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Abstract  

Background:  Type 2 diabetes mellitus is known to be associated with cognitive deficits; 

however, their extent, overlap with aging effects, and neurobiological correlates are currently unknown. 

Methods:   We characterized neurocognitive effects in T2DM in a large cohort complemented by 

meta-analysis of the published literature. Meta-analyses included all published reports through August 28, 

2020 with cognitive or neuroimaging measures for T2DM and healthy controls (HC), and included only 

observational studies with no intervention.  For the UK Biobank analyses, T2DM and aging effects were 

identified and compared using multivariable linear regression. Random-effects meta-analyses were 

performed to confirm UK Biobank results. All analyses were Bonferroni corrected. 

Findings: The UK Biobank dataset included cognitive and neuroimaging data (N=26,125) 

including 1,270 T2DM and 24,855 HC.  Duration of T2DM ranged from 0–45 years (mean 9.7±7.9 years); 

559 were treated with metformin alone, while 473 were unmedicated. Our meta-analysis evaluated 34 

cognitive studies (N=22,231) and 60 neuroimaging studies: 30 of T2DM (N=866) and 30 of aging 

(N=1088).  As compared to age, sex, and education-matched HC, T2DM was associated with marked 

cognitive deficits, particularly in executive functioning and processing speed.   Likewise, we found that the 

diagnosis of T2DM was significantly associated with gray matter atrophy, primarily within the ventral 

striatum, cerebellum, and putamen, with reorganization of brain activity (decreased in the caudate, frontal 

eye fields, and premotor cortex and increased in the subgenual area, thalamus, brainstem and posterior 

cingulate cortex). The structural and functional changes associated with T2DM show marked overlap with 

the effects of aging but appear earlier, with disease duration linked to more severe neurodegeneration. 

Interpretation: The neurocognitive impact of T2DM suggests marked acceleration of normal brain 

aging, by approximately 24%, made worse with chronicity.  As such, neuroimaging-based biomarkers may 

provide a valuable adjunctive measure of T2DM progression and treatment efficacy based on neurological 

outcomes.   
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Introduction 

In 2018, ~6.6% of the population carried a diagnosis of Type 2 diabetes mellitus (T2DM) 1. Patients with 

T2DM are at greater risk for developing dementia and Alzheimer’s disease (AD) and have been reported 

to exhibit inferior cognitive performance when compared to age-matched healthy controls (HC) 2. Several 

human neuroimaging studies have linked T2DM with brain atrophy and cognition 2-6; recent research 

suggested that T2DM resulted in a more rapid rate of cognitive decline than typically associated with natural 

aging 7-9.  

Despite strong preliminary evidence linking T2DM to neurological and cognitive decline, few 

patients with T2DM undergo a comprehensive neurocognitive evaluation as part of their clinical care 8, 10, 

11.  This may reflect the fact that T2DM diagnosis often occurs in middle age, hindering dissociation of 

patients’ cognitive changes from normal aging.  Several studies published to date focused on the 

neurocognitive effects of T2DM include age-matched participants.  However, because none has compared 

lifespan neurological changes to those experienced by equivalently aged patients with T2DM, it is currently 

unknown whether neurocognitive effects represent a T2DM-specific neurodegenerative pathway or the 

acceleration of typical brain aging. Moreover, there remain limited data12 evaluating the impact of 

chronicity or role of effective treatment in the progression of cognitive and neurological decline.  

Routine clinical protocols typically focus on peripheral biomarkers (e.g., blood glucose and insulin 

levels, body fat percentage) as diagnostic modalities for T2DM. However, the neurological effects of T2DM 

may be apparent for many years before they can be detected by peripheral markers 3, 8. As such, by the time 

T2DM is diagnosed and treated by standard measures, patients may have already sustained irreversible 

brain damage. There is an urgent need to define the neurocognitive impact of T2DM and to determine how 

these negative sequelae might be prevented or treated 1.  

Given these unknowns and their clinical importance, here we focus on addressing three questions.  

First, we establish T2DM neurocognitive effects, as compared to age, sex, and education-matched healthy 

controls (HC).  To do so, we leverage the robust statistical power made possible by UK Biobank 13, the 
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largest (N=26,125) neurocognitive lifespan dataset to date, with UK Biobank results then compared to a 

meta-analysis of the published literature (34 cognitive studies, 60 neuroimaging studies) to assess 

convergence.  Second, we ask whether changes in the brain observed in T2DM represent normal aging, 

accelerated aging, or a non-aging-related degenerative pathway specific to T2DM.  Third, we test whether 

T2DM chronicity and medication status respectively exacerbate and ameliorate the progression of 

neurocognitive effects.   

 

Methods 

 

Analysis of UK Biobank Dataset (N=26,113) 

General Overview: UK Biobank data were analyzed with linear regression models for both 

cognitive and neuroimaging data (SI Table 1). The primary factor of interest was T2DM, which we 

dissociated from aging effects by age matching T2DM and HC.  To permit comparison of T2DM-specific 

effects to aging-specific effects, we also assessed the same neurocognitive variables with age as a factor of 

interest from samples that excluded patients diagnosed with T2DM.  To determine whether T2DM 

neurocognitive effects suggested non-aging-related degenerative pathways specific to T2DM, versus 

accelerated typical aging, we compared the progression of neurodegeneration seen in T2DM to that seen in 

aging using Pearson correlations.  To evaluate the impact of chronicity, we analyzed neurocognitive 

variables with time since T2DM diagnosis as a regressor.  To evaluate the impact of metformin treatment, 

we compared medicated T2DM patients on metformin only, to unmedicated T2DM patients matched for 

disease duration, and controlled for body mass index (BMI)—a proxy measure for disease severity14, 15.   

To mitigate potential confounders, T2DM and HC were matched for not only age, but also sex and 

education. To ensure that all individuals in our T2DM sample had type 2, rather than type 1 diabetes we 

excluded individuals with an age of onset <20 years.  For all analyses, we applied Bonferroni correction to 
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account for multiple comparisons; p values were adjusted accordingly. Regression models were fit using 

the Statsmodels Python library16. 

Cognition: Data on five cognitive domains for 24,300 participants (T2DM: N=1,152, HC: 

N=23,148) were extracted from the UK Biobank dataset, including abstract reasoning, executive function, 

processing speed, reaction time, and short-term memory. Exact sample sizes varied across cognitive 

domains based on data availability, and therefore are noted separately for each result. We used linear 

regression to estimate the impact of age and T2DM on a combined cognitive performance metric as well as 

separately on each of the five domains. The combined cognitive performance metric was derived from z-

transformed task performance scores averaged across the individual domains for each subject. Effect sizes 

in cognition were quantified as percentages by dividing the beta coefficient and 95% CI of the factor of 

interest with the average performance of HC.  

Brain Structure:  Using structural MRI data from the UK Biobank dataset, we assessed the effects 

of T2DM (T2DM: N=982, HC: N=982) as compared to non-T2DM-specific aging effects (N=14,836) on 

atrophy of gray matter volume; these findings were available as voxel counts for the whole brain and also 

for 139 anatomical regions. For region-specific analyses, we coarse-grained the default unilateral 

parcellation provided by UK Biobank into 45 bilateral regions and corrected gray matter volumes for head 

size. We applied linear regression and quantified atrophy in each anatomical region as a relative percentage 

change in average gray matter volume by dividing beta coefficients and 95% confidence intervals (CIs) 

corresponding to the factor of interest with the average gray matter volume of HC. Statistical evaluation of 

the beta coefficients was Bonferroni corrected to adjust for multiple comparisons. 

