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Abstract  
Background:  Type 2 diabetes mellitus is known to be associated with neurobiological and cognitive 
deficits; however, their extent, overlap with aging effects, and the effectiveness of existing treatments in 
the context of the brain are currently unknown. 
 
Methods:   We characterized neurocognitive effects independently associated with T2DM and age in a 
large cohort of human subjects from the UK Biobank with cross-sectional neuroimaging and cognitive data. 
We then proceeded to evaluate the extent of overlap between the effects related to T2DM and age by 
applying correlation measures to the independently characterized neurocognitive changes. Our findings 
were complemented by meta-analyses of published reports with cognitive or neuroimaging measures for 
T2DM and healthy controls (HC). We also evaluated in a cohort of T2DM diagnosed individuals using UK 
Biobank how disease chronicity and metformin treatment interact with respect to the identified 
neurocognitive effects.   
 
Findings: The UK Biobank dataset included cognitive and neuroimaging data (N=26,125) including 1,270 
T2DM and 24,855 HC.  Duration of T2DM ranged from 0–45 years (mean 9.7±7.9 years); 559 were treated 
with metformin alone, while 473 were unmedicated. Our meta-analysis evaluated 34 cognitive studies 
(N=22,231) and 60 neuroimaging studies: 30 of T2DM (N=866) and 30 of aging (N=1088).  As compared 
to age, sex, and education-matched HC, T2DM was associated with marked cognitive deficits, particularly 
in executive functioning and processing speed.   Likewise, we found that the diagnosis of T2DM was 
significantly associated with gray matter atrophy, primarily within the ventral striatum, cerebellum, and 
putamen, with reorganization of brain activity (decreased in the caudate, frontal eye fields, and premotor 
cortex and increased in the subgenual area, thalamus, brainstem and posterior cingulate cortex). The 
structural and functional changes associated with T2DM show marked overlap with the effects correlating 
with age but appear earlier, with disease duration linked to more severe neurodegeneration. Metformin 
treatment status was not associated with improved neurocognitive outcomes. 
 
Interpretation: The neurocognitive impact of T2DM suggests marked acceleration of normal brain aging, 
by approximately 24% ± 10%; T2DM chronicity was associated with increased atrophy.  As such, 
neuroimaging-based biomarkers may provide a valuable adjunctive measure of T2DM progression and 
treatment efficacy based on neurological effects.  
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 8, 2021. ; https://doi.org/10.1101/2021.05.23.21257682doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.23.21257682
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

Introduction 
In 2018, ~6.6% of the population carried a diagnosis of Type 2 diabetes mellitus (T2DM) 1. Patients with 
T2DM are at greater risk for developing dementia and Alzheimer’s disease (AD) and have been reported 
to exhibit inferior cognitive performance when compared to age-matched healthy controls (HC) 2. Several 
human neuroimaging studies have linked T2DM with brain atrophy and cognition 2-6; recent research 
suggested that T2DM resulted in a more rapid rate of cognitive decline than typically associated with natural 
aging 7-9.  
 
Despite strong preliminary evidence linking T2DM to neurological and cognitive decline, few patients with 
T2DM undergo a comprehensive neurocognitive evaluation as part of their clinical care 8,10,11.  This may 
reflect the fact that T2DM diagnosis often occurs in middle age, hindering dissociation of patients’ 
cognitive changes from normal aging.  Several studies published to date focused on the neurocognitive 
effects of T2DM include age-matched participants.  However, because none has compared lifespan 
neurological changes to those experienced by equivalently aged patients with T2DM, it is currently 
unknown whether neurocognitive effects represent a T2DM-specific neurodegenerative pathway or the 
exacerbation of typical brain aging. Moreover, there remain limited data12 evaluating the impact of 
chronicity or role of effective treatment in the progression of cognitive and neurological decline.  
 
Routine clinical protocols typically focus on peripheral biomarkers (e.g., blood glucose and insulin levels, 
body fat percentage) as diagnostic modalities for T2DM. However, the neurological effects of T2DM may 
be apparent for many years before they can be detected by peripheral markers 3,8. As such, by the time 
T2DM is diagnosed and treated by standard measures, patients may have already sustained irreversible 
brain damage. Thus, there are direct clinical implications with respect to defining the neurocognitive impact 
of T2DM and to determine how these negative sequelae might be prevented or treated 1.  
 
Given these unknowns and their clinical importance, here we focus on addressing three questions.  First, 
we establish T2DM neurocognitive effects, as compared to age, sex, and education-matched healthy 
controls (HC).  To do so, we leverage the robust statistical power made possible by UK Biobank 13, the 
largest (N=26,125) neurocognitive lifespan dataset to date, with UK Biobank results then compared to a 
meta-analysis of the published literature (34 cognitive studies, 60 neuroimaging studies) to assess 
convergence.  Second, we ask whether changes in the brain observed in T2DM represent normal aging, 
accelerated aging, or a non-aging-related degenerative pathway specific to T2DM.  Third, we test whether 
T2DM chronicity exacerbates, and medication status ameliorates, the progression of neurocognitive effects.   

 
Methods 
 
Analysis of UK Biobank Dataset (N=26,113) 
 
General Overview: UK Biobank data were analyzed for both cognitive and neuroimaging data (SI Table 
1). The primary factor of interest was T2DM, which we dissociated from age-related effects by age 
matching T2DM and HC.  To permit comparison of T2DM-specific effects to age-specific effects, we also 
assessed the same neurocognitive variables with age as a factor of interest from samples that excluded 
patients diagnosed with T2DM. To control for potential neurocognitive confounds, T2DM and HC were 
matched for not only age, but also sex and education (i.e., exact pairwise matching between groups for age, 
sex, and education). To ensure that all individuals in our T2DM sample had type 2, rather than type 1 
diabetes, we only included individuals with a self-reported age of onset >20 years. 
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We fitted linear regression models to neurocognitive variables and quantified associated effects as the 
maximum likelihood point estimates and confidence intervals (95% CIs) of the corresponding regression 
coefficients. T2DM was accounted for as a binary factor with two states corresponding to healthy controls 
and individuals diagnosed with T2DM, whereas age was considered as a continuous factor with increments 
in years. Regression models were fit using the Statsmodels Python library14. To account for multiple 
comparisons, we applied Bonferroni correction to cognitive and structural results, and adjusted for false 
discovery rate in our neurofunctional results; p values were adjusted accordingly in all results.  
 
To determine whether T2DM neurocognitive effects suggested non-aging-related degenerative pathways 
specific to T2DM, versus an exacerbation or acceleration of typical aging trajectories, we compared the 
progression of neurodegeneration seen in T2DM to that seen in relation to age across brain regions and 
cognitive domains using bivariate Pearson correlations.  
 
Cognition: Data on five cognitive domains for 24,300 participants (T2DM: N=1,152, HC: N=23,148) were 
extracted from the UK Biobank dataset, including abstract reasoning, executive function, processing speed, 
reaction time, and short-term memory. Exact sample sizes varied across cognitive domains based on data 
availability, and therefore are noted separately for each result. We employed linear regression and 
considered the maximum likelihood estimates of coefficients belonging to age and T2DM to estimate their 
associations with performance in each of the five domains, as well as with a combined cognitive 
performance metric. The combined cognitive performance metric was derived from z-transformed task 
performance scores averaged across the individual domains for each subject. Effect sizes in cognition were 
quantified as percentages by dividing the estimated beta coefficient and 95% CIs of the factor of interest 
with the average performance of HC.  
 
