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A phenomenological analysis of the time evolution of some COVID-19 data in terms

of a Fermi-Dirac function is presented. In spite of its simplicity, the approach appears

to describe the data well and allows to correlate the information in a universal plot

in terms of non-dimensional or reduced variables Nr = N(t)/Nmax, and tr = t/∆T ,

with N(t) being the total number of cases as a function of time, Nmax the number of

total infected cases, and ∆T the diffuseness of the Fermi/Dirac function associated

with the rate of infection. The analysis of the reported data for the first outbreak in

some selected countries and the results are presented and discussed. The approach

is also applicable to subsequent waves. Support of our framework is provided by the

SIS limit of the SIR model, and simulations carried out with the SEICRD extension.
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ernmental actions, Epidemic, Outbreak, SIR-SIS models and SEICRD extended model.

I. INTRODUCTION

The worldwide outbreak of COVID-19 has triggered a large number of studies. In fact, a

search in medRxiv, bioRxiv [1], and arXiv[2] (across all fields) returns more than 8800, 2400 and

2900 articles respectively, that have been posted since the beginning of the year 2020 1. It goes

without saying that this impressive number of manuscripts clearly reflects the scientific urgency to

understand the behavior of this novel virus and to develop and to assess several models that can

shed light on its outbreak and make reliable predictions of its dynamical evolution.

In this work, as a contribution on the topic of mathematical modeling, we would like to point

1 Numbers as of Dec-10.
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out that the available data [3, 4] for some selected countries could be described by a Fermi/Dirac

(F/D) function, introduced in physics by Fermi and Dirac to describe the distribution of particles

over energy states in systems consisting of many identical particles that obey the Pauli exclusion

principle [5–7]. This type of function is also extensively used in nuclear physics to parametrize

the nuclear potential (Wood-Saxon potential) in studies of structure and reactions [8].

Our phenomenological analysis of the first outbreak of the pandemic, presented in Sections II

and III, provides a reasonable description of the data and the evolution of the pandemic without

relying on any specific epidemiological model. An interesting finding is that the data follows a

universal behavior based on dimensionless variables that allows, in a simple manner, to relate the

response of the pandemic to measures adopted to counteract the spread of the virus. While we

mainly focus our discussions on the first outbreak, the method can obviously be extended for the

subsequent ones as briefly presented in Section IV.

II. THE PHENOMENOLOGICAL APPROACH

We make the conjecture that the data can be described by an analytical function of the F/D

type:

N(t) =
Nmax

1 + exp(−(t− t0)/∆T )
, (1)

where N(t) is the cumulative number of infected cases, Nmax is the total number of cases, ∆T is

the diffuseness of the F/D function and t0 is a reference time when N(t0) =
Nmax

2
. The use of this

type of function can be justified by considering the first derivative of Eq. 1:

dN(t)

dt
=
N(t)

∆T

(Nmax −N(t))

Nmax

, (2)

showing that the rate of infections at a given time is proportional to the product between the

infected and non-infected cases. In Ref. [9], the authors considered this type of function in an

analysis of the early pandemic in Sweden. Furthermore, the so-called SIR (Susceptible, Infectious,

Recovered) model [10], widely used in epidemiology to study virus transmissions, consists of a

system of three time-dependent variables: I(t), the number of total infected individuals at a

given time, S(t) the number of individuals susceptible of contracting the infection, and R(t) the

cumulative number of recovered individuals. In a closed system with a constant population size,
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Nmax, these variables satisfy the following equations:

dS(t)

dt
= −λSI,

dI(t)

dt
= λSI − γI,

dR(t)

dt
= γI,

Nmax = S(t) + I(t) +R(t),

(3)

where λ is the transmission rate and γ the recovery rate. If the recovery rate is very low during

the pandemic time interval (γ ≈ 0), we can approximate the infected cases by:

dI(t)

dt
≈ λI(t)(Nmax − I(t)).

This limit is known as the SIS (Susceptible - Infected - Susceptible) model with the solution above

readily recognized in Eq. 2, with λNmax = 1/∆T .

In the SIR model the basic reproduction number, R0, is given at the outset of the epidemic

by: λNmax/γ = 1/(γ∆T ) (See the nice discussion in Ref. [11]). If for a given population R0 > 1

the infection will spread exponentially, while if R0 < 1 the infection will progress slowly and

eventually die out. The value of R0 for COVID-19 is estimated to be between 2 and 4. An

effective reproduction number, R, is often used to reflect the state of the epidemic at any given

time. R = R0(1−Pi) where Pi is the proportion of the population who is immune at that time [12].

