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 2

Abstract 26 

Recent studies have demonstrated that multiple early-onset diseases have shared risk genes, 27 

based on findings from de novo mutations (DNMs). Therefore, we may leverage information 28 

from one trait to improve statistical power to identify genes for another trait. However, there are 29 

few methods that can jointly analyze DNMs from multiple traits. In this study, we develop a 30 

framework called M-DATA (Multi-trait framework for De novo mutation Association Test with 31 

Annotations) to increase the statistical power of association analysis by integrating data from 32 

multiple correlated traits and their functional annotations. Using the number of DNMs from 33 

multiple diseases, we develop a method based on an Expectation-Maximization algorithm to 34 

both infer the degree of association between two diseases as well as to estimate the gene 35 

association probability for each disease. We apply our method to a case study of jointly 36 

analyzing data from congenital heart disease (CHD) and autism. Our method was able to 37 

identify 23 genes for CHD from joint analysis, including 12 novel genes, which is substantially 38 

more than single-trait analysis, leading to novel insights into CHD disease etiology. 39 

 40 

Author Summary 41 

Congenital heart disease (CHD) is the most common birth defect. With the development of new 42 

generation sequencing technology, germline mutations such as de novo mutations (DNMs) with 43 

deleterious effects can be identified to aid in discovering the genetic causes for early on-set 44 

diseases such as CHD. However, the statistical power is still limited by the small sample size of 45 

DNM studies due to the high cost of recruiting and sequencing samples, and the low occurrence 46 

of DNMs given its rarity. Compared to DNM analysis for other diseases, it is even more 47 

challenging for CHD given its genetic heterogeneity. Recent research has suggested shared 48 

disease mechanisms between early-onset neurodevelopmental diseases and CHD based on 49 
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findings from DNMs. Currently, there are few methods that can jointly analyze DNM data on 50 

multiple traits. Therefore, we develop a framework to identify risk genes for multiple traits 51 

simultaneously for DNM data. The new method is applied to CHD and autism as a case study to 52 

demonstrate its improved power in identifying risk genes compared with single-trait analysis. 53 

Our results lead to new insights on the disease etiology of CHD, and the shared etiological 54 

mechanisms between CHD and autism. 55 

 56 

 57 
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Introduction 73 

Congenital heart disease (CHD) is the most common birth defect. It affects 0.8% of live birth 74 

and accounts for one-third of all major congenital abnormalities [1, 2]. CHD is associated with 75 

both genetic and environmental factors [2]. It is genetically heterogenous and the estimated 76 

heritability in a Danish twin study is close to 0.5 [3].  77 

 78 

Studies on de novo mutations (DNMs) have been successful in identifying risk genes for early 79 

on-set diseases as DNMs with deleterious effects have not been through natural selection. By 80 

conducting whole-exome sequencing (WES) studies for parent-offspring trios, there are 81 

cumulative findings of potential risk genes for CHD and neurodevelopmental disorders by 82 

identifying genes with more DNMs than expected by chance [4-6]. However, the statistical 83 

power for identifying risk genes is still hampered by the limited sample size of WES due to its 84 

relatively high cost in recruiting and sequencing samples, as well as the low occurrence of 85 

DNMs given its rarity.  86 

 87 

Meta-analysis and joint analysis are two major approaches to improve the statistical power by 88 

integrating information from different studies. Meta-analysis studies on WES DNMs and 89 

Genome-wide Association Studies (GWAS) for multiple traits have been conducted [7, 8]. 90 

However, these approaches may overlook the heterogeneity among traits, thus hinder the ability 91 

to interpret finding for each single trait. By identifying the intersection of top genes from multiple 92 

traits, some recent studies have shown that there are shared risk genes between CHD and 93 

autism [9, 10]. Shared disease mechanism for early-onset neurodevelopmental diseases has 94 

also been reported [11, 12]. Based on these findings, joint analysis methods have been 95 

proposed and gained success in GWAS and expression quantitative trait loci (eQTL) studies. 96 

Studies have shown that multi-trait analysis can improve statistical power [13-19] and accuracy 97 
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of genetic risk prediction [20-22].  Currently, there lacks joint analysis methods to analyze DNM 98 

data on multiple traits globally, with the exception of mTADA [23].  99 

 100 

In addition to joint analysis, integrating functional annotations has also been shown to improve 101 

statistical power in GWAS [15, 24] and facilitate the analysis of sequencing studies [25] [26]. 102 