Brain Structure:  Using structural MRI data from the UK Biobank dataset, we assessed the effects 
associated with T2DM (T2DM: N=982, HC: N=982) as compared to non-T2DM-specific age-related 
effects (N=14,836) on atrophy of gray matter volume; these findings were available as voxel counts for the 
whole brain as well as for 139 anatomical regions. For region-specific analyses, we coarse-grained the 
default unilateral parcellation provided by UK Biobank into 45 bilateral regions and corrected gray matter 
volumes for head size. We applied linear regression and quantified atrophy in each anatomical region as a 
relative percentage change in average gray matter volume by dividing the estimated regression coefficients 
and 95% CIs corresponding to the factor of interest with the average gray matter volume of HC. 
 
Brain Function:  Using functional MRI data from the UK Biobank dataset, we assessed the effects occurring 
with T2DM (T2DM: N=712; HC: N=712) as compared to non-T2DM-specific age-related effects 
(N=3,660) on resting-state brain activity.  Data were accessed already preprocessed by UK Biobank 
according to their standard pipelines15.  After transforming functional images to Montreal Neurological 
Institute (MNI) space, we performed spatial smoothing with a full width at half maximum (FWHM) of 5 
mm, then quantified brain activity using the amplitude of low-frequency fluctuation16 (ALFF). We used the 
program 3dRSFC, which is a component of Analysis of Functional NeuroImages17,18 (AFNI), to compute 
ALFF in voxel space. ALFF was computed from the 0.01–0.08 Hz frequency band, within a gray matter 
only brain mask. Computed voxel space ALFF values were normalized to the global mean of each 
individual subject.   Statistical analyses were performed in voxel space using the Nistats Python library. We 
used a significance threshold of p < 0.05 and a minimum cluster size of 12 voxels (~100 mm3) and 
controlled for multiple comparisons using false discovery rate (FDR). 
 
Implications of T2DM Duration:  To evaluate the implications of T2DM chronicity, we analyzed whole 
brain gray matter volume with time since T2DM diagnosis as a regressor. Time since diagnosis was derived 
from self-reported age at T2DM diagnosis. To improve the accuracy of these self-reported values, we 
considered their average from three visits, separated by multiple years. To estimate the degree to which 
T2DM progression was associated with gray matter loss relative to age, we calculated the ratio of regression 
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coefficients corresponding to T2DM duration and age, and expressed it as a percentage using Fieller’s 
theorem19 to quantify the confidence interval (95%) for this ratio. 
 
Implications of Metformin Treatment: For patients with T2DM, we evaluated whether metformin, a first-
line medication for the treatment of T2DM, was associated with improved outcomes in terms of cognition, 
atrophy, and/or brain activity. To isolate medication effects specific to metformin, we compared subjects 
who reported not taking any medications to treat T2DM, to subjects who reported taking metformin but no 
other medications. For these comparisons, we exact matched for sex and education, coarse matched for age 
(bin size of five years) and disease duration (bin size of three years).  Since UK Biobank did not measure 
HbA1c levels, we also statistically controlled for BMI as the only available proxy measure for disease 
severity20,21. 
 
Meta-Analysis of Published Literature (N=24,185) 
 
Search strategy and selection criteria (cognition):  We conducted a literature search for peer-reviewed 
articles published up to August 28, 2020 from PubMed/Medline using the following search terms: “type-2-
diabetes,” “diabetes mellitus, type 2,” “insulin-resistance,” <AND> “cognition,” “cognitive-function,” 
“cognitive-dysfunction,” “cognitive-performance,” and “neuropsychological tests.” Search results were 
filtered to include manuscripts that had undergone peer-review, were published in English with full-text 
availability, and reported relevant results. Our cognitive meta-analysis adhered to PRISMA guidelines 22. 
 
We included studies that compared cognitive performance between people diagnosed with T2DM and 
healthy controls. We excluded studies that (a) included participants with neurological or psychiatric 
diagnoses, (b) utilized treatment interventions without first obtaining baseline cognitive measurements, (c) 
included only diagnostic threshold instruments for dementia (e.g., the Mini-Mental State Examination, or 
MMSE), (d) included a novel cognitive test without adequate explanation of the scoring procedures, (e) did 
not perform age and education-matching of the participants diagnosed with T2DM to their HC, or (f) failed 
to provide summary statistics needed to calculate effect sizes. In the latter case, the authors were contacted 
to obtain relevant data.   
 
Our literature search yielded 219 articles; relevant reviews were also screened for eligible studies. Seventy-
five articles were identified for full-text evaluation; 34 studies were eligible for inclusion. Among the 
studies that were excluded, eight featured inadequate testing or scoring procedures, 14 included secondary 
analyses of the same patient sample that was used in previous publications, and five failed to perform 
appropriate education-matching of the study groups. Furthermore, one longitudinal study did not report 
baseline scores and another reported inconsistent sample sizes. Fifteen authors were contacted to obtain 
data not provided in the text; three authors provided the data requested, and the remaining 12 studies were 
excluded. Eligible studies included a total of 4,735 subjects diagnosed with T2DM and 17,496 HC.  
 
Data analysis (cognition): We extracted data including publication year, authors, sample demographics, 
and cognition from all included studies. We extracted baseline data only from longitudinal studies to avoid 
practice effects. We sorted individual cognitive tests into several domains, including abstract reasoning, 
verbal memory, visual memory, working memory, information processing speed, executive function, short-
term memory, verbal fluency, visuospatial construction, and motor speed (SI Table 2). 
 
Statistical analyses were performed using R version 3.6.1 23 and the Metafor package version 2.4-0 24. 
Cognitive differences between participants diagnosed with T2DM and HC were determined by calculating 
standardized mean difference (SMD) effect sizes and 95% CIs for all cognitive domains. Effect size 
analyses were chosen to account for within-domain variability in the type and sensitivity of cognitive tests 
across different reports. We calculated effect sizes as Cohen’s d by dividing the mean difference in group 
scores by the pooled standard deviation of individual domains 25; an SMD (Cohen’s d) of –1.0 was 
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interpreted as a difference of one standard deviation in the negative direction. We used random-effects 
models to account for variability between samples not due to sampling error with significance at p < 0.05 
and effect-size heterogeneity was evaluated using values for Cochran’s Q and I2 26. Publication bias was 
evaluated with funnel plots. We applied Bonferroni correction to account for multiple comparisons across 
cognitive domains. 
 
Search strategy and selection criteria (brain):  We used NeuroQuery27 to conduct a meta-analysis of 
published neurobiological results associated with T2DM and age. NeuroQuery is an automated Coordinate-
Based Meta-Analysis (CBMA)28-30 tool based on a database of z-scores collected by crawling through texts 
and tables of published research articles by an automated algorithm31.  We utilized NeuroQuery to address 
limitations of standard approaches to meta-analyses of neuroimaging results, which rely on summary 
statistics and thus risk overfitting to what typically comprise a relatively small number of in-sample studies 
(i.e., they fail to generalize to out-of-sample studies).  NeuroQuery optimizes for rigor and reproducibility 
by utilizing predictive modeling, a higher threshold for results than statistical significance.  In a quantitative 
evaluation of its generalization performance with 16-fold cross validation and 10:90 test-train splits, 
NeuroQuery was found to accurately produce brain maps for out-of-sample neuroimaging studies31.  We 
note that because of NeuroQuery’s criteria for neuroimaging data quality and completeness in reporting, 
the algorithm draws only from journals that focus on functional neuroimaging results, and thus can exclude 
some general interest and non-neurological medical journals.   This exclusion criterion is important to 
reduce false positives and ensure the quality and relevance of the compiled results. The database in total 
contains 149,000 neuroimaging papers and represents the single largest database of neuroimaging foci to 
date.  By the law of large numbers NeuroQuery therefore provides the most unbiased approach to choosing 
representative papers, even at the risk of excluding relevant and well-cited articles specific to any one field.   
 