III. ANALYSIS

As mentioned above, we focus our analysis on the first outbreak and start our discussion with

data2 from China3, shown in Fig. 1. A fit of Eq. 1 reproduces well the empirical distributions for

the cumulative and daily number cases given by Eq. 2. A similar procedure was applied to the

data from a number of selected countries listed in Table I, including the city of New York in the

USA, which will be further discussed in Section IV. The fit parameters are also given in Table I.

The values of the diffuseness ∆T increase from the lowest value for China, going through the

values of the European countries, up to the highest values of the North and South American

2 All data used in this work have been extracted from the online reference sites [3, 4].
3 The number of coronavirus cases in the city of Wuhan, where the pathogen was first detected, may have been 10
times higher than official figures suggest, according to a recent Chinese CDC report.
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countries. Our interpretation is that the infection rate is progressively delayed further, as the

pandemic progressed and the authorities implemented measures to confront and control it.
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FIG. 1: Number of cumulative cases N(t) as reported in China compared to the fit of an F/D function,

with the following parameters, Nmax = 82791, t0 = 40.6 days and ∆T = 4.68 days. dN/dt and the daily

infected cases δN(t)/δt = (N(t+ 1)−N(t))/(1day) are also included, multiplied by a factor of 10.

Other parameters characterizing the time evolution are worth discussing. One follows from the

first derivative of N(t) that has a maximum at its inflection point: N(t = t0) =
Nmax

2
which

substituted in Eq. 2, gives the peak rate, PR(t0) =
Nmax

4∆T
. Note that from the numbers in Table I

and the relation γR0 ≈ 4
PR(t0)

Nmax

, we can estimate a value for γ ∼ 0.03/day. Measures of the early

(asymptotic) behavior are the time, t10 (t90), when the number of cases reach 10% (90%) of the

maximum, N10 (N90). It is simple to show that t10(t90) ≈ t0 − (+)2.2∆T . The parameter t90 is

also given in Table 1 and compared to that obtained from the empirical curves shown in the last

three columns (emp). Deviations between the fits and the empirical data vary in the range of 1 to

20% for t0 and t90, and from 1 to 5% for N90. The deviations on PR(t0) are larger, 16-71%, likely

due to systematic effects in the reporting of daily cases.
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TABLE I: The data were taken from [3] based on the reported data for each selected country since Dec-31,

2019 for China, and since Feb-20, 2020 for the rest of the countries. The data set of New York City were

taken from [4]. The cut-off date is May-31, except for Brazil and Perú that the cut-off dates are Sep-30

and Jul-20 respectively.

Country Nmax t0 ∆T PR(t0) t90 N90 t0(emp) PR(emp) N90(emp)

(cases) (days) (days) (cases/day) (days) (cases) (days) (cases/day) (cases)

Brazil 5156471 161.2 27.38 47082 221 4640824 161 69074 4732309

Canada 89693 65.9 11.74 1910 92 80724 74 2760 81313

China 82791 40.6 4.68 4423 51 74512 44 15141 74652

Germany 173158 45.6 8.29 5222 64 155842 37 6294 150383

Perú 314875 101.4 14.72 5348 134 283388 104 8875 295599

Spain 228423 42.7 7.91 7219 60 205581 36 9181 195470

Sweden 38787 69.0 14.34 676 101 34908 71 790 35023

United Kingdom 274336 64.3 11,37 6032 89 246902 52 8719 246407

USA 1753980 64.8 12.38 35420 92 1578582 66 48529 1577287

(New York) 194746 47.4 9.14 5327 68 175271 46 6365 170236

It is more instructive to consider a linearized form of Eq. 1 and plot

ln

(
Nmax

N(t)
− 1

)
= − 1

∆T
t+

t0
∆T

, (4)

from which we can easily extract ∆T from the slope and t0 from the intercept. The data are

presented in this form in Fig. 2 and Fig. 3 for the countries in Table I. The F/D function suggests

a universal behavior in terms of dimensionless (or reduced) variables. Introducing:

Nr =
N(t)

Nmax

, tr =
t− to
∆T

, (5)

all the data should lie in a common, universal curve. Remarkably this appears to be the case, as

seen in Fig. 4. In addition, in terms of these reduced variables Eq. 4 can be written as:

ln

(
1−Nr

Nr

)
= −tr, (6)

thus, here, the universal curve is a straight line with slope -1 and 0 intercept. The data are

presented in this linearized form in Fig. 5.
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FIG. 2: COVID-19 data for China, Germany and some American countries are shown following from Eq. 4.