Brain Function:  Using functional MRI data from the UK Biobank dataset, we assessed the effects 

of T2DM (T2DM: N=712; HC: N=712) as compared to non-T2DM-specific aging effects (N=3,660) on 

resting-state brain activity.  Data were accessed already preprocessed by UK Biobank according to their 

standard pipelines17.  After transforming functional images to Montreal Neurological Institute (MNI) space, 

we performed spatial smoothing with a full width at half maximum (FWHM) of 5 mm, then quantified 

brain activity using the amplitude of low-frequency fluctuation18 (ALFF). We used the program 3dRSFC, 
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which is a component of Analysis of Functional NeuroImages19, 20 (AFNI), to compute ALFF in voxel 

space. ALFF was computed from the 0.01–0.08 Hz frequency band, within a gray matter only brain mask. 

Computed voxel space ALFF values were normalized to the global mean of each individual subject.   

Statistical analyses were performed in voxel space using the Nistats Python library. We used a significance 

threshold of p < 0.05 and a minimum cluster size of 12 voxels (~100 mm3) and controlled for multiple 

comparisons using false discovery rate (FDR). 

Impact of T2DM Duration:  To evaluate the impact of chronicity, we analyzed neurocognitive 

variables with (self-reported) time since T2DM diagnosis as a regressor. 

Impact of Metformin Treatment: Focusing solely on patients with T2DM we evaluated whether 

metformin, the first-line medication for the treatment of T2DM, was associated with improved outcomes 

in terms of cognition, atrophy and brain activity. We compared subjects who reported not taking any 

medications to treat T2DM, to subjects who reported taking metformin but no other medications. For these 

comparisons, we matched subjects for age, sex, education and T2DM disease duration, and controlled for 

BMI—a proxy measure for disease severity14, 15—since HbA1c levels were not measured by UK Biobank. 

 

Meta-Analysis of Published Literature (N=24,185) 

Search strategy and selection criteria (cognition):  We conducted a literature search for peer-

reviewed articles published up to August 28, 2020 from PubMed/Medline using the following search terms: 

“type-2-diabetes,” “diabetes mellitus, type 2,” “insulin-resistance,” <AND> “cognition,” “cognitive-

function,” “cognitive-dysfunction,” “cognitive-performance,” and “neuropsychological tests.” Search 

results were filtered to include manuscripts that had undergone peer-review, were published in English with 

full-text availability, and reported relevant results. Both meta-analyses adhered to PRISMA guidelines 

[citation needed]. 

 We excluded studies that (a) included participants with neurological or psychiatric diagnoses, (b) 

utilized treatment interventions without first obtaining baseline cognitive measurements, and (c) included 

only diagnostic threshold instruments for dementia (e.g., the Mini-Mental State Examination, or MMSE), 
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(d) included a novel cognitive test without adequate explanation of the scoring procedures, (e) did not 

perform age and education-matching of the participants diagnosed with T2DM to their HC, or (f) failed to 

provide summary statistics needed to calculate effect sizes. In the latter case, the authors were contacted to 

obtain relevant data.   

Our literature search yielded 219 articles; relevant reviews were also screened for eligible studies. 

Seventy-five articles were identified for full-text evaluation; 34 studies were eligible for inclusion. Among 

the studies that were excluded, eight featured inadequate testing or scoring procedures, 14 included 

secondary analyses of the same patient sample that was used in previous publications, and five failed to 

perform appropriate education-matching of the study groups. Furthermore, one longitudinal study did not 

report baseline scores and another reported inconsistent sample sizes. Fifteen authors were contacted to 

obtain data not provided in the text; three authors provided the data requested, and the remaining 12 studies 

were excluded. Eligible studies included a total of 4,735 subjects diagnosed with T2DM and 17,496 HC.  

 Data analysis (cognition): We extracted data including publication year, authors, sample 

demographics, and cognition from all included studies. We extracted baseline data only from longitudinal 

studies to avoid practice effects. We sorted individual cognitive tests into several domains, including 

abstract reasoning, verbal memory, visual memory, working memory, information processing speed, 

executive function, short-term memory, verbal fluency, visuospatial construction, and motor speed (SI 

Table 2). 

 Statistical analyses were performed using R version 3.6.1 21 and the Metafor package version 2.4-

0 22. Cognitive differences between participants diagnosed with T2DM and HC were determined by 

calculating standardized mean difference (SMD) effect sizes and 95% CIs for all cognitive domains. We 

calculated effect sizes as Cohen’s d by dividing the mean difference in group scores by the pooled standard 

deviation of individual domains 23; an SMD (Cohen’s d) of –1.0 was interpreted as a difference of one 

standard deviation in the negative direction. We used random-effects models to account for variability 

between samples not due to sampling error with significance at p < 0.05 and effect-size heterogeneity was 

evaluated using values for Cochran’s Q and I2 24. Publication bias was evaluated with funnel plots. 
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Search strategy and selection criteria (brain):  We used NeuroQuery25 to conduct a meta-analysis 

of all published neurobiological results associated with T2DM and aging. NeuroQuery is an automated 

Coordinate-Based Meta-Analysis (CBMA)26-28 tool based on a database of z-scores collected by crawling 

through texts and tables of published research articles by an automated algorithm29. NeuroQuery then uses 

a multivariate model to predict the spatial distribution of voxel activations corresponding to a search term. 

The search terms we used to obtain the meta-analytic maps were: “diabetic” and “age”. These terms 

identified the 30 most relevant neuroimaging studies for T2DM and 30 most relevant neuroimaging studies 

for aging (SI Table 3). To account for any errors in the automated search results, the identified set of studies 

were cross-validated by an independent manual search using the same search terms for Google Scholar and 

PubMed to verify their relevance, as well as to confirm that they included T2DM age and sex-matched HC 

and T2DM (not Type 1 diabetes).  In the T2DM datasets, 23 were fMRI (ALFF), two were structural (T1), 

three were FDG positron emission tomography (PET), and two were tractography (diffusion tensor 

imaging, DTI).  In the aging datasets, 22 were fMRI (ALFF), three were structural (T1), and five were 

tractography (diffusion tensor imaging, diffusion weighted imaging).  

Data analysis (brain):  For region and voxel level comparisons of the meta-analytic T2DM and 

Aging maps from Neuroquery with their structural and functional counterparts from UK Biobank, the meta-

analytic maps were transformed onto comparable coordinate space and spatial resolution. At the voxel level, 

the meta-analytic maps were resampled to the standard MNI affine (the transformation matrix that maps 

from voxel indices of the data array to actual real-world locations of the brain; no registration was required 

as images were already aligned). For region level comparisons, the transformed voxel maps were coarse-

grained to the 45 regions of interest from UK Biobank by masking with each individual region and 

computing the mean activation of the masked voxels as the representative region value. 
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Results 

Cognitive Effects of Aging and T2DM 

Individuals without T2DM showed age-based cognitive effects across all domains in the UK Biobank (Fig. 