Using the collected database of articles, NeuroQuery applies a multivariate model to predict the spatial 
distribution of voxel activations corresponding to a search term. The search terms we used to obtain the 
meta-analytic maps were: “diabetic” and “age”. These terms identified the 30 most relevant neuroimaging 
studies for T2DM and 30 most relevant neuroimaging studies for age (SI Table 3). To account for any 
errors in the automated search results, the identified set of studies were cross-validated by an independent 
manual search using the same search terms for Google Scholar and PubMed to verify their relevance, as 
well as to confirm that they included T2DM age and sex-matched HC and T2DM (not Type 1 diabetes).  In 
the T2DM datasets, 23 were fMRI (ALFF), two were structural (T1), three were FDG positron emission 
tomography (PET), and two were tractography (diffusion tensor imaging, DTI).  In the age datasets, 22 
were fMRI (ALFF), three were structural (T1), and five were tractography (diffusion tensor imaging, 
diffusion weighted imaging).  
 
Data analysis (brain):  For region and voxel level comparisons of the meta-analytic T2DM and Age maps 
from Neuroquery with their structural and functional counterparts from UK Biobank, the meta-analytic 
statistical maps were transformed onto comparable coordinate space and spatial resolution. At the voxel 
level, the meta-analytic maps were resampled to the standard MNI affine (the transformation matrix that 
maps from voxel indices of the data array to actual real-world locations of the brain; no registration was 
required as images were already aligned). For region level comparisons, the transformed voxel maps were 
coarse-grained to the 45 regions of interest from UK Biobank by masking with each individual region and 
computing the mean activation of the masked voxels as the representative region value. 
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Results 
Cognitive correlates with age and T2DM 
 
Individuals without T2DM showed age-based cognitive effects across all domains in the UK Biobank (Fig. 
1A). The strongest effects were observed in executive function, which showed 2.0% ± 0.1% decrease in 
performance per year (N=7,296, T= –30.6, p<1e–10) and processing speed, which showed 1.6% ± 0.1% 
decrease in performance per year (N=7,508, T= –41.0, p<1e–10;).  Our analyses identified further cognitive 
deficits associated with T2DM, beyond typical age-related effects (Fig. 1B).  The strongest effects were 
observed in executive function, which showed an 8.8% ± 5.6% decrease in performance (T2DM: N=594; 
HC: N=594; T= –3.0, p=0.01), and processing speed, which showed a 6.3% ± 2.9% decrease in 
performance. (T2DM: N=612; HC: N=612; T= –4.3, p=0.0001).  All other domains were also significantly 
affected: –3.0% ± 1.5% in reaction time (T2DM: N=1,149; HC: N=1,149; T= –4.0, p=0.0003), –4.3% ± 
2.0% in short-term memory (T2DM: N=647; HC: N=647; T= –4.2, p=0.0001) and –4.0% ± 2.5% in abstract 
reasoning (T2DM: N=1,119; HC: N=1,119; T= –3.1, p=0.01). Our meta-analysis confirmed that 
individuals with T2DM exhibited markedly lower performance when compared to age, sex, and education-
matched controls, over an even broader set of domains (Fig. 1C). These included executive function (K=18, 
d= –0.40, p=0.009), short-term (~30 seconds) verbal memory (K=23, d= –0.39, p=0.001), verbal fluency 
(K=25, d= –0.37, p=2e–8), working memory (K=12, d= –0.36, p=0.002), abstract reasoning (K=8, d= –
0.36, p=1e–7), information processing speed (K=31, d= –0.34, p=5e–8), visuospatial reasoning (K=13, d= 
–0.32, p=4e–7), delayed (~20 minute) verbal memory (K=21, d= –0.21, p=0.005), and  short-term (~2-3 
seconds) memory (“attention”) (k=16, d= –0.21, p=0.05) (SI Table 4).  
 

 
 

Figure 1:  Cognitive deficits are apparent with respect 
to both age and T2DM diagnosis. A: Using the UK 
Biobank dataset, we performed a quantitative analysis of the 
effects related to age on cognitive performance across five 
cognitive domains. Associated changes were derived from 
estimated regression coefficients as percentages and are 
shown on the y axis. Age was associated with significant 
deficits in all five domains, with the strongest effects 
observed in executive function and processing speed. B: 
Using the same dataset, we also analyzed cognitive 
performance in T2DM, with negative values on the y-axis 
represent performance below that of age, sex, and 
education-matched HC. As per age effects, executive 
function and processing speed showed the highest 
magnitude changes.  C: Cognitive deficits identified in UK 
Biobank data were confirmed by our meta-analysis, which 
included 11 domains from 34 studies. Average effect sizes 
(Cohen’s d) corresponding to T2DM are shown on the y 
axis. Values below the cut-off line (y=0) indicate cases in 
which subjects with T2DM performed less well than age, 
sex, and education-matched HC. Numbers next to labels 
identify domains common across panels. Marker sizes 
represent sample sizes scaled as indicated in the bottom left 
corner of each panel. On Panel C, sample size indicates the 
number of individual studies. Error bars are 95% CI.  
*P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001, Bonferroni 
corrected. 
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Neurobiological correlates with age and T2DM 
 
Brain Atrophy:  HC (N =14,836) showed a linear decrease in brain gray matter with age.  This was most 
pronounced in the ventral striatum, which showed a 0.9% ± 0.04% decrease per year (T= –55.4, p<1e–10) 
and Heschl’s gyrus, which also showed a 0.9% ± 0.03% decrease per year (T= –55.1, p<1e–10) (Fig. 2A).  
As compared to their age-matched HC, T2DM patients showed further decreases in gray matter beyond 
typical age-related effects (T2DM: N=982; HC: N=982).  These included both cortical and subcortical 
regions, with the most severe atrophy observed in the ventral striatum, which showed on average a 5.5% ± 
1.4% further decrease in volume (T= –7.5, p<1e-10), in the putamen with an additional 4.7% ± 2.0% 
decrease in volume (T= –4.6, p=0.0002), and in the cerebellum, which showed a 5.0% ± 1.0% further 
decrease (T= –9.8, p<1e–10) (Fig. 2B).  
 

 
 
 
Brain Activity:  Age was associated with functional reorganization of brain activity (ALFF), rather than 
global decrease or increase.  Brain activation in T2DM showed similar reorganization.  Normalized to 
whole brain activity, both age (HC: N=3,660) and T2DM (T2DM: N=712, HC: N=712) were associated 
with decreased activation in the caudate, premotor cortex and frontal eye fields, with increased brain 
activity in the subgenual area, thalamus and brainstem (Fig. 3A).  
 
Neuroquery: Our meta-analysis of 60 multimodal neuroimaging studies (30 age-specific, 30 T2DM-
specific) independently identified the same regions as UK Biobank (caudate, frontal eye fields, premotor 

Figure 2:  Widespread gray matter atrophy can be 
observed with respect to both age and T2DM 
diagnosis status.  Using the UK Biobank dataset, we 
measured gray matter atrophy across 45 anatomical 
regions. Associated changes were derived from 
estimated regression coefficients as percentages and 
are shown on the x axes. A: We observed 
significantly decreased gray matter volume in both 
cortical and subcortical brain regions with respect to 
age in HC. Age was associated with an average of 
~0.5% brain-wide decrease in gray matter volume per 
year, most prominently for the ventral striatum and 
Heschl’s gyrus B: Gray matter atrophy was also seen 
in patients diagnosed with T2DM compared to age 
matched HC, most prominently for the ventral 
striatum, cerebellum, and putamen. The distribution 
of T2DM-related effects overlapped with those 
associated with age, with degeneration of the ventral 
striatum and preservation of the thalamus and 
caudate. Error bars are 95% CI.  
*P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001, Bonferroni 
corrected. 
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cortex, thalamus), but additionally identified clusters of decreased activity in Broca area and the superior 
temporal gyrus and increased activity in the posterior cingulate cortex, and angular gyrus (Fig. 3B).     
 