For visual purposes, an arbitrary constant value was added to the times of each data set to avoid overlap

of the different straight lines.

-5

0

5

10

15

0 20 40 60 80 100 120 140 160

SPAIN SWEDEN UNITED KINGDOM USA NEW YORK

ln
((

N
m

ax
/N

(t
))

-1
)

t (day)

FIG. 3: Same as Fig. 2, but for selected European countries, USA and New York City.
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FIG. 4: COVID-19 data shown in terms of the dimensionless variables Nr and tr, suggesting that the

universal behavior of the F/D function appears to be present in the data from the selected countries. For

reference, the t10 and t90 reduced times are indicated.

IV. RESULTS AND DISCUSSION

Although the dynamics of the pandemic seems to have a universal behavior, it is clear from

Figs. 2-5 that the data for the different countries do not strictly align on a single straight-line. There

are many factors affecting the number of daily infected cases. Among them, the most relevant are

those closely related to the measures adopted by the authorities of the different countries in an

effort to control the disease, to reduce the number of cumulative infected cases, and to "flatten

the curve", keeping the PR below the available hospital resources at any given time to avoid

overloading the system.

Nevertheless, by discussing a few examples, we will show how we can still use the linearized

reduced forms, to correlate the data and shed light on the dynamics of the epidemic.
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FIG. 5: Similar to Fig. 4 but in the linearized version given in Eq. 6.

The first examples are devoted to China and Germany. The fits of Eq. 6 to the data are shown

in Fig. 6 and give roughly slopes ≈ -1 and ≈ 0 intercept. For China, and for tr ≥ 5 the slope is

small. The value of tr = 5 corresponds to t= 66 days (Mar-5) within the flattened part of the N(t)

curve, meaning the epidemic was almost controlled. Among the countries selected in this study

only China and Germany present this kind of behavior where the slope is ≈-1 and the intercept

≈ 0. We believe this is related to the fast measures taken by the chinese authorities to manage

the spread of the disease (See Fig.1 in Ref. [13]). In the case of Germany the adopted strategy of

massive testing, social distancing, and isolation of infected people since the early beginnings, was

very effective to control the pandemic [14].
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FIG. 6: ln((1−Nr)/Nr) is plotted vs tr for the COVID-19 data of China and Germany. The equations

for the straight line fits are given in the top legend.

Let us consider now Fig. 7, which presents in more detail the data in Fig. 5. Each country

data set can be reasonably fit with two straight-lines, the universal region near tr ∼ 0 and

those corresponding to earlier reduced times. The slope of the straight lines is the inverse of the

diffuseness ∆T , which measures the transmission rate λ in the SIS model. Therefore, a change

of slope can be interpreted as a change in the transmission of the infectious disease. A priori,

such a change appears contradictory to the universality conjecture given that the diffuseness is

determined by fitting the F/D function, and therefore should be unique. However, the linearized

forms are very instructive in the sense that it allows to investigate in more detail the development

of the evolution of the epidemics and how external factors might influence it. In what follows,

we will show that the universal behavior can be recovered. One may argue that presenting the

data in this form, provides a more sensitive way to highlight potential deviations due to limited

reporting, incomplete statistics, etc.
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FIG. 7: As in Fig. 6, for the data of the listed countries.

A. Prior and post analyses

An inspection of Fig. 7 reveals also a linear dependence anticipated in Eq. 6 for times smaller

than a characteristic time, tcross, the date at which the change of slope occurs for each country

data set, just before the universal behavior sets in. The reduced slopes of the straight lines

measure early transmission rates and suggest, for example, that in the case of Sweden this was

≈ 4.9 faster at the beginning of the pandemic, i.e. tr < tcross. Similarly, in the USA that factor is