1A). The strongest effects were observed in executive function, which showed 2% decrease in performance 

per year (N=7,296, T= –30.6, p<1e–10) and processing speed, which showed 1.6% decrease in performance 

per year (N=7,508, T= –41.0, p<1e–10;).  Our analyses identified further cognitive deficits associated with 

T2DM, beyond typical aging effects (Fig. 1B).  The strongest effects were observed in executive function, 

which showed an 8.8% decrease in performance (T2DM: N=594; HC: N=594; T= –3.0, p=0.01), and 

processing speed, which showed a 6.3% decrease in performance. (T2DM: N=612; HC: N=612; T= –4.3, 

p=0.0001).  All other domains were also significantly affected:  –3% in reaction time (T2DM: N=1,149; 

HC: N=1,149; T= –4.0, p=0.0003), –4.3% in short-term memory (T2DM: N=647; HC: N=647; T= –4.2, 

p=0.0001) and –4% in abstract reasoning (T2DM: N=1,119; HC: N=1,119; T= –3.1, p=0.01). Our meta-

analysis confirmed that individuals with T2DM exhibited markedly lower performance when compared to 

age, sex, and education-matched controls, over an even broader set of domains (Fig. 1C). These included 

executive function (K=18, d= –0.40, p=0.009), short-term (~30 seconds) verbal memory (K=23, d= –0.39, 

p=0.001), verbal fluency (K=25, d= –0.37, p=2e–8), working memory (K=12, d= –0.36, p=0.002), abstract 

reasoning (K=8, d= –0.36, p=1e–7), information processing speed (K=31, d= –0.34, p=5e–8), visuospatial 

reasoning (K=13, d= –0.32, p=4e–7), delayed (~20 minute) verbal memory (K=21, d= –0.21, p=0.005), 

and  short-term (~2-3 seconds) memory (“attention”) (k=16, d= –0.21, p=0.05) (SI Table 4).  

 

Neurobiological Effects of Aging and T2DM 

Brain Atrophy:  HC (N =14,836) showed a linear decrease in brain gray matter with age.  This was 

most pronounced in the ventral striatum, which showed a 0.9% decrease per year (T= –55.4, p<1e–10) and 

Heschl’s gyrus, which also showed a 0.9% decrease per year (T= –55.1, p<1e–10) (Fig. 2A).  As compared 

to their age-matched HC, T2DM patients showed further decreases in gray matter beyond typical aging 
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effects (T2DM: N=982; HC: N=982).  These included both cortical and subcortical regions, with the most 

severe atrophy observed in the ventral striatum, which showed a 5.5% further decrease in volume per year 

beyond typical aging effects (T= –7.5, p<1e-10), in the putamen with an additional 4.7% decrease in volume 

per year (T= –4.6, p=0.0002), and in the cerebellum, which showed a 5% further decrease in volume per 

year (T= –9.8, p<1e–10) (Fig. 2B)  

Brain Activity:  Aging was associated with functional reorganization of brain activity (ALFF), 

rather than global decrease or increase.  Brain activation in T2DM showed similar reorganization.  

Normalized to whole brain activity, both aging (HC: N=3,660) and T2DM (T2DM: N=712, HC: N=712) 

were associated with decreased activation in the caudate, premotor cortex and frontal eye fields, with 

increased brain activity in the subgenual area, thalamus and brainstem (Fig. 3A).  Our meta-analysis of 60 

multi-modal neuroimaging studies (30 aging-specific, 30 T2DM-specific) independently identified the 

same regions as UK Biobank (caudate, frontal eye fields, premotor cortex, thalamus), but additionally 

identified clusters of decreased activity in Broca area and the superior temporal gyrus and increased 

activity in the posterior cingulate cortex, and angular gyrus (Fig. 3B).     

 

Neurocognitive Changes in T2DM and Normal Aging Overlap, Suggesting Common Pathways. 

Together, these analyses confirm that T2DM patients show evidence of neurocognitive deficits, with the 

most consistent and profound effects observed in structural atrophy (across all regions: T= –9.0, p<1e–10) 

(SI Fig. 1B). Even after controlling for education, cognitive deficits remained statistically significant (T= 

–3.8, p=0.0001) (SI Fig. 1A).  Both aging and T2DM implicated the same areas of greatest vulnerability:  

for brain atrophy, this was the ventral striatum; for cognition, these were executive function and processing 

speed.  When assessed across all brain regions, T2DM-related patterns in brain atrophy exhibited strong 

overlap with those associated with age (r=0.61, p=0.0002).   Similarly, T2DM-related changes in brain 

activity (ALFF) also exhibited significant overlap with those associated with age (r=0.44, p=0.04).  The 

meta-analysis, which included multi-modal neuroimaging measures (not only atrophy and brain activity, 
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but also glucose uptake via FDG-PET) also yielded equivalent results in terms of the overlap between 

neurobiological effects of T2DM and age (r=0.58, p=0.0005) (SI Fig. 2).  

 

T2DM Chronicity Exacerbates Neurocognitive Symptoms. 

Neurocognitive effects were more severe with increased disease duration, particularly for structural changes 

(T= –4.8, p=0.000003) (Fig. 4); each additional year of T2DM duration was associated with 24% 

acceleration of typical neurogenerative aging effects.  

 

T2DM Patients Treated with Metformin Do Not Demonstrate Improved Neurocognitive Symptoms. 

After matching groups for disease duration and BMI, T2DM patients who were treated with metformin 

alone (N=559) did not differ with respect to cognition or brain atrophy compared to T2DM patients who 

were unmedicated (N=473) (SI Fig. 3). Likewise, treatment status showed no significant impact on resting-

state brain activity.  

 

Discussion 

The UK Biobank dataset confirms that T2DM patients show deficits in cognitive performance compared to 

HC, even after controlling for age, sex, and education, findings that were supported by meta-analysis of the 

published literature. These deficits in cognitive performance were accompanied by marked brain atrophy 

in the in T2DM sample as compared to age-matched HC.  The atrophy was most severe (5% grey matter 

loss compared to HC) in the ventral striatum, a region critical to learning, decision making, goal-directed 

behavior, and cognitive control.  These cognitive functions, collectively known as executive functioning, 

were (with processing speed) also those most affected by T2DM.   Neurodegeneration for all regions was 

worsened with chronicity.  

Our findings indicate that structural brain imaging, in particular, can provide a clinically valuable 

metric for identifying and monitoring neurocognitive effects associated with T2DM.  Normalizing across 
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sample sizes to compare the measures of neurocognitive effects:  structural MRI, functional MRI, and 

cognitive testing, structural atrophy showed global effects that were more statistically robust (p<2e–10) 

than either global cognitive measures (p=0.0001) or global brain activity (p=0.002).  One important 

advantage of structural MRI over cognitive testing is that the former avoids confounding associated with 

education and practice effects.  Moreover, cognitive testing may be less interpretable in real-world clinical 

settings in which such matching is not feasible.  Structural MRI also showed advantages as a biomarker 

over a functional MRI-derived measure of brain activation (ALFF).  The reorganization of brain activity 

seen with T2DM may reflect the brain’s switch to less metabolically expensive networks to conserve energy 

in the face of diminishing access to glucose, a pattern previously documented in aging30-33.  Yet activation 

patterns that are spatially reorganized, rather than globally increased or decreased, are less straightforward 

to quantify. Moreover, functional MRI is an inherently more complex measure than structural MRI, 

reflecting both neuronal and hemodynamic influences.  Each of these of these influences may be 

differentially affected by T2DM, further complicating its interpretation in a clinical setting. 