 

 
 
 
 
 
 
Neurocognitive Changes associated with T2DM and Age Overlap, Consistent with Common 
Pathways.   
 
Together, these analyses confirm that T2DM patients show evidence of neurocognitive deficits, with the 
most consistent and profound effects observed in structural atrophy (across all regions: T= –9.0, p<1e–10) 
(SI Fig. 1B). Even after controlling for education, cognitive deficits remained statistically significant (T= 
–3.8, p=0.0001) (SI Fig. 1A).  Both age and T2DM implicated the same areas of greatest vulnerability:  for 
brain atrophy, this was the ventral striatum; for cognition, these were executive function and processing 
speed.  When assessed across all brain regions, T2DM-related patterns in brain atrophy exhibited strong 
overlap with those associated with age (r=0.61, p=0.0002).   Similarly, T2DM-related changes in brain 
activity (ALFF) also exhibited significant overlap with those associated with age (r=0.44, p=0.04).  The 
meta-analysis, which included multimodal neuroimaging measures (not only atrophy and brain activity, but 
also glucose uptake via FDG-PET) also yielded equivalent results in terms of the overlap between 
neurobiological effects of T2DM and age (r=0.58, p=0.0005) (SI Fig. 2).  

 
T2DM Chronicity Exacerbates Neurocognitive Symptoms.   
 
Neurocognitive effects were more severe with increased disease duration, particularly for structural changes 
(T= –4.8, p=0.000003) (Fig. 4).  T2DM progression was associated with 24% ± 10% acceleration of typical 
neurogenerative age-related effects, as per the linear shift along the horizontal time axis shown in Fig 4.  

Figure 3:  Overlap between age and T2DM with 
respect to reorganization of brain activity. A: For 
functional MRI data obtained from the UK Biobank 
dataset, we used the amplitude of low-frequency 
fluctuation (ALFF) to quantify brain activity. Effects 
linked to age are shown in the form of an unthresholded z-
map represented by the pink-green color gradient, with 
pink indicating increased activation and green showing 
decreased. T2DM related effects were thresholded 
(minimum cluster size ~100mm3, FDR p<0.05) to result 
in significant clusters. The outlines of these significant 
clusters are overlaid on the age-related z-map to 
demonstrate overlapping effects. The largest significant 
clusters with respect to T2DM were in the subgenual area 
(increased), the caudate (decreased), and frontal eye fields 
(decreased). All highlighted regions were similarly 
impacted across age, indicating substantial overlap 
between the two contrasts. B: Using multimodal  
neuroimaging data, we performed a meta-analysis for the 
same contrasts using NeuroQuery. We extracted contrast 
maps for age and T2DM with NeuroQuery and overlaid 
the outlines of thresholded (minimum cluster size 
~100mm3, FDR p<0.05) z-maps from T2DM on 
unthresholded z-maps belonging to age. The overlapping 
effects were evident in several regions, most importantly 
in the cingulate gyrus, thalamus and premotor cortex. 
These results support the hypothesis that 
neurodegeneration in both T2DM and aging may be 
associated with common mechanistic pathways. 
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T2DM Patients Treated with Metformin Do Not Demonstrate Improved Neurocognitive Symptoms.   
 
Even after matching groups for disease duration and controlling for BMI, T2DM patients who were treated 
with metformin alone (N=559) did not differ with respect to cognition or brain atrophy compared to T2DM 
patients who were unmedicated (N=473) (SI Fig. 3). Likewise, treatment status showed no significant 
impact on resting-state brain activity.  

 
Discussion 

The UK Biobank dataset confirms that T2DM patients show deficits in cognitive performance compared to 
HC, even after controlling for age, sex, and education, findings that were supported by meta-analysis of the 
published literature. These deficits in cognitive performance were accompanied by marked brain atrophy 
in the in T2DM sample as compared to age-matched HC.  The atrophy was most severe (5% grey matter 
loss compared to HC) in the ventral striatum, a region critical to learning, decision making, goal-directed 
behavior, and cognitive control.  These cognitive functions, collectively known as executive functioning, 
were (with processing speed) also those most affected by T2DM.   Neurodegeneration for all regions was 
worsened with chronicity.  
 
Our findings indicate that structural brain imaging, in particular, can provide a clinically valuable metric 
for identifying and monitoring neurocognitive effects associated with T2DM.  Normalizing across sample 
sizes to compare the measures of neurocognitive effects:  structural MRI, functional MRI, and cognitive 
testing, structural atrophy showed global effects that were more statistically robust (p<2e–10) than either 
global cognitive measures (p=0.0001) or global brain activity (p=0.002).  One important advantage of 
structural MRI over cognitive testing is that the former avoids confounding associated with education and 
practice effects.  Moreover, cognitive testing may be less interpretable in real-world clinical settings in 
which such matching is not feasible.  Structural MRI also showed advantages as a biomarker over a 
functional MRI-derived measure of brain activation (ALFF).  The reorganization of brain activity seen with 
T2DM may reflect the brain’s switch to less metabolically expensive networks to conserve energy in the 
face of diminishing access to glucose, a pattern previously documented in aging32-35.  Yet activation patterns 
that are spatially reorganized, rather than globally increased or decreased, are less straightforward to 
quantify. Moreover, functional MRI is an inherently more complex measure than structural MRI, reflecting 
both neuronal and hemodynamic influences.  Each of these of these influences may be differentially affected 
by T2DM, further complicating its interpretation in a clinical setting. 
 

Figure 4:  Progression of T2DM disease is significantly associated 
with gray matter atrophy, accelerating neurodegenerative effects 
seen in brain aging. For a quantitative evaluation of the impact of 
T2DM progression on gray matter volume, we considered time since 
T2DM diagnosis as the main factor of interest from the UK Biobank 
dataset. The T2DM+ cohort was divided into two groups based on 
disease duration (separated at 10 years) with a HC cohort also included 
for visualization purposes. We matched age, sex, education across these 
three groups and performed linear regression within T2DM+ subjects 
focusing on disease duration. Evaluation of our sample suggested that 
time since diagnosis was a significant factor, with each year after 
diagnosis of T2DM associated with an additional ~0.24 ± 0.10 years of 
brain aging beyond that of age-matched T2DM–. Error bars are standard 
error of the mean. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. 
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The localization of brain atrophy in T2DM to the ventral striatum, followed by the cerebellum, may reflect 
the fact that these two brain regions contain the densest concentrations of insulin-dependent GLUT-436-39, 
as compared to non-insulin-dependent isoforms GLUT-1 and GLUT-3.  The ventral striatum functions as 
a critical hub within the reward circuit, integrating inputs (including external stimuli) from both cortical 
and subcortical regions, and therefore is a key structure required for all learning.  Rat studies have shown 
modulation of nitric oxide within the ventral striatum to control release of acetylcholine40, a 
neurotransmitter severely reduced in dementia41 and a target for its pharmaceutical treatment42,43.  Release 
of nitric oxide is insulin dependent and reduced in T2DM44. Together, these suggest a potential mechanistic 
pathway between insulin resistance, atrophy of the ventral striatum, and widespread deficits with respect 
to learning.  In this context, memory deficits may be primarily driven by failure to encode rather than failure 
to retrieve, which would be consistent with our results which did not identify the hippocampus as be one of 
the regions most affected.  Importantly, the structural and functional changes associated with T2DM show 
marked overlap with age-related effects but appear earlier.   This suggests that neurocognitive changes seen 
in T2DM may progress via a common mechanistic trajectory as normal brain aging, but which is 
accelerated.  
 