≈ 3.1, and so on for the rest of the countries. Changes in the slopes certainly reflect the way in

which general living conditions are affected by the implementation of policies (travel restrictions,

border closures, quarantines, social distancing, etc.) to control and limit the contagion. Consider

the case of New York City, where the change of slope occurred on ≈ Mar-20. Social-distancing

measures implemented on Mar-13 [15], must be reflected in a decrease in the number of daily

infected cases and thus correlate well with the date of the sudden change in the slope.
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Finally, let us come back to the discussion about the loss of universality in our approach. To

that effect, we consider a slightly different analysis of the data. From Fig. 7 the date at which

the sudden change of slope occurs, tcross, is determined for each country. Now, each set can be

separated into two sub-sets: the first one referred to as prior starting on Feb-20 to tcross, and

the second one, post, from tcross to May-31, except for Brazil and Perú for which the analysis

was extended to Sep-30 and Jul-20 respectively. Then, the same analytical F/D function is

applied to each sub-set of data as presented in Figs. 8 and 9. The analyses of both prior and

post data sets show that the average straight lines have reduced slopes: 1.15± 0.23 (prior) and

1.11± 0.08 (post), and intercepts: −0.21± 0.48 (prior) and 0.08± 0.09 (post) very close to the

universal values.

Thus, it seems that the empirical data are amenable of a description in terms of the linearized

equations discussed above and follow a universal pattern in both prior and post analyses. It

emerges from the comparison of these two sets that the implemented pandemic policies, aimed at

reducing the impact of the COVID-19, have been able to decrease the basic reproduction number

R0 by a factor of ≈ 3, as measured by the ratio of the prior and post slopes 1/∆T . Since R0 ∼ 3,

the reduction factor brings it down below the critical value of 1. This is shown, as an example, for

the data reported in New York in Fig 10.
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FIG. 9: As in Fig. 8 but for the post data sets.
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FIG. 10: Plot of ln((1−Nr)/Nr) vs tr for each subset of data prior and post reported in New York City.

B. A benchmark with the extended SEICRD model

In this subsection we present the results of an extension of the SIR model to allow a time depen-

dant infection rate, which in fact we model as a time dependant basic reproduction number R0.

Our objective here is to provide support of our simple phenomenological approach by comparing

with the results of an established mathematical model, commonly used in epidemiological studies.

In particular, we focus on the concept of the tcross value and the prior and post analyses that

follow.

In section I, we briefly presented the SIR model along with the system of differential equations

governing the time evolution of the Susceptible, Infected and Recovered compartments. Ref. [16]

presents a useful overview of this class of models, some of their theoretical properties and natural

ways of extending them to more complex situations. Based on Refs. [16, 17] we thus modify the

SIR model to account for individuals in the population that undergo different stages of the disease.

We include an Exposed (E) compartment (those that have contracted the disease but cannot yet

spread the virus), and two more compartments Critical (C) (those that need intensive care to

model the overflow of Intensive Care Units (ICU) and Deaths(D) (cumulative deaths caused by

the pandemic) and thus its name SEICRD. Further details are given in the Appendix.
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In section IVA, the time tcross was correlated to the implementation of policies that reduce R0.

We introduce in the SEICRD model a function of the form:

R(t) =
R0,start −R0,end

1 + exp(−k(t− tcross))
+R0,end, (7)

where the following desired properties are met:

lim
t→−∞

R(t)→ R0,start,

lim
t→∞
R(t)→ R0,end,

(8)

to simulate a change in the slope from R0,start to R0,end at t = tcross. The sharpness of the change

is controlled by the parameter k. These additional parameters could either be fixed to suitable

values, or fit to empirical data (See Appendix).

Here we just present the case of New York City. The SEICRD simulated data are contrasted

with the F/D analysis in Fig. 11 that shows a plot of the dimensionless variables ln((1−Nr)/Nr)

vs. tr, to be compared with that of Fig. 10. The similar behavior of the universal straight lines

and relevant dates is remarkable, suggesting that in spite of its simplicity, the approach captures

the main ingredients of a more sophisticated model.

y1 = -2.12x – 1.44

y2 = -0.69x – 0.18

-10

-5

0

5

10

15

-8 -4 0 4 8

New York City

tr

ln
((

1
-N

r)
/N

r)

tcross= Mar-28

SEICRD Fit

FIG. 11: Plot of ln((1−Nr)/Nr) vs tr for the simulated SEICRD data for New York City.
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C. Extended analysis beyond May-31

Due to the large extent of the pandemic, it is important to demonstrate if our analysis could also

be applied to the second outbreak already seen in most countries and, specifically, if the concept

of universality discussed in Section IV is still valid. The following example describes the analysis

applied to the data reported in the United Kingdom.

y1 = -0.90x - 0.01

y'1 = -6.13x - 15.03

y‘’1 = -2.69x - 3.00

y2 = -0.95x + 0.01
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 1

,2

tr
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d

 d
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(T
)/

d
t

t (day)

δN/δt dN(t)/dt

Outbreak 1
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Feb-20 Jul-18 30-Nov

a)

b)

FIG. 12: (a): Daily infection cases in the United Kingdom from Feb-20 until Nov-30. (b): Universal

curves for the two outbreaks ending and starting on Jul-18 as indicated.