The localization of brain atrophy in T2DM to the ventral striatum, followed by the cerebellum, 

may reflect the fact that these two brain regions contain the densest concentrations of insulin-dependent 

GLUT-434-37, as compared to non-insulin-dependent isoforms GLUT-1 and GLUT-3.  The ventral striatum 

functions as a critical hub within the reward circuit, integrating inputs (including external stimuli) from 

both cortical and subcortical regions, and therefore is a key structure required for all learning.  Rat studies 

have shown modulation of nitric oxide within the ventral striatum to control release of acetylcholine38, a 

neurotransmitter severely reduced in dementia39 and a target for its pharmaceutical treatment40, 41.  Release 

of nitric oxide is insulin dependent and reduced in T2DM42. Together, these suggest a potential mechanistic 

pathway between insulin resistance, atrophy of the ventral striatum, and widespread deficits with respect 

to learning.  In this context, memory deficits may be primarily driven by failure to encode rather than failure 

to retrieve, which would be consistent with our results which did not identify the hippocampus as be one of 

the regions most affected.  Importantly, the structural and functional changes associated with T2DM show 

marked overlap with the effects of aging but appear earlier.   This suggests that neurocognitive changes 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 26, 2021. ; https://doi.org/10.1101/2021.05.23.21257682doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.23.21257682
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

seen in T2DM may progress via a common mechanistic trajectory as normal brain aging, but which is 

accelerated.  

Our analyses had two limitations, inherent in the datasets analyzed, which represent important 

directions for future research.  First, our use of a lifespan dataset permitted tracking how variables change 

with age, but not for the same subjects.  A more rigorous assessment of phase shift between trajectories of 

neurodegeneration for patients with T2DM and HC would be made possible only with a longitudinal study.  

Second, while we had access to disease duration and BMI, we did not have HbA1c measures, which would 

have provided a more direct measure of disease severity.  While metformin was not found to be associated 

with better neurocognitive measures when matched to unmedicated patients with equivalent disease 

duration, and after controlling for BMI (a proxy measure for disease severity14, 15), it was not possible to 

determine other diabetes-related characteristics.  As such, our medication findings should be considered 

suggestive but not conclusive. 

Consistent with findings from earlier studies that focused on the brain and energy metabolism 43, 44, 

we suggest that the T2DM and its progression may be associated with accelerated brain aging. As T2DM 

results in compromised energy availability, brain structure and function undergo accelerated deterioration. 

We consider the possibility that, by the time T2DM is formally diagnosed, neuronal insulin resistance may 

have already resulted in significant brain damage. As such, our findings underscore the need for additional 

research into brain-based biomarkers for T2DM and treatment strategies that specifically target its neuro-

cognitive effects 1.  
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Figures 

  
 
Figure 1:  Cognitive deficits are apparent with respect to both age and T2DM diagnosis. A: Using the UK Biobank dataset, 
we performed a quantitative analysis of the effects related to age on cognitive performance across five cognitive domains. Age was 
associated with significant deficits in all five domains, with the strongest effects observed in executive function and processing 
speed. B: Using the same dataset, we also analyzed cognitive performance in T2DM, with negative values on the y-axis represent 
performance below that of age, sex, and education-matched HC. As per age effects, executive function and processing speed showed 
the highest magnitude changes.  C: Cognitive deficits identified in UK Biobank data were confirmed by our meta-analysis, which 
included 11 domains from 34 studies. Average effect sizes (Cohen’s d) corresponding to T2DM are shown on the y axis. Values 
below the cut-off line (y=0) indicate cases in which subjects with T2DM performed less well than age, sex, and education-matched 
HC. Numbers next to labels identify domains common across panels. Marker sizes represent sample sizes scaled as indicated in 
the bottom left corner of each panel. On panel C, sample size indicates the number of individual studies. Error bars are 95% CI.  
*P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001, Bonferroni corrected. 
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Figure 2:  Widespread gray matter atrophy can be observed with respect to both age and T2DM diagnosis status.  Using 
the UK Biobank dataset, we measured gray matter atrophy across 45 anatomical regions. A: We observed significantly decreased 
gray matter volume in both cortical and subcortical brain regions with respect to age in HC. Age was associated with an average 
of ~0.5% brain-wide decrease in gray matter volume per year, most prominently for the ventral striatum and Heschl’s gyrus B: 
Gray matter atrophy was also seen in patients diagnosed with T2DM compared to age matched HC, most prominently for the 
ventral striatum, cerebellum, and putamen. The distribution of T2DM-related effects overlapped with those associated with age, 
with degeneration of the ventral striatum and preservation of the thalamus and caudate.  
Error bars are 95% CI. *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001, Bonferroni corrected. 
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Figure 3:  Overlap between age and T2DM with respect to reorganization of brain activity. A: For functional MRI data 
obtained from the UK Biobank dataset, we used the amplitude of low-frequency fluctuation (ALFF) to quantify brain activity. 
Effects linked to age are shown in the form of an unthresholded z-map represented by the pink-green color gradient, with pink 
indicating increased activation and green showing decreased. T2DM related effects were thresholded (minimum cluster size 
~100mm3, FDR p<0.05) to result in significant clusters. The outlines of these significant clusters are overlaid on the age-related z-
map to demonstrate overlapping effects. The largest significant clusters with respect to T2DM were in the subgenual area 
(increased), the caudate (decreased), and frontal eye fields (decreased). All highlighted regions were similarly impacted across age, 
indicating substantial overlap between the two contrasts. B: Using multimodal neuroimaging data, we performed a meta-analysis 
for the same contrast using NeuroQuery. We extracted contrast maps for age and T2DM with NeuroQuery and overlaid the outlines 
of thresholded (minimum cluster size ~100mm3, FDR p<0.05) z-maps from T2DM on unthresholded z-maps belonging to age. The 
overlapping effects were evident in several regions, most importantly in the cingulate gyrus, thalamus and premotor cortex. These 
results support the hypothesis that neurodegeneration in both T2DM and aging may be associated with common mechanistic 
pathways. 
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Figure 4:  Progression of T2DM disease is significantly associated with gray matter atrophy, accelerating neurodegenerative 
effects seen in brain aging. For a quantitative evaluation of the impact of T2DM progression on gray matter volume, we considered 
time since T2DM diagnosis as the main factor of interest from the UK Biobank dataset. The T2DM+ cohort was divided into two 
groups based on disease duration (separated at 10 years) with a HC cohort also included for visualization purposes. We matched 
age, sex, education across these three groups and performed linear regression within T2DM+ subjects focusing on disease duration. 
Evaluation of our sample suggested that time since diagnosis was a significant factor, with each year after diagnosis of T2DM 
associated with an additional ~0.24 years of brain aging beyond that of age-matched T2DM–.  
*P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, Bonferroni corrected. 
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Supplementary Figures 
 

