number of incident cases were
calculated using Eq. 3. The y-axes of the graphs have been limited so that all models can be visually compared.

126 8

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 14, 2021. ; https://doi.org/10.1101/2021.05.23.21257689doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.23.21257689
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 5: Performance Evaluation Using R2. As with Fig. 4, the y-axes of the graphs have been limited. The
proportions of variance between projections and observed values were evaluated using Eq. 2. We notice that there are
large anomalies in the weekly R2 of the Google_Harvard and JHUAPL_Bucky models after epi week 202051; however,
for the sake of complete comparison, all weeks for all models are shown.

The JHU IDD and APL models are SEIR models [29, 30], whereas the OQN model applies a linear regression model to127

each CCE [31]. The distribution of output from a model exclusive to a CCE will be skewed towards the distribution128

of its training dataset labels, which may be a factor explaining OQN’s low MAE. On the other hand, the RF model129

forecasts for all counties, affording it a larger dataset which possibly contributes to its relatively high, stable fit to the130

actual cases as indicated by its R2.131

4 Conclusion132

We present a unique method to project COVID-19 cases for CCEs by using their or their state’s Rt time-series to predict133

cases, taking advantage of the backward lag of regional Rt time-series from the case time-series despite their similar134

9
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trajectory. These predictions are input into a RF regression models with regional testing, demographic, population135

mobility and population health data for final case forecasts. Our approach is computationally inexpensive while136

remaining very effective, as our model achieves consistently high R2 and low MAE relative to gold standard models137

used in the U.S. CDC ensemble model during a highly dynamic case spike period in November 2020 – early January138

2021. This model is limited to forecasting cases detected by testing as opposed to latent, asymptomatic cases, which can139

be estimated by compartmental models [35]. Thus, its best use scenario is for public health officials to identify potential140

outbreaks in their community to help them optimize their response. It shows evidence of good consistency in its current141

iteration but has some potential for improvement via addition of new features to its training dataset, particularly case142

and Rt forecasts from other compartmental models. Such ensemble forecasting approaches have improved model143

performance significantly [36].144
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