Our analyses had two limitations, inherent in the datasets analyzed, which represent important directions 
for future research.  First, our use of a lifespan dataset permitted tracking how variables change with age, 
but not for the same subjects.  A more rigorous assessment of phase shift between trajectories of 
neurodegeneration for patients with T2DM and HC would be made possible only with a longitudinal study.  
Second, while we had access to disease duration and BMI, we did not have HbA1c measures, which would 
have provided a more direct measure of disease severity.  While metformin was not found to be associated 
with better neurocognitive measures, even when matched to unmedicated patients with equivalent disease 
duration and after controlling for BMI (a proxy measure for disease severity20,21), it was not possible to 
determine other diabetes-related characteristics.  As such, our medication findings should be considered 
suggestive but not conclusive. 
 
Consistent with findings from earlier studies that focused on the brain and energy metabolism 45,46, we 
suggest that the T2DM and its progression may be associated with accelerated brain aging. As T2DM results 
in compromised energy availability, brain structure and function undergo accelerated deterioration. We 
consider the possibility that, by the time T2DM is formally diagnosed, neuronal insulin resistance may have 
already resulted in significant brain damage. As such, our findings underscore the need for additional 
research into brain-based biomarkers for T2DM and treatment strategies that specifically target its neuro-
cognitive effects 1.  
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Supplementary Figures 

 
 

 
 
 
 

 

Supplementary Figure 2:  Effects of age and 
T2DM exhibited strong correlations across 
datasets and modalities. We considered six sets of 
previously characterized changes in association with 
the following: 1. Age contrast, gray matter volume in 
UK Biobank; 2. T2DM contrast, gray matter volume 
in UK Biobank; 3. Age contrast, brain activation in 
UK Biobank; 4. T2DM contrast, brain activation in 
UK Biobank; 5. Age contrast, brain 
structure/activation (aggregate) from NeuroQuery; 6. 
T2DM contrast, brain structure/activation 
(aggregate) from NeuroQuery. Corresponding effects 
from region/domain specific analyses were 
considered as inputs for correlation measures, which 
were then determined for all combinations of the six 
sets of effects. Age and T2DM were significantly 
correlated (Pearson’s r) within all modalities, 
suggesting common trajectories between age and 
T2DM related effects. No other significant 
correlations were observed, however, between 
datasets or modalities. Given that structural and 
functional effects appeared to be unrelated within UK 
Biobank, and that the NeuroQuery results were a 
combination of both structural and functional results, 
we did not expect significant associations between 
modality-specific UK Biobank results and 
multimodal (structural and functional) NeuroQuery 
results. However, it is important to note that very 
different ways of acquiring and analyzing brain data 
independently replicate the correlations between age 
and T2DM related effects, suggesting that the 
association is highly robust. *P ≤ 0.05; **P ≤ 0.01; 
***P ≤ 0.001, Bonferroni corrected. 
 

Supplementary Figure 1:  Aggregated whole brain 
measures represent the extent of accelerated brain 
aging with T2DM diagnosis. We used the UK 
Biobank dataset to address the extent by which aging 
is accelerated in individuals with T2DM. Subjects 
with T2DM were age, sex, and education matched 
with HC A: We quantified a gross cognitive metric 
from the combination of multiple z-scored 
performance scores from five cognitive domains. 
This metric yielded an effective representation of the 
general decline across age, the gap between HC 
versus subjects diagnosed T2DM, and the relative 
extent of these two phenomena. We observed 
significantly decreased cognitive performance in 
subjects with T2DM:  an increase of 3.8 ± 2.0 years 
in age-related cognitive decline. B: An equivalent 
analysis was performed using whole brain gray 
matter volume. This metric yielded even stronger 
results compared to cognition. T2DM diagnosis was 
associated with significant atrophy: an increase of 
~4.2 ± 0.9 years in age-related neurodegeneration. 
Error bars are standard error of the mean. The 
seemingly constant gap between the two cohorts is 
explained by uniformly distributed disease duration 
across the lifespan. *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 
0.001. 
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Supplementary Figure 3:  Treatment of T2DM patients 
with metformin had no impact on cognitive deficits or 
gray matter atrophy. We evaluated the UK Biobank 
dataset to determine whether treatment with metformin 
would prevent gray matter atrophy or the development of 
cognitive deficits associated with T2DM. Among T2DM 
diagnosed subjects only, we compared those subjects who 
reported using metformin but no other medications to those 
who reported not taking any medications to treat T2DM. 
We matched subjects for age, sex, education and T2DM 
disease duration, and controlled for BMI. The direction of 
theoretical improvement by metformin is indicated on both 
panels by an arrow. A: No statistically significant (α=0.05) 
differences in cognitive performance were detected when 
comparing subjects on metformin to unmedicated subjects 
B: Neither our analysis of gray matter atrophy detected any 
significant (α=0.05) improvements associated with 
metformin treatment. Error bars are 95% CI. 
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Supplementary Tables 

 
Supplementary Table 1. Summary of All Relevant UK Biobank data-fields. 
Variable Designation Instance Number 
Diagnosis (T2DM) 2443 0, 2 
Age 21003 0, 2 
Sex 31 2 
Education 6138 2 
Age-of-onset (T2DM) 2976 0-2 
Body Mass Index (BMI) 21001 2 
Medication Status (Metformin) 20003 2 
Gray-Matter Volume 25005-25006, 25782-25920 2 
Resting-State MRI Images 20227 2 
Matrix-Pattern Completion 20016 2 
Alphanumeric Trail-Making Test 6350 2 
Symbol-Digit Substitution 23324 2 
Snap Game 20023 0, 2 
Numeric Memory Test 4282 2 
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Supplementary Table 2.  Summary of Cognitive Functions Assessed, with Corresponding Instruments. 

Domains Common Tests Description 

Verbal Memory 

Rey & California Auditory Verbal 
Learning Tests, Hopkins Verbal Learning 

Test, Delayed Word Recall, Weschler 
Text Recall Sub, Word List Recall,  

Weschler Story Recall 

Short and long-term recall of verbal information. Includes both auditory and 
visual encoding. 

Executive Function 

Trail Making (B), Stroop (III), Brixton 
Spatial Anticipation, Wisconsin Card 
Sort, Color Trails (2), Weschler Letter 

Number Sequencing 

Top-down coordination of other cognitive domains (e.g., memory, motor 
function) to solve problems and manage cognitive resources. Often exhibited 

in tasks that require a degree of planning. 

Verbal Fluency 

Word & Semantic Fluency Tests, 
Controlled Oral word Association Test, 

Letter & Category Fluency Tests, Boston 
Naming Test 

Language skills. Commonly measured by enumeration (e.g., name as many 
words as you can that begin with the letter “B”). 

Information 
Processing Speed 

Trail Making (A), Digit Symbol 
Substitution, Stroop (I-II), Choice 
Reaction Time, Color Trails (1) 

Speedy encoding and use of information. Often measured by time-to-
completion in tasks that require the manipulation of presented information. 

Working Memory (Backwards) Digit Span, Corsi Block 
Tapping, N-back 

Holding information for a short time for use on a current task. Characterized 
by both maintaining and manipulating stored information. Commonly 

measured by having subjects re-order learned information. 

Visuospatial 
Reasoning 

Rey-Osterreith Figure Copy, Taylor 
Complex Figure,  

Weschler Object Assembly 
Manipulation or reconstruction of spatial information. 

Abstract Reasoning 

Raven’s Progressive Matrices, Matrix 
Pattern Completion, Weschler 

Similarities, Standard Progressive 
Matrices 

Manipulation of presented information to solve a problem without prior 
knowledge. Interrelated with fluid intelligence. Often presented as shape or 

logic puzzles. 