 
Supplementary Figure 1:  Aggregated whole brain measures represent the extent of accelerated brain aging with T2DM 
diagnosis. We used the UK Biobank dataset to address the extent by which aging is accelerated in individuals with T2DM. Subjects 
with T2DM were age, sex, and education matched with HC A: We quantified a gross cognitive metric from the combination of 
multiple z-scored performance scores from five cognitive domains. This metric yielded an effective representation of the general 
decline across age, the gap between HC versus subjects diagnosed T2DM, and the relative extent of these two phenomena. We 
observed significantly decreased cognitive performance in subjects with T2DM:  an increase of  3.8-years in age-related cognitive 
decline. B: An equivalent analysis was performed using whole brain gray matter volume. This metric yielded even stronger results 
compared to cognition. T2DM diagnosis was associated with significant atrophy: an increase of ~4.2-years in age-related 
neurodegeneration. Error bars are standard error of the mean. *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001, Bonferroni corrected. 
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Supplementary Figure 2:  Effects of age and T2DM exhibited strong correlations within datasets and modalities, with no 
significant correlations observed across modalities. We considered six cases: 1. Age contrast, gray matter volume in UK 
Biobank; 2. T2DM contrast, gray matter volume in UK Biobank; 3. Age contrast, brain activation in UK Biobank; 4. T2DM 
contrast, brain activation in UK Biobank; 5. Age contrast, brain activation (aggregate) from NeuroQuery; 6. T2DM contrast, brain 
activation (aggregate) from NeuroQuery. Corresponding effects from region/domain specific analyses were taken as inputs and 
correlations were derived from all combinations of these six sets of effects. Age and T2DM were significantly correlated (Pearson’s 
r) within the same modality/dataset. No other significant correlations were observed across datasets or modalities. *P ≤ 0.05; **P 
≤ 0.01; ***P ≤ 0.001, Bonferroni corrected. 
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Supplementary Figure 3:  Treatment of T2DM patients with metformin had no impact on cognitive deficits or gray matter 
atrophy. We evaluated the UK Biobank dataset to determine whether treatment with metformin would prevent gray matter atrophy 
or the development of cognitive deficits associated with T2DM. Among T2DM diagnosed subjects only, we compared those 
subjects who reported using metformin but no other medications to those who reported not taking any medications to treat T2DM. 
We matched subjects for age, sex, education and T2DM disease duration, and controlled for BMI. The direction of theoretical 
improvement by metformin is indicated on both panels by an arrow. A: No statistically significant (α=0.05) differences in cognitive 
performance were detected when comparing subjects on metformin to unmedicated subjects B: Neither our analysis of gray matter 
atrophy detected any significant (α=0.05) improvements associated with metformin treatment. Error bars are 95% CI. 
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Supplementary Tables 
 
 
 

Supplementary Table 1. Summary of All Relevant UK Biobank data-fields. 
Variable Designation Instance Number 
Diagnosis (T2DM) 2443 0, 2 
Age 21003 0, 2 
Sex 31 2 
Education 6138 2 
Age-of-onset (T2DM) 2976 0-2 
Body Mass Index (BMI) 21001 2 
Medication Status (Metformin) 20003 2 
Gray-Matter Volume 25005-25006, 25782-25920 2 
Resting-State MRI Images 20227 2 
Matrix-Pattern Completion 20016 2 
Alphanumeric Trail-Making Test 6350 2 
Symbol-Digit Substitution 23324 2 
Snap Game 20023 0, 2 
Numeric Memory Test 4282 2 
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Supplementary Table 2.  Summary of Cognitive Functions Assessed, with Corresponding Instruments. 

Domains Common Tests Description 

Verbal Memory 

Rey & California Auditory Verbal 
Learning Tests, Hopkins Verbal 
Learning Test, Delayed Word 

Recall, Weschler Text Recall Sub, 
Word List Recall,  

Weschler Story Recall 

Short and long-term recall of verbal information. Includes both 
auditory and visual encoding. 

Executive Function 

Trail Making (B), Stroop (III), 
Brixton Spatial Anticipation, 

Wisconsin Card Sort, Color Trails 
(2), Weschler Letter Number 

Sequencing 

Top-down coordination of other cognitive domains (e.g., memory, 
motor function) to solve problems and manage cognitive resources. 

Often exhibited in tasks that require a degree of planning. 

Verbal Fluency 

Word & Semantic Fluency Tests, 
Controlled Oral word Association 
Test, Letter & Category Fluency 

Tests, Boston Naming Test 

Language skills. Commonly measured by enumeration (e.g., name 
as many words as you can that begin with the letter “B”). 

Information 
Processing Speed 

Trail Making (A), Digit Symbol 
Substitution, Stroop (I-II), Choice 
Reaction Time, Color Trails (1) 

Speedy encoding and use of information. Often measured by time-
to-completion in tasks that require the manipulation of presented 

information. 

Working Memory (Backwards) Digit Span, Corsi Block 
Tapping, N-back 

Holding information for a short time for use on a current task. 
Characterized by both maintaining and manipulating stored 

information. Commonly measured by having subjects re-order 
learned information. 

Visuospatial 
Reasoning 

Rey-Osterreith Figure Copy, Taylor 
Complex Figure,  

Weschler Object Assembly 
Manipulation or reconstruction of spatial information. 

Abstract Reasoning 

Raven’s Progressive Matrices, 
Matrix Pattern Completion, 

Weschler Similarities, Standard 
Progressive Matrices 

Manipulation of presented information to solve a problem without 
prior knowledge. Interrelated with fluid intelligence. Often 

presented as shape or logic puzzles. 

Visual Memory 

Location Learning, Weschler Visual 
Memory Subtest, Rey-Osterreith 

Delayed Recall,  
Face Recognition Test 

Short and long-term recall of visually encoded information. 

Harvey, (2019). Domains of Cognition and their Assessment. Dialogues of Clinical Neuroscience, 21(3), 227-237. 
doi:10.31887/DCNS.2019.21.3 
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Supplementary Table 3. Studies Identified as Most Relevant for Each Key Word by NeuroQuery Algorithm. 
 T2DM studies Aging studies 