An inspection of Fig. 12 a) allows us to identify two regions defined by a characteristic separation

time tsep between the peaks of the outbreaks. Each full data set can be then separated into two

subs-sets: the first one, referred as to Outbreak 1, from Feb-20 to Jul-18 (tsep for this case). The

second subset, Outbreak 2, goes from Jul-19 until Nov-30. The same analytical F/D functions was

then applied to each of the sub-sets giving the following parameters: Nmax1 = 282292, t01 = 65.6

days (with respect to Feb-20) and ∆T1= 13.9 days for set 1 and Nmax2 = 1631357, t02 = 109.3

days (with respect to Jul-18) and ∆T2= 16.7 days for set 2. The results are summarized in Fig. 12

b) the reduced straight lines have slope and intercept close to −1 and 0 the universal values. The

prior and post behavior discussed in Section IVA is also present in both outbreaks. Perhaps not

surprising, the example confirms that the universal behavior is observed for the two outbreaks and
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anticipated to follow in subsequent ones. Of course, the same analysis can be easily applied to the

extended data for other countries with similar results.

As a final comment we note that the proposed formalism can be applied instead to the number

of COVID-19 related deaths as a function of time, which could be a more robust indicator of the

impact of the pandemic.

V. SUMMARY AND CONCLUSIONS

We have presented a phenomenological analysis of the time evolution of COVID-19 in some

selected countries, using an analytical function of the Fermi/Dirac (Wood/Saxon) type. In spite

of its simplicity, it appears that the proposed approach describes the empirical data relatively

well. The extracted characteristic parameters allow, especially in the early stages of the epidemic,

to make reasonable estimates readily comparable with the facts, and without resorting to more

complex epidemiological models. Notwithstanding, the formalism is supported by the solution of

the SIS model, an approximation of the SIR model and its extensions.

The linearized form of the F/D function suggests the introduction of dimensionless variables

to correlate all the information in just one graph that reveals the universality of the phenomenon.

Within our framework, we showed that the evolution of the epidemic can be easily tracked with

changes in the values of the reduced slopes (prior and post analyses), reflecting measures and poli-

cies implemented to mitigate the spread of the disease. Although we focused our presentation on

the first wave, we have shown that the phenomenology is also applicable to subsequent outbreaks.

Finally, it did not escape us that it could be of interest to apply the formalism to the analysis of

other viruses like influenza, which will be the topic of a follow-up work.
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Appendix: The extended SEICRD Model

1. Introduction

In this appendix we discuss in more detail the extended SEICRD model which was used in

Section IVB to benchmark the phenomenological analysis. This model is a natural extension

of the SIR and the SEIR models [16]. The extended SEICRD model (in short SEICRD model)

is obtained by the addition of two extra compartments: Critical (C) and Death (D). The first

one accounts for individuals that need intensive care during the course of the disease and allows

us to model the overflow of Intensive Care Units (ICUs) and the impact on the fatality rates.

Individuals can only enter this compartment from an infected (I) state, from which they follow

the cycle to D or R. The second compartment will hold the cumulative deaths caused by the

pandemic, with the assumption that only individuals from C can die.

2. The differential equations of the model

The model dynamics is schematically shown in the flow diagram below, where the different

compartments along with their state transitions are identified:

S E I

C

R

D

1 S/N λI σ 1 E γ (1− PIC) I

RIC PIC I
RCR (1− PCD) C

RCD PCD C

The system of differential equations readily follow:

dE
dt

= λSI − σE

dC(t)

dt
= RICPICI −RCR(1− PCD)C −RCDPCDC

dD(t)

dt
= RCDPCDC

, (A.1)
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We further consider two additional and relevant features: a) the modeling of limited resources

for ICUs; and b) the modeling of a time dependent infection rate.

The modeling of limited resources is done by a modification of the transition probabilities from

C to D when the total number of patients in C is higher than the total number of ICUs available

(NICU). When such conditions are met, we assume the transition probability between C and D is

1.0 for C −NICU individuals in C.