Visual Memory 

Location Learning, Weschler Visual 
Memory Subtest, Rey-Osterreith Delayed 

Recall,  
Face Recognition Test 

Short and long-term recall of visually encoded information. 

Harvey, (2019). Domains of Cognition and their Assessment. Dialogues of Clinical Neuroscience, 21(3), 227-237. doi:10.31887/DCNS.2019.21.3 
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Supplementary Table 3. Studies Identified as Most Relevant for Each Key Word by NeuroQuery Algorithm. 
 T2DM studies Age studies 

1. Chun-Xia Wang et al. 2014 György A Homola et al. 2012 
2. Xiangzhe Qiu et al. 2016 Peiying Liu et al. 2013 
3. Natalia García-Casares et al. 2016 G Juckel et al. 2012 
4. Z-L Wang et al. 2017 Natalie C Ebner et al. 2013 
5. Thomas J Marder et al. 2014 Michelle Hampson et al. 2012 
6. Franco Cauda et al. 2009 Sien Hu et al. 2012 
7. Ying Cui et al. 2015 Yu-Chien Wu et al. 2011 
8. Dae-Jin Kim et al. 2016 Rafat S Mohtasib et al. 2012 
9. Jung-Lung Hsu et al. 2012 Vonetta M Dotson et al. 2016 

10. Zhiye Chen et al. 2012 Estela Càmara et al. 2007 
11. Christopher M Marano et al. 2014 Harri Littow et al. 2010 
12. Olivia M Farr et al. 2016 Andrew P Merluzzi et al. 2016 
13. Dan-Miao Sun et al. 2017 Emily S Nichols et al. 2016 
14. Dewang Mao et al. 2015 Maria Morozova et al. 2016 
15. Rongfeng Qi et al. 2012 Kristen M Kennedy et al. 2009 
16. Dewang Mao et al. 2015 Chiara Chiapponi et al. 2013 
17. Xin Huang et al. 2016 Kathrin Cohen Kadosh et al. 2013 
18. Wenqing Xia et al. 2013 Quinton Deeley et al. 2008 
19. Po Lai Yau et al. 2009 Kristen M Kennedy et al. 2015 
20. Reza Tadayonnejad et al. 2019 Tatia M C Lee et al. 2006 
21. Chen Liu et al. 2014 Joshua Carp et al. 2011 
22. Yue Cheng et al. 2017 Esther H H Keulers et al. 2010 
23. Chuanming Li et al. 2014 Kristin Nordin et al. 2017 
24. Zhilian Zhao et al. 2014 Joshua Carp et al. 2010 
25. Xiaofen Ma et al. 2015 Mark B Schapiro et al. 2004 
26. Jessica A Turner et al. 2013 Nick S Ward et al. 2008 
27. Jiaxing Zhang et al. 2016 Nancy E Adleman et al. 2016 
28. Yingying Yue et al. 2015 Kaitlin L Bergfield et al. 2010 
29. Nicola Pannacciulli et al. 2006 Jenny R Rieck et al. 2017 
30. Xin Di et al. 2013 Marco Hirnstein et al. 2011 
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Supplementary Table 4. Study Estimates of Cognitive Meta-Analysis 
Executive Function d = -0.40, K = 18, p < 0.001, Q = 186.9, I2=88.4% 

Studies Effect size (d) Confidence Interval (95%) 
Bangen et al., 2015 -0.21 -0.33, -0.09 
Biessels at al., 2001 -0.66 -1.41, 0.09 
Brands et al., 2007 -0.54 -0.86, -0.21 

Cui et al., 2014 -0.54 -1.07, -0.01 
Garcia-Casares et al., 2014 -0.87 -1.45, -0.29 

Kanaya et al., 2004 1.03 0.83, 1.24 
Lindeman et al., 2001 -0.09 -0.26, 0.08 

Liu et al., 2018 -0.54 -1.04, -0.04 
Mehrebian et al., 2012 -1.35 -1.93, -0.76 

Mogi et al., 2004 -0.36 -0.81, 0.08 
Reijmer et al., 2016 -0.33 -0.80, 0.15 

Ryan & Geckle. 2008 -0.31 -0.71, 0.08 
Takeuchi et al., 2012 -0.62 -1.09, -0.15 

Van den Berg et al., 2010 -0.65 -1.05, -0.24 
Xia et al., 2010 -0.61 -1.07, -0.16 
Yau et al., 2010 -0.14 -0.80, 0.51 

Yeung et al., 2009 -0.50 -0.83, -0.18 
Zhou et al., 2010 -0.48 -1.10, 0.15 

Short-Term Verbal Memory d= –0.39, K=23, p<0.001, Q=143.6, I2= 91.1% 

Studies Effect size (d) Confidence Interval (95%) 

Aberle et al., 2008 0.02 -0.31, 0.36 

Arvanitakis et al., 2006 -0.05 -0.25, 0.14 

Bangen et al., 2015 -0.13 -0.25, -0.02 

Brands et al., 2007 -0.32 -0.64, 0.00 

Cholerton et al., 2019 0.06 -0.13, 0.25 

Cosway et al., 2001 -0.32 -0.81, 0.17 

Cui et al., 2014 -0.07 -0.59, 0.46 

Dai et al., 2017 -1.7 -2.24, -1.16 

Garcia-Casares et al., 2014 -1.62 -2.26, -0.98 

Liu et al., 2018 -0.49 -0.99, 0.01 

Lowe et al., 1994 -0.06 -0.36, 0.25 

Mattei et al., 2019 -0.3 -0.42, -0.19 

Mehrebian et al., 2012 -1.71 -2.33, -1.10 

Mogi et al., 2004 -0.29 -0.74, 0.16 

Moran et al., 2013 0.31 0.16, 0.46 

Reijmer et al., 2016 -0.23 -0.70, 0.24 

Ryan & Geckle, 2008 -0.41 -0.81, -0.01 

Takeuchi et al., 2012 -0.56 -1.03, -0.09 

van den Berg et al., 2010 -0.39 -0.79, 0.01 

van Harten et al., 2007 -0.35 -0.71, 0.01 

Xia et al, 2015 -0.32 -0.77, 0.13 

Yau et al., 2010 -0.70 -1.37, -0.03 

Yeung et al., 2009 -0.37 -0.69, -0.04 
Verbal Fluency d= –0.37, K=25, p<0.001, Q=101.3, I2=83.3% 

Studies Effect Size (d) Confidence Interval (95%) 

Aberle et al., 2008 0.06 -0.27, 0.39 

Arvanitakis et al., 2006 -0.12 -0.31, 0.08 

Atiea et al., 1995 -0.32 -0.86, 0.22 

Bangen et al., 2015 -0.33 -0.44, -0.21 

Brands et al., 2007 -0.50 -0.82, -0.17 
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Cholerton et al., 2019 -0.37 -0.56, -0.18 

Cosway et al., 2001 -0.30 -0.79, 0.19 

Dai et al., 2017 -0.83 -1.31, -0.35 

Garcia-Casares et al., 2014 -0.92 -1.5, -0.34 

Kanaya et al., 2004 -1.10 -1.31, -0.9 

Liu et al., 2018 -0.44 -0.94, 0.05 

Lowe et al., 1994 -0.46 -0.77, -0.15 

Mankovsky et al., 2018 -0.32 -0.83, 0.19 

Mattei et al., 2019 -0.33 -0.44, -0.21 

Mehrebian et al., 2012 -0.18 -0.71, 0.34 

Moran et al., 2013 -0.03 -0.18, 0.12 

Rawlings et al., 2015 -0.36 -0.41, -0.31 

Reijmer et al., 2016 -0.15 -0.62, 0.32 

Solanki et al., 2009 -0.47 -0.93, -0.01 

Takeuchi et al., 2012 -0.59 -1.06, -0.12 

van Harten et al., 2007 -0.64 -1.01, -0.27 

Yau et al., 2010 -0.07 -0.72, 0.59 

Yeung et al., 2009 -0.15 -0.47, 0.17 

Zhou et al., 2010 -0.58 -1.21, 0.06 

Zihl et al., 2010 0.26 -0.46, 0.99 
Working Memory d= –0.36, K=12, p<0.001, Q=30.2, I2=72.2% 