1. Chun-Xia Wang et al. 2014 György A Homola et al. 2012 
2. Xiangzhe Qiu et al. 2016 Peiying Liu et al. 2013 
3. Natalia García-Casares et al. 2016 G Juckel et al. 2012 
4. Z-L Wang et al. 2017 Natalie C Ebner et al. 2013 
5. Thomas J Marder et al. 2014 Michelle Hampson et al. 2012 
6. Franco Cauda et al. 2009 Sien Hu et al. 2012 
7. Ying Cui et al. 2015 Yu-Chien Wu et al. 2011 
8. Dae-Jin Kim et al. 2016 Rafat S Mohtasib et al. 2012 
9. Jung-Lung Hsu et al. 2012 Vonetta M Dotson et al. 2016 
10. Zhiye Chen et al. 2012 Estela Càmara et al. 2007 
11. Christopher M Marano et al. 2014 Harri Littow et al. 2010 
12. Olivia M Farr et al. 2016 Andrew P Merluzzi et al. 2016 
13. Dan-Miao Sun et al. 2017 Emily S Nichols et al. 2016 
14. Dewang Mao et al. 2015 Maria Morozova et al. 2016 
15. Rongfeng Qi et al. 2012 Kristen M Kennedy et al. 2009 
16. Dewang Mao et al. 2015 Chiara Chiapponi et al. 2013 
17. Xin Huang et al. 2016 Kathrin Cohen Kadosh et al. 2013 
18. Wenqing Xia et al. 2013 Quinton Deeley et al. 2008 
19. Po Lai Yau et al. 2009 Kristen M Kennedy et al. 2015 
20. Reza Tadayonnejad et al. 2019 Tatia M C Lee et al. 2006 
21. Chen Liu et al. 2014 Joshua Carp et al. 2011 
22. Yue Cheng et al. 2017 Esther H H Keulers et al. 2010 
23. Chuanming Li et al. 2014 Kristin Nordin et al. 2017 
24. Zhilian Zhao et al. 2014 Joshua Carp et al. 2010 
25. Xiaofen Ma et al. 2015 Mark B Schapiro et al. 2004 
26. Jessica A Turner et al. 2013 Nick S Ward et al. 2008 
27. Jiaxing Zhang et al. 2016 Nancy E Adleman et al. 2016 
28. Yingying Yue et al. 2015 Kaitlin L Bergfield et al. 2010 
29. Nicola Pannacciulli et al. 2006 Jenny R Rieck et al. 2017 
30. Xin Di et al. 2013 Marco Hirnstein et al. 2011 
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Supplementary Table 4. Study Estimates of Cognitive Meta-Analysis 
Executive Function d = -0.40, K = 18, p < 0.001, Q = 186.9, I2=88.4% 

Studies Effect size (d) Confidence Interval (95%) 
Bangen et al., 2015 -0.21 -0.33, -0.09 
Biessels at al., 2001 -0.66 -1.41, 0.09 
Brands et al., 2007 -0.54 -0.86, -0.21 

Cui et al., 2014 -0.54 -1.07, -0.01 
Garcia-Casares et al., 2014 -0.87 -1.45, -0.29 

Kanaya et al., 2004 1.03 0.83, 1.24 
Lindeman et al., 2001 -0.09 -0.26, 0.08 

Liu et al., 2018 -0.54 -1.04, -0.04 
Mehrebian et al., 2012 -1.35 -1.93, -0.76 

Mogi et al., 2004 -0.36 -0.81, 0.08 
Reijmer et al., 2016 -0.33 -0.80, 0.15 

Ryan & Geckle. 2008 -0.31 -0.71, 0.08 
Takeuchi et al., 2012 -0.62 -1.09, -0.15 

Van den Berg et al., 2010 -0.65 -1.05, -0.24 
Xia et al., 2010 -0.61 -1.07, -0.16 
Yau et al., 2010 -0.14 -0.80, 0.51 

Yeung et al., 2009 -0.50 -0.83, -0.18 
Zhou et al., 2010 -0.48 -1.10, 0.15 

Short-Term Verbal Memory d= –0.39, K=23, p<0.001, Q=143.6, I2= 91.1% 
Studies Effect size (d) Confidence Interval (95%) 

Aberle et al., 2008 0.02 -0.31, 0.36 
Arvanitakis et al., 2006 -0.05 -0.25, 0.14 

Bangen et al., 2015 -0.13 -0.25, -0.02 
Brands et al., 2007 -0.32 -0.64, 0.00 

Cholerton et al., 2019 0.06 -0.13, 0.25 
Cosway et al., 2001 -0.32 -0.81, 0.17 

Cui et al., 2014 -0.07 -0.59, 0.46 
Dai et al., 2017 -1.7 -2.24, -1.16 

Garcia-Casares et al., 2014 -1.62 -2.26, -0.98 
Liu et al., 2018 -0.49 -0.99, 0.01 

Lowe et al., 1994 -0.06 -0.36, 0.25 
Mattei et al., 2019 -0.3 -0.42, -0.19 

Mehrebian et al., 2012 -1.71 -2.33, -1.10 
Mogi et al., 2004 -0.29 -0.74, 0.16 
Moran et al., 2013 0.31 0.16, 0.46 

Reijmer et al., 2016 -0.23 -0.70, 0.24 
Ryan & Geckle, 2008 -0.41 -0.81, -0.01 
Takeuchi et al., 2012 -0.56 -1.03, -0.09 

van den Berg et al., 2010 -0.39 -0.79, 0.01 
van Harten et al., 2007 -0.35 -0.71, 0.01 

Xia et al, 2015 -0.32 -0.77, 0.13 
Yau et al., 2010 -0.70 -1.37, -0.03 

Yeung et al., 2009 -0.37 -0.69, -0.04 
Verbal Fluency d= –0.37, K=25, p<0.001, Q=101.3, I2=83.3% 

Studies Effect Size (d) Confidence Interval (95%) 

Aberle et al., 2008 0.06 -0.27, 0.39 
Arvanitakis et al., 2006 -0.12 -0.31, 0.08 

Atiea et al., 1995 -0.32 -0.86, 0.22 
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Bangen et al., 2015 -0.33 -0.44, -0.21 
Brands et al., 2007 -0.50 -0.82, -0.17 

Cholerton et al., 2019 -0.37 -0.56, -0.18 
Cosway et al., 2001 -0.30 -0.79, 0.19 

Dai et al., 2017 -0.83 -1.31, -0.35 
Garcia-Casares et al., 2014 -0.92 -1.5, -0.34 

Kanaya et al., 2004 -1.10 -1.31, -0.9 
Liu et al., 2018 -0.44 -0.94, 0.05 

Lowe et al., 1994 -0.46 -0.77, -0.15 
Mankovsky et al., 2018 -0.32 -0.83, 0.19 

Mattei et al., 2019 -0.33 -0.44, -0.21 
Mehrebian et al., 2012 -0.18 -0.71, 0.34 

Moran et al., 2013 -0.03 -0.18, 0.12 
Rawlings et al., 2015 -0.36 -0.41, -0.31 
Reijmer et al., 2016 -0.15 -0.62, 0.32 
Solanki et al., 2009 -0.47 -0.93, -0.01 

Takeuchi et al., 2012 -0.59 -1.06, -0.12 
van Harten et al., 2007 -0.64 -1.01, -0.27 

Yau et al., 2010 -0.07 -0.72, 0.59 
Yeung et al., 2009 -0.15 -0.47, 0.17 
Zhou et al., 2010 -0.58 -1.21, 0.06 
Zihl et al., 2010 0.26 -0.46, 0.99 

Working Memory d= –0.36, K=12, p<0.001, Q=30.2, I2=72.2% 

Studies Effect Size (d) Confidence Interval (95%) 

Arvanitakis et al., 2006 -0.04 -0.24, 0.15 
Atiea et al., 1995 -0.48 -1.02, 0.07 

Biessels et al., 2001 -0.63 -1.38, 0.12 
Brands et al., 2007 -0.36 -0.69, -0.04 
Lowe et al., 1994 -0.04 -0.35, 0.26 

Mankovsky et al., 2018 -0.07 -0.57, 0.44 
Mattei et al., 2019 -0.27 -0.38, -0.15 

Ryan & Geckle, 2008 -0.34 -0.73, 0.06 
Solanki et al., 2009 -1.33 -1.83, -0.84 
Takeuchi et al, 2012 -0.56 -1.03, -0.10 

van den Berg et al., 2010 -0.50 -0.90, -0.10 
Yau et al., 2010 -0.17 -0.82, 0.49 

Abstract Reasoning d= –0.36, K=8, p<0.001, Q=10.57, I2=29.2% 
Studies Effect Size (d) Confidence Interval (95%) 