There is a growing number of publicly available tools to annotate mutations in multiple 103 

categories, such as the genomic conservation, epigenetic marks, protein functions and human 104 

health. With these resources, there is a need to develop a statistical framework for jointly 105 

analyzing traits with shared genetic architectures and integrating functional annotations for DNM 106 

data. 107 

 108 

In this article, we propose a Multi-trait De novo mutation Association Test with Annotations, 109 

named M-DATA, to identify risk genes for multiple traits simultaneously based on pleiotropy and 110 

functional annotations. We demonstrate the performance of M-DATA through extensive 111 

simulation studies and real data examples. Through simulations, we illustrate that M-DATA is 112 

able to accurately estimate the proportion of disease-causing genes between two traits under 113 

various genetic architectures. M-DATA outperformed single-trait approaches and methods even 114 

if annotation information was not used. Annotations can further boost the power of M-DATA. We 115 

applied M-TADA to identify risk genes for CHD and autism. There are 23 genes discovered to 116 

be significant for CHD, including 12 novel genes, bringing novel insight to the disease etiology 117 

of CHD. 118 

 119 

 120 

 121 

 122 
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Methods 123 

Probabilistic model 124 

First, we consider the simplest case with only one trait, and then we extend our model to 125 

multiple traits. We denote �� as the DNM count for gene � in a case cohort, and assume �� come 126 

from the mixture of null (��), and non-null (��), with proportion �� � 1 � � and �� � � 127 

respectively. Let �� be the latent binary variable indicating whether this gene is associated with 128 

the trait of interest, where �� � 0 means gene � is unassociated (��), and �� � 1 means gene � 129 

is associated (��). Then, we have the following model: 130 

��  ~ �
���������� 

��|�� � 0 ~ ��������2���� 

��|�� � 1 ~ ��������2���γ�� 

where N is the sample size of the case cohort, �� is the mutability of gene � estimated using the 131 

framework in Samocha, Robinson (27), and �� is the relative risk of the DNMs in the risk gene 132 

and is assumed to be larger than 1. The derivation of the parameter of the Poisson distribution 133 

is the same as that in TADA [6, 28]. We define this model as the single-trait model without 134 

annotation in our main text. 135 

 136 

To leverage information from functional annotations, we use an exponential link between �� and 137 

��  , 138 

γ
�

� 
� ���
�!�, 

where ��
� is the transpose of the functional annotation vector of gene �, and ! is the effect size 139 

vector of the functional annotations. Under the assumption that risk genes have higher burden 140 

than non-risk genes, we expect the estimated value of �� to be larger than 1.  141 

 142 
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Now we extend our model to consider multiple traits simultaneously. To unclutter our notations, 143 

we present the model for the two-trait case.  Suppose we have gene counts ��� and ��� for gene 144 

� from two cohorts with different traits. Similarly, we introduce latent variables 145 

�� � #���� , ���� , ���� , ����$ to indicate whether gene �  is associated with the traits. Specifically, 146 

���� � 1 means the gene � is associated with neither trait, ���� � 1 means that it is only 147 

associated with the first trait, ���� � 1 means that it is only associated with the second trait, and 148 

���� � 1 means that it is associated with both traits. Then, we have: 149 

��~%��&���'�(��1, ��, with � � ���� , ��� , ��� , ���� 150 

��� � Pr����� � 1�, ���|����~��������2�����, ���|����~��������2����� 151 

��� � Pr����� � 1�, ���|����~��������2����γ���, ���|����~��������2����� 152 

��� � Pr����� � 1�, ���|����~��������2�����, ���|����~��������2����γ��� 153 

��� � Pr����� � 1�, ���|����~��������2����γ���, ���|����~��������2����γ��� 154 

γ
��

� exp����
� !��, γ

��
� exp����

� !�� 155 

where � is the corresponding risk proportion of genes belonging to each class, with 156 

∑ �������,��,��,��
 � 1. Then, the risk proportion of the first trait and second trait is ��� / ��� and 157 

��� / ���, respectively. When there is no pleiotropy of the two traits, ��� � ���� / �������� /158 

����. The difference between ��� and ���� / �������� / ���� reflects the magnitude of global 159 

pleiotropy between the two traits. �� is the same as our one-trait model. ��, ��� and ��� are the 160 

case cohort size, relative risk and annotation vector of gene � for the first trait. ��, ��� and ��� are 161 

similarly defined for the second trait.  162 

 163 

Denote 0 � ��, !�, !�� the parameters to be estimated in our model. As we only consider de 164 

novo mutations, they can be treated as independent as they occur with very low frequency. The 165 

full likelihood function can be written as  166 
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���� � � � �	�Pr �
�� , 
��|��� � 1; ������

�����,��,��,��


�

���

 

where M is the number of genes. The log-likelihood funciton is  167 

���� � � log � �	�Pr �
�� , 
��|��� � 1; ������

�����,��,��,��


.
�

���

 

 168 

Estimation 169 

Parameters of our models can be estimated using the Expectation-Maximization (EM) algorithm 170 

[32]. It is very computationally efficient for our model without annotation because we have 171 

explicit solutions for the estimation of all parameters in the M-step.  172 

 173 

By Jenson’s inequality, the lower bound ��Θ� of the log-likelihood function is 174 

���� � ���� � � � �����log�	�� � log�Pr�
�� , 
��|��� � 1; �����
�����,��,��,��


.
�

���

 

 175 

The algorithm has two steps. In the E-step, we update the estimation of latent variables 176 

��� , � �  00,01,10,11" by its posterior probability under the current parameter estimates in round s. 177 

That is, 178 

���

�� � Pr#��� � 1$
��, Y��; �
��& � Pr#��� � 1, 
�� , 
��$�
��&

Pr�
�$�
���

� Pr���� � 1|�
��� Pr#
�� , 
��$��� � 1; �
��&
∑ (Pr��

��′
� 1|�
��� Pr �
��, 
��|�

��′
� 1; �
��)

�′����, ��,��,��


. 