Studies Effect Size (d) Confidence Interval (95%) 

Arvanitakis et al., 2006 -0.04 -0.24, 0.15 

Atiea et al., 1995 -0.48 -1.02, 0.07 

Biessels et al., 2001 -0.63 -1.38, 0.12 

Brands et al., 2007 -0.36 -0.69, -0.04 

Lowe et al., 1994 -0.04 -0.35, 0.26 

Mankovsky et al., 2018 -0.07 -0.57, 0.44 

Mattei et al., 2019 -0.27 -0.38, -0.15 

Ryan & Geckle, 2008 -0.34 -0.73, 0.06 

Solanki et al., 2009 -1.33 -1.83, -0.84 

Takeuchi et al, 2012 -0.56 -1.03, -0.10 

van den Berg et al., 2010 -0.50 -0.90, -0.10 

Yau et al., 2010 -0.17 -0.82, 0.49 

Abstract Reasoning d= –0.36, K=8, p<0.001, Q=10.57, I2=29.2% 

Studies Effect Size (d) Confidence Interval (95%) 

Arvanitakis et al., 2006 -0.24 -0.43, -0.04 

Bangen et al., 2015 -0.48 -0.59, -0.36 

Brands et al., 2007 -0.19 -0.51, 0.13 

Cosway et al., 2001 -0.10 -0.59, 0.38 

Lowe et al., 1994 -0.41 -0.73, -0.10 

Ryan & Geckle, 2008 -0.27 -0.67, 0.12 

van den Berg et al., 2010 -0.38 -0.78, 0.02 

Zihl et al., 2010 -1.06 -1.82, -0.29 

Processing Speed d= –0.34, K=31, p<0.001, Q=227.3, I2=82.3 % 

Studies Effect Size (d) Confidence Interval (95%) 
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Aberle et al., 2008 0.00 -0.33, 0.33 

Arvanitakis et al., 2006 -0.14 -0.34, 0.05 

Atiea et al., 1995 0.05 -0.49, 0.59 

Bangen et al., 2015 -0.22 -0.34, -0.11 

Biessels et al., 2001 0.19 -0.54, 0.92 

Brands et al., 2007 -0.26 -0.58, 0.06 

Cholerton et al., 2019 -0.43 -0.62, -0.24 

Cosway et al., 2001 -0.30 -0.79, 0.19 

Cui et al., 2014 -0.68 -1.22, -0.14 

Dai et al., 2017 0.25 -0.21, 0.72 

Garcia-Casares et al., 2014 -0.66 -1.23, -0.09 

Lindeman et al., 2001 -0.02 -0.19, 0.15 

Liu et al., 2018 -0.36 -0.86, 0.13 

Mattei et al., 2019 -0.37 -0.49, -0.25 

Mehrebian et al., 2012 -1.23 -1.8, -0.65 

Mogi et al., 2004 -0.59 -1.04, -0.14 

Moran et al., 2013 0.16 0.02, 0.31 

Naseer et al., 2014 -0.61 -1.25, 0.02 

Rawlings et al., 2015 -0.65 -0.70, -0.60 

Redondo et al., 2016 -0.54 -1.15, 0.07 

Reijmer et al., 2016 -0.06 -0.53, 0.41 

Ryan & Geckle, 2008 -0.43 -0.83, -0.03 

Solanki et al., 2009 -0.93 -1.41, -0.46 

Takeuchi et al., 2012 -0.61 -1.08, -0.14 

van den Berg et al., 2010 -0.11 -0.51, 0.29 

van Harten et al., 2007 -0.48 -0.84, -0.11 

Xia et al, 2015 -0.27 -0.71, 0.18 

Yau et al., 2010 -0.69 -1.37, -0.02 

Yeung et al., 2009 -0.38 -0.70, -0.06 

Zhou et al., 2010 -0.27 -0.89, 0.35 

Zihl et al., 2010 -1.28 -2.07, -0.49 

Visuospatial Reasoning d= –0.32, K=13, p<0.001, Q=27.3, I2=56.6% 

Studies Effect Size (d) Confidence Interval (95%) 

Arvanitakis et al., 2006 -0.11 -0.31, 0.09 

Bangen et al., 2015 -0.18 -0.30, -0.07 

Biessels et al., 2001 -0.25 -0.98, 0.49 

Brands et al., 2007 -0.21 -0.53, 0.11 

Garcia-Casares et al., 2014 -0.79 -1.36, -0.21 

Lowe et al., 1994 -0.16 -0.47, 0.15 

Mattei et al., 2019 -0.33 -0.45, -0.21 

Moran et al., 2013 -0.56 -0.71, -0.41 

Ryan & Geckle, 2008 -0.38 -0.78, 0.01 

Takeuchi et al., 2012 -0.41 -0.87, 0.06 

van den Berg et al., 2010 -0.16 -0.56, 0.24 

Xia et al, 2015 -0.71 -1.17, -0.25 

Zhou et al., 2010 -0.47 -1.10, 0.16 
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Delayed Verbal Memory d= –0.21, p<0.001, K=21, Q=114.3, I2=77.5% 

Studies Effect Size (d) Confidence Interval (95%) 

Arvanitakis et al., 2006 -0.01 -0.21, 0.18 

Bangen et al., 2015 -0.07 -0.19, 0.05 

Brands et al., 2007 -0.28 -0.60, 0.04 

Cholerton et al., 2019 0.04 -0.15, 0.23 

Cosway et al., 2001 -0.24 -0.73, 0.24 

Cui et al., 2014 -0.08 -0.60, 0.45 

Dai et al., 2017 -0.75 -1.22, -0.27 

Liu et al., 2018 -0.62 -1.13, -0.12 

Lowe et al., 1994 -0.10 -0.41, 0.21 

Mehrebian et al., 2012 -0.76 -1.31, -0.22 

Mogi et al., 2004 0.18 -0.26, 0.63 

Moran et al., 2013 0.20 0.05, 0.35 

Rawlings et al., 2015 -0.40 -0.45, -0.35 

Reijmer et al., 2016 -0.13 -0.60, 0.34 

Ryan & Geckle, 2008 -0.22 -0.61, 0.17 

Takeuchi et al., 2012 -0.36 -0.82, 0.10 

van den Berg et al., 2010 -0.40 -0.80, 0.00 

van Harten et al., 2007 -0.42 -0.78, -0.05 

Xia et al, 2015 -0.15 -0.59, 0.30 

Yeung et al., 2009 -0.07 -0.39, 0.25 

Zhou et al., 2010 -0.96 -1.62, -0.31 
Short-Term Memory d= –0.21, p=0.005, K=16, Q=38.1, I2=70.2% 

Studies Effect Size (d) Confidence Interval (95%) 

Arvanitakis et al., 2006 -0.13 -0.33, 0.06 

Atiea et al., 1995 -0.47 -1.01, 0.08 

Biessels et al., 2001 -1.05 -1.83, -0.27 

Brands et al., 2007 -0.08 -0.40, 0.24 

Dai et al., 2017 -0.66 -1.14, -0.19 

Lindeman et al., 2001 -0.17 -0.33, 0.00 

Liu et al., 2018 -0.53 -1.03, -0.03 

Lowe et al., 1994 0.14 -0.17, 0.45 

Mankovsky et al., 2018 0.17 -0.34, 0.67 

Mattei et al., 2019 -0.11 -0.22, 0.01 

Moran et al., 2013 0.08 -0.07, 0.22 

Naseer et al., 2014 0.04 -0.57, 0.66 

Solanki et al., 2009 -0.92 -1.39, -0.44 

Takeuchi et al., 2012 -0.33 -0.80, 0.13 

van den Berg et al., 2010 -0.12 -0.52, 0.27 

Yau et al., 2010 -0.30 -0.96, 0.36 

Recognition Verbal Memory d= –0.21, p=0.01, K=12, Q=37.4, I2=78.8% 

Studies Effect Size (d) Confidence Interval (95%) 