Arvanitakis et al., 2006 -0.24 -0.43, -0.04 
Bangen et al., 2015 -0.48 -0.59, -0.36 
Brands et al., 2007 -0.19 -0.51, 0.13 
Cosway et al., 2001 -0.10 -0.59, 0.38 
Lowe et al., 1994 -0.41 -0.73, -0.10 

Ryan & Geckle, 2008 -0.27 -0.67, 0.12 
van den Berg et al., 2010 -0.38 -0.78, 0.02 

Zihl et al., 2010 -1.06 -1.82, -0.29 
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Processing Speed d= –0.34, K=31, p<0.001, Q=227.3, I2=82.3 % 
Studies Effect Size (d) Confidence Interval (95%) 

Aberle et al., 2008 0.00 -0.33, 0.33 
Arvanitakis et al., 2006 -0.14 -0.34, 0.05 

Atiea et al., 1995 0.05 -0.49, 0.59 
Bangen et al., 2015 -0.22 -0.34, -0.11 
Biessels et al., 2001 0.19 -0.54, 0.92 
Brands et al., 2007 -0.26 -0.58, 0.06 

Cholerton et al., 2019 -0.43 -0.62, -0.24 
Cosway et al., 2001 -0.30 -0.79, 0.19 

Cui et al., 2014 -0.68 -1.22, -0.14 
Dai et al., 2017 0.25 -0.21, 0.72 

Garcia-Casares et al., 2014 -0.66 -1.23, -0.09 
Lindeman et al., 2001 -0.02 -0.19, 0.15 

Liu et al., 2018 -0.36 -0.86, 0.13 
Mattei et al., 2019 -0.37 -0.49, -0.25 

Mehrebian et al., 2012 -1.23 -1.8, -0.65 
Mogi et al., 2004 -0.59 -1.04, -0.14 
Moran et al., 2013 0.16 0.02, 0.31 
Naseer et al., 2014 -0.61 -1.25, 0.02 

Rawlings et al., 2015 -0.65 -0.70, -0.60 
Redondo et al., 2016 -0.54 -1.15, 0.07 
Reijmer et al., 2016 -0.06 -0.53, 0.41 

Ryan & Geckle, 2008 -0.43 -0.83, -0.03 
Solanki et al., 2009 -0.93 -1.41, -0.46 

Takeuchi et al., 2012 -0.61 -1.08, -0.14 
van den Berg et al., 2010 -0.11 -0.51, 0.29 
van Harten et al., 2007 -0.48 -0.84, -0.11 

Xia et al, 2015 -0.27 -0.71, 0.18 
Yau et al., 2010 -0.69 -1.37, -0.02 

Yeung et al., 2009 -0.38 -0.70, -0.06 
Zhou et al., 2010 -0.27 -0.89, 0.35 
Zihl et al., 2010 -1.28 -2.07, -0.49 

Visuospatial Reasoning d= –0.32, K=13, p<0.001, Q=27.3, I2=56.6% 
Studies Effect Size (d) Confidence Interval (95%) 

Arvanitakis et al., 2006 -0.11 -0.31, 0.09 
Bangen et al., 2015 -0.18 -0.30, -0.07 
Biessels et al., 2001 -0.25 -0.98, 0.49 
Brands et al., 2007 -0.21 -0.53, 0.11 

Garcia-Casares et al., 2014 -0.79 -1.36, -0.21 
Lowe et al., 1994 -0.16 -0.47, 0.15 
Mattei et al., 2019 -0.33 -0.45, -0.21 
Moran et al., 2013 -0.56 -0.71, -0.41 

Ryan & Geckle, 2008 -0.38 -0.78, 0.01 
Takeuchi et al., 2012 -0.41 -0.87, 0.06 

van den Berg et al., 2010 -0.16 -0.56, 0.24 
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Xia et al, 2015 -0.71 -1.17, -0.25 
Zhou et al., 2010 -0.47 -1.10, 0.16 

Delayed Verbal Memory d= –0.21, p<0.001, K=21, Q=114.3, I2=77.5% 
Studies Effect Size (d) Confidence Interval (95%) 

Arvanitakis et al., 2006 -0.01 -0.21, 0.18 
Bangen et al., 2015 -0.07 -0.19, 0.05 
Brands et al., 2007 -0.28 -0.60, 0.04 

Cholerton et al., 2019 0.04 -0.15, 0.23 
Cosway et al., 2001 -0.24 -0.73, 0.24 

Cui et al., 2014 -0.08 -0.60, 0.45 
Dai et al., 2017 -0.75 -1.22, -0.27 
Liu et al., 2018 -0.62 -1.13, -0.12 

Lowe et al., 1994 -0.10 -0.41, 0.21 
Mehrebian et al., 2012 -0.76 -1.31, -0.22 

Mogi et al., 2004 0.18 -0.26, 0.63 
Moran et al., 2013 0.20 0.05, 0.35 

Rawlings et al., 2015 -0.40 -0.45, -0.35 
Reijmer et al., 2016 -0.13 -0.60, 0.34 

Ryan & Geckle, 2008 -0.22 -0.61, 0.17 
Takeuchi et al., 2012 -0.36 -0.82, 0.10 

van den Berg et al., 2010 -0.40 -0.80, 0.00 
van Harten et al., 2007 -0.42 -0.78, -0.05 

Xia et al, 2015 -0.15 -0.59, 0.30 
Yeung et al., 2009 -0.07 -0.39, 0.25 
Zhou et al., 2010 -0.96 -1.62, -0.31 

Short-Term Memory d= –0.21, p=0.005, K=16, Q=38.1, I2=70.2% 

Studies Effect Size (d) Confidence Interval (95%) 

Arvanitakis et al., 2006 -0.13 -0.33, 0.06 
Atiea et al., 1995 -0.47 -1.01, 0.08 

Biessels et al., 2001 -1.05 -1.83, -0.27 
Brands et al., 2007 -0.08 -0.40, 0.24 

Dai et al., 2017 -0.66 -1.14, -0.19 
Lindeman et al., 2001 -0.17 -0.33, 0.00 

Liu et al., 2018 -0.53 -1.03, -0.03 
Lowe et al., 1994 0.14 -0.17, 0.45 

Mankovsky et al., 2018 0.17 -0.34, 0.67 
Mattei et al., 2019 -0.11 -0.22, 0.01 
Moran et al., 2013 0.08 -0.07, 0.22 
Naseer et al., 2014 0.04 -0.57, 0.66 
Solanki et al., 2009 -0.92 -1.39, -0.44 

Takeuchi et al., 2012 -0.33 -0.80, 0.13 
van den Berg et al., 2010 -0.12 -0.52, 0.27 

Yau et al., 2010 -0.30 -0.96, 0.36 
Recognition Verbal Memory d= –0.21, p=0.01, K=12, Q=37.4, I2=78.8% 

Studies Effect Size (d) Confidence Interval (95%) 