Finally, we introduce a time dependent infection rate into the model as a time dependent

reproduction number R(t). Our goal here is to give a robust model to support our interpretation

of the tcross value introduced in sub-sections IV A, IV B). Thus, we propose that R(t) is given by

a function of the form:

R(t) =
R0,start −R0,end

1 + exp(−k(t− tcross))
+R0,end, (A.2)

where the following desired properties are met:

lim
t→−∞

R(t)→ R0,start,

lim
t→∞
R(t)→ R0,end.

(A.3)

The sharpness of the change in slope, from R0,start to R0,end at t = tcross, is controlled by the

parameter k.

3. The solution of the model equations

Following from the discussions above, the final system of differential equations is:

dS
dt

= −λ(t) S I,

dE
dt

= λ(t) S I − σE,

dI
dt

= σE −RIC PIC I − γ (1− PIC) I,

dC
dt

= RIC PIC I −RCD PCD min(NICU , C)−max(0, C −NICU )−RCR (1− PCD) min(NICU , C),

dR
dt

= γ (1− PIC) I +RCR (1− PCD) min(NICU , C),

dD
dt

= RCD PCD min(NICU , C) + max(0, C −NICU ),

R(t) =
R0,start −R0,end

1 + exp(−k(t− tcross))
+R0,end,

λ(t) = R0(t)γ.

(A.4)
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At first glance, we have several parameters we have to deal with. Nonetheless, some of them that

do not have a significant variation during the process of the pandemic can be fixed, while the rest

have to be fitted to the available data. In the following list the whole set of parameters and how

they are treated in the fitting procedure are given:

σ(fixed) : Incubation period in days (1/σ) := 1/3,

γ(fixed) : Number of days an infecton lasts (1/γ) := 1/9,

RIC(fixed) : Number of days from infected to critical (1/RIC) := 1/12,

RCD(fixed) : Number of days from critical to dead (1/RCD) := 1/7.5,

RCR(fixed) : Number of days from critical to recovered (1/RCR) := 1/6.5,

NICU (fixed) : Number of ICU beds per 100k population := Country − dependent,

R0,start(fitted) : Initial Reproduction Number,

R0,end(fitted) : Final Reproduction Number,

k(fitted) : Steepness of the function R(t),

tcross(fitted) : Mid time where the fall in R0(t) happens,

PIC(fitted) : Transition probability, from Infected to Critical,

PCD(fitted) : Transition probability from Critical to Death.

(A.5)

The values for NICU are not pandemic but country specific and were compiled from Refs. [18, 19]

to get the most up-dated values.

A Python-code [20] was developed to solve equations (A.4) and fit the results to the available

cumulative deaths data reported for the different countries. While fitting the model to the available

reported deaths, the obtained evolution of the infected compartment is likely to reflect the total

numbers of cases more precisely than if derived from the positive tested ones. The fit results are

summarized in Table II.

We have discussed in Section IVA that the linearized form of Eq. 6, fitted to the SEICRD results

for New York City, captures the main ingredients of the evolution of the pandemic as predicted by

a more realistic, yet more complex, model. A similar conclusion can be drawn from the analysis
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TABLE II: Results of the SEICRD model fit to the data for the countries considered in this work. The

cut-off date for these calculations was set on Oct-29. The m1 and m2 values are extracted from Fig. 7 and

Fig. 9 respectively, those for China and Germany from Fig. 6.

Country SEICRD F/D

R0start R0end
R0red.factor k tcross −m1 −m2 tcross

Brazil 3.70 0.97 3.81 0.32 Apr-30 7.22 1.26 Apr-06

Canada 3.55 0.60 5.89 0.20 Apr-09 2.19 1.11 Apr-01

China 4.99 0.68 7.38 4.99 Jan-26 1.28 — Feb-19

Germany 4.83 0.52 9.23 3.13 Mar-29 1.29 — no date

Perú 4.99 1.49 3.36 4.90 Apr-04 4.96 1.04 Apr-13

Spain 4.99 0.76 6.54 4.52 Mar-22 2.91 1.00 Mar-20

Sweden 4.02 0.67 5.97 0.40 Mar-29 4.85 1.15 Mar-26

United Kingdom 4.51 0.56 8.02 4.91 Mar-30 2.64 1.16 Mar-29

USA 4.89 0.92 5.32 4.93 Mar-20 3.07 1.11 Apr-01

(New York) 4.78 0.44 10.76 1.76 Mar-28 5.03 1.04 Mar-20

of the other countries.
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