Arvanitakis et al., 2006 0.00 -0.20, 0.20 

Bangen et al., 2015 -0.06 -0.17, 0.06 

Brands et al., 2007 -0.38 -0.70, -0.06 
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Dai et al., 2017 -0.61 -1.08, -0.14 

Liu et al., 2018 -0.53 -1.02, -0.03 

Lowe et al., 1994 -0.07 -0.38, 0.24 

Mattei et al., 2019 -0.17 -0.28, -0.05 

Mehrebian et al., 2012 -0.46 -1.00, 0.07 

Moran et al., 2013 0.16 0.01, 0.31 

Takeuchi et al., 2012 0.12 -0.34, 0.58 

van den Berg et al., 2010 -0.51 -0.92, -0.11 

Zhou et al., 2010 -0.89 -1.55, -0.24 
Visual Memory d= –0.13, p=0.32, K=8, Q=19.9, I2=66.6% 

Studies Effect Size (d) Confidence Interval (95%) 

Aberle et al., 2008 -0.16 -0.49, 0.18 

Brands et al., 2007 0.19 -0.13, 0.51 

Cosway et al., 2001 -0.10 -0.59, 0.39 

Lowe et al., 1994 0.20 -0.11, 0.51 

Solanki et al., 2009 -0.96 -1.43, -0.48 

Takeuchi et al., 2012 -0.27 -0.73, 0.19 

van den Berg et al., 2010 0.00 -0.39, 0.40 

Yau et al., 2010 -0.13 -0.79, 0.52 
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Supplementary Table 5. Characteristics of patients who underwent cognitive testing in studies included in our meta-analysis. 

 
 

Studies 

 
 

N 

 
 

Age (Mean) 

 
 

Education (Years) 

 
 

Female 
(%) 

Author Year T2DM HC T2DM HC T2DM HC  

Aberle et al. 2008 38 421 62.9 62.97 9.94 9.93 48.5 

Arvanitakis et al. 2006 116 766 78 80.9 13.7 14.5 78 

Atiea et al. 1995 40 20 69.05 68.1 - - 31 

Bangen et al. 2015 378 1115 75.4 76.3 9.9 11.2 67 

Biessels et al. 2001 13 16 57.7 57.9 11.2 11.4 41.3 

Brands et al. 2007 119 55 65.9 65.2 4* 4 49.4 

Cholerton et al. 2019 185 261 53 51.3 12 12.5 70.4 
Cosway et al. 2001 33 32 57.7 55.9 11.2 11.8 59.2 

Cui et al. 2014 29 27 58.3 57.8 10.4 10.2 55.4 

Dai et al. 2017 41 32 65.51 67.28 15.35 16.05 52 
Garcia-Casares et al. 2014 25 25 60 57.8 18.3 18.9 38 

Kanaya et al. 2004 118 632 73.55 69.2 - - 57.2 

Lindeman et al. 2001 188 476 73.4 73.8 10.9 12.3 - 

Liu et al. 2018 32 32 58.09 56.88 9 12 42.2 

Lowe et al. 1994 80 81 59.3 55.1 - - 63.9 

Mankovsky et al. 2018 93 18 62.3 59.5 14.7 14.3 70.2 

Mattei et al. 2019 465 711 58.9 56 - - 73.1 

Mehrebian et al. 2012 37 22 56 56 14 14 56.5 
Mogi et al. 2004 69 27 71.6 73.4 10.4 11.4 64.5 

Moran et al. 2013 350 363 67.8 72.1 11.3 10.9 43.2 

Naseer et al. 2014 20 20 53.3 - - - - 

Rawlings et al. 2015 1779 11572 58.2 56.8 - - 55.6 

Redondo et al. 2016 20 23 70.82 70.92 6.79 7.36 46 

Reijmer et al. 2016 35 35 71.1 71 4* 4 41.4 

Ryan & Geckle 2008 50 50 50.8 50.5 14.4 14 73 
Solanki et al. 2009 50 30 - - - - - 

Takeuchi et al. 2012 42 32 62.4 63.8 13.7 14.5 40 

van den Berg et al. 2010 68 38 65.6 64.8 4* 4 48.1 
van Harten et al. 2007 92 44 73.2 72.9 4* 4.4 55.8 

Xia et al. 2015 38 40 56 57.1 9.6 10.3 51.3 
Yau et al. 2010 18 18 16.46 17.16 10.75 11.15 - 

Yeung et al. 2009 41 424 68.59 67.84 15.12 15.33 68 

Zhou et al. 2010 21 19 68 69.16 12.48 13.84 50 
Zihl et al 2010 12 19 42.45 36.8 10.5 10.9 - 

T2DM, type-2 diabetes mellitus; HC, healthy control 
*median education 
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Supplementary Table 6. List and justification for studies excluded from our cognitive meta-analysis.  
Studies Justification for Exclusion 

Asimakopoulou et al., 2002 Did not match for education 
Brands et al., 2007 Identical sample of study already included 
Bruehl et al., 2009 Authors did not provide requested data 

Callisaya et al., 2018 Identical sample of study already included 
Chen et al., 2014 Inadequate cognitive testing 
Chen et al., 2017 Inadequate cognitive testing 

Christman et al., 2010 Did not match for education 
Cooray et al., 2011 Authors did not provide requested data 

Cui et al., 2015 Identical sample of study already included 
Cui et al., 2017 Identical sample of study already included 
Cui et al., 2017 Identical sample of study already included 

Degen et al., 2016 Authors did not provide requested data 
Dey et al., 1997 Inadequate cognitive testing 
Dore et al., 2009 Authors did not provide requested data 
Elias et al., 1997 No baseline data in longitudinal design 

Grodstein et al., 2001 Inadequate cognitive testing 
Hassing et al., 2004 Unclear sizes of sample sub-groups 
Helkala et al., 1995 Did not match for education 

Kinga & Anett, 2016 Authors unable to be reached 
Kumari et al., 2005 Did not match for education 

Liu et al., 2016 Identical sample of study already included 
Liu et al., 2018 Identical sample of study already included 
Liu et al., 2020 Identical sample of study already included 

Manschot et al., 2006 Identical sample of study already included 
Mooradian et al., 1988 Inadequate cognitive testing 
Nazaribadie et al., 2013 Authors did not provide requested data 

Nealon et al., 2017 Did not match for education 
Nooyens et al., 2010 Authors did not provide requested data 
Perlmuter et al., 1984 Inadequate cognitive testing 

Ravona-Springer et al., 2018 Authors did not provide requested data 
Reijmer et al., 2011 Identical sample of study already included 

Robertson-Tchabo et al., 1986 Inadequate cognitive testing 
Ruis et al., 2009 Authors did not provide requested data 
Scott et al., 1998 Identical sample of study already included 

Sinclair et al., 2000 Inadequate cognitive testing 
Smith et al., 2009 Identical sample of study already included 

Spauwen et al., 2015 Authors did not provide requested data 
van Gemert et al., 2018 Authors did not provide requested data 

Watari et al., 2006 Authors did not provide requested data 
Xia et al., 2013 Identical sample of study already included 
Xia et al., 2015 Identical sample of study already included 
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