Arvanitakis et al., 2006 0.00 -0.20, 0.20 
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Bangen et al., 2015 -0.06 -0.17, 0.06 
Brands et al., 2007 -0.38 -0.70, -0.06 

Dai et al., 2017 -0.61 -1.08, -0.14 
Liu et al., 2018 -0.53 -1.02, -0.03 

Lowe et al., 1994 -0.07 -0.38, 0.24 
Mattei et al., 2019 -0.17 -0.28, -0.05 

Mehrebian et al., 2012 -0.46 -1.00, 0.07 
Moran et al., 2013 0.16 0.01, 0.31 

Takeuchi et al., 2012 0.12 -0.34, 0.58 
van den Berg et al., 2010 -0.51 -0.92, -0.11 

Zhou et al., 2010 -0.89 -1.55, -0.24 
Visual Memory d= –0.13, p=0.32, K=8, Q=19.9, I2=66.6% 

Studies Effect Size (d) Confidence Interval (95%) 

Aberle et al., 2008 -0.16 -0.49, 0.18 
Brands et al., 2007 0.19 -0.13, 0.51 
Cosway et al., 2001 -0.10 -0.59, 0.39 
Lowe et al., 1994 0.20 -0.11, 0.51 

Solanki et al., 2009 -0.96 -1.43, -0.48 
Takeuchi et al., 2012 -0.27 -0.73, 0.19 

van den Berg et al., 2010 0.00 -0.39, 0.40 
Yau et al., 2010 -0.13 -0.79, 0.52 
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Supplementary Table 5. Characteristics of patients who underwent cognitive testing in studies included in our meta-analysis. 
 
 

Studies 

 
 

N 

 
 

Age (Mean) 

 
 

Education (Years) 

 
 

Female 
(%) 

Author Year T2DM HC T2DM HC T2DM HC  
Aberle et al. 2008 38 421 62.9 62.97 9.94 9.93 48.5 

Arvanitakis et al. 2006 116 766 78 80.9 13.7 14.5 78 
Atiea et al. 1995 40 20 69.05 68.1 - - 31 

Bangen et al. 2015 378 1115 75.4 76.3 9.9 11.2 67 
Biessels et al. 2001 13 16 57.7 57.9 11.2 11.4 41.3 
Brands et al. 2007 119 55 65.9 65.2 4* 4 49.4 

Cholerton et al. 2019 185 261 53 51.3 12 12.5 70.4 
Cosway et al. 2001 33 32 57.7 55.9 11.2 11.8 59.2 

Cui et al. 2014 29 27 58.3 57.8 10.4 10.2 55.4 
Dai et al. 2017 41 32 65.51 67.28 15.35 16.05 52 

Garcia-Casares et al. 2014 25 25 60 57.8 18.3 18.9 38 
Kanaya et al. 2004 118 632 73.55 69.2 - - 57.2 

Lindeman et al. 2001 188 476 73.4 73.8 10.9 12.3 - 
Liu et al. 2018 32 32 58.09 56.88 9 12 42.2 

Lowe et al. 1994 80 81 59.3 55.1 - - 63.9 
Mankovsky et al. 2018 93 18 62.3 59.5 14.7 14.3 70.2 

Mattei et al. 2019 465 711 58.9 56 - - 73.1 
Mehrebian et al. 2012 37 22 56 56 14 14 56.5 

Mogi et al. 2004 69 27 71.6 73.4 10.4 11.4 64.5 
Moran et al. 2013 350 363 67.8 72.1 11.3 10.9 43.2 
Naseer et al. 2014 20 20 53.3 - - - - 

Rawlings et al. 2015 1779 11572 58.2 56.8 - - 55.6 
Redondo et al. 2016 20 23 70.82 70.92 6.79 7.36 46 
Reijmer et al. 2016 35 35 71.1 71 4* 4 41.4 

Ryan & Geckle 2008 50 50 50.8 50.5 14.4 14 73 
Solanki et al. 2009 50 30 - - - - - 

Takeuchi et al. 2012 42 32 62.4 63.8 13.7 14.5 40 
van den Berg et al. 2010 68 38 65.6 64.8 4* 4 48.1 
van Harten et al. 2007 92 44 73.2 72.9 4* 4.4 55.8 

Xia et al. 2015 38 40 56 57.1 9.6 10.3 51.3 
Yau et al. 2010 18 18 16.46 17.16 10.75 11.15 - 

Yeung et al. 2009 41 424 68.59 67.84 15.12 15.33 68 
Zhou et al. 2010 21 19 68 69.16 12.48 13.84 50 
Zihl et al 2010 12 19 42.45 36.8 10.5 10.9 - 

T2DM, type-2 diabetes mellitus; HC, healthy control 
*median education 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 26, 2021. ; https://doi.org/10.1101/2021.05.23.21257682doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.23.21257682
http://creativecommons.org/licenses/by-nc-nd/4.0/


 31 

Supplementary Table 6. List and justification for studies excluded from our cognitive meta-analysis.  
Studies Justification for Exclusion 

Asimakopoulou et al., 2002 Did not match for education 
Brands et al., 2007 Identical sample of study already included 
Bruehl et al., 2009 Authors did not provide requested data 

Callisaya et al., 2018 Identical sample of study already included 
Chen et al., 2014 Inadequate cognitive testing 
Chen et al., 2017 Inadequate cognitive testing 

Christman et al., 2010 Did not match for education 
Cooray et al., 2011 Authors did not provide requested data 

Cui et al., 2015 Identical sample of study already included 
Cui et al., 2017 Identical sample of study already included 
Cui et al., 2017 Identical sample of study already included 

Degen et al., 2016 Authors did not provide requested data 
Dey et al., 1997 Inadequate cognitive testing 
Dore et al., 2009 Authors did not provide requested data 
Elias et al., 1997 No baseline data in longitudinal design 

Grodstein et al., 2001 Inadequate cognitive testing 
Hassing et al., 2004 Unclear sizes of sample sub-groups 
Helkala et al., 1995 Did not match for education 

Kinga & Anett, 2016 Authors unable to be reached 
Kumari et al., 2005 Did not match for education 

Liu et al., 2016 Identical sample of study already included 
Liu et al., 2018 Identical sample of study already included 
Liu et al., 2020 Identical sample of study already included 

Manschot et al., 2006 Identical sample of study already included 
Mooradian et al., 1988 Inadequate cognitive testing 
Nazaribadie et al., 2013 Authors did not provide requested data 

Nealon et al., 2017 Did not match for education 
Nooyens et al., 2010 Authors did not provide requested data 
Perlmuter et al., 1984 Inadequate cognitive testing 

Ravona-Springer et al., 2018 Authors did not provide requested data 
Reijmer et al., 2011 Identical sample of study already included 

Robertson-Tchabo et al., 1986 Inadequate cognitive testing 
Ruis et al., 2009 Authors did not provide requested data 
Scott et al., 1998 Identical sample of study already included 

Sinclair et al., 2000 Inadequate cognitive testing 
Smith et al., 2009 Identical sample of study already included 

Spauwen et al., 2015 Authors did not provide requested data 
van Gemert et al., 2018 Authors did not provide requested data 

Watari et al., 2006 Authors did not provide requested data 
Xia et al., 2013 Identical sample of study already included 
Xia et al., 2015 Identical sample of study already included 
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