 179 

In the M-step, we update the parameters in � based on the estimation of ��� in the E-step by 180 

maximizing ����. For 	, there is an analytical solution, which is 181 
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	�

���� � ∑ ���


���
���

*  

 182 

For the rest of derivation, we take the estimation process for the first trait as an example. Taking 183 

the first order derivative of ��Θ� with respect to +� as 0, we have 184 

,��
����
�� � ∑ ����� � �����#
��-�� . 20�1� exp#-��

� +�& -��&�
��� � 0. 185 

 186 

If we do not add any functional annotations to our model (-�� degenerates to 1 and +� 187 

degenerates to a scalar), there exists an analytical solution for +�.  188 

+�

���� � log ∑ 
������� � ������

���

∑ 20�1������ � ������
���

 

 189 

However, there is no explicit solution for +�, so we adopt the Newton-Raphson method for 190 

estimation after adding functional annotations into our model. The second-order derivatives for 191 

���� is  192 

,��

� ���� � . ������ � �����#20�1� exp#-��
� +�& -��-��

� &
�

���

, 

Then, the estimate of +� can be obtained as 193 

+�

���� � +�


�� . �,��

� ����
�����,��
����
�� , 

 194 

Functional Annotation and Feature Selection 195 

As we have discussed, there are multiple sources of functional annotations for DNMs. For gene-196 

level annotations, we can directly plug into our gene-based model. For variant-level annotations, 197 

it is important to collapse the variant-level information into gene-level without diluting useful 198 

information. Simply pulling over variant-level annotations of all base pairs within a gene may not 199 

be the best approach. To better understand the relationship, we calculate the likelihood ratio of 200 
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the DNM counts under 5� and 5�. Under 5�, for all positions t within a gene 6, the DNM count 201 


�� follows the Poisson distribution with relative risk 7�� and mutability 1��  , then we have  202 

8�
�|5��
8�
�|5�� � ∏ 8�
��|5���

∏ 8�
��|5���

� ∏ 8:6;;:<�201��γ��
��

∏ 8:6;;:<�201����

, 

where γ
��

� exp�+� � +�-���. There is likely to be at most one mutation at each position t due to 203 

the low frequency of DNM. We can further simplify the above equation to 204 

8�
�|5��
8�
�|5�� � ∏ exp�+� � +�-��= 
�� � 1"�exp�.201��exp �+� � +�-�����

∏ exp�.201����

 

� exp �� �+� � +�-��= 
�� � 1"�
�

exp �� .201�� �exp�+� � +�-��� . 1��
�

 

 205 

Assuming the variant-level effect size +� is small, we can apply Taylor expansion to the second 206 

term of the above equation,  207 

8�
�|5��
8�
�|5�� > exp �� �+� � +�-��= 
�� � 1"�

�
exp �� .201���exp�+���1 � +�-�� � . 1��

�
. 

 208 

If we center the collapsed variant-level annotations, we can apply ∑ -��� � 0 to the above 209 

equation and further simplify it as  210 

8�
�|5��
8�
�|5�� > exp �� �+� � +�-��= 
�� � 1"�

�
exp �� .201�� �exp�+�� . 1��

�

� exp �+�
� � +�

� � �-��= 
�� � 1"�
�

. 

 211 

The above approximation motivates us to aggregate variant-level annotations to gene-level 212 

annotations by summing up all annotation values of the mutations within a gene after 213 

preprocessing each variant-level annotation. 214 

 215 
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We used variant-level annotations from ANNOVAR [29] in our analysis. We define loss-of-216 

function (LoF) as frameshift insertion/deletion, splice site alteration, stopgain and stoploss 217 

predicated by ANNOVAR, and define deleterious missense variants (Dmis) predicted by 218 

MetaSVM [30]. Specifically, we included four categories of features including variant-level 219 

deleteriousness (PolyPhen (D), PolyPhen(P) [33], MPC [34], CADD [35], REVEL [36], and LoF), 220 

variant-level allele frequencies (gnomAD_exome and gnomAD_genome [31]), variant-level 221 

splicing scores (dbscSNV_ADA_score, dbscSNV_RF_score [37] and dpsi_zscore [38]) and 222 

gene conservation scores (pLI and mis_z) downloaded from gnomAD v2.1.1 [31] in real data 223 

analysis. To construct gene-level annotation scores, variant-level annotations were collapsed by 224 

summing up values calculated from the mutation information for each gene. All continuous 225 

gene-level features were normalized before model fitting. 226 

 227 

Before performing multi-trait analysis, features were selected separately for each trait by single-228 

trait analysis. For each trait, all gene-level features were evaluated by Pearson’s correlation. If 229 

the Pearson’s correlation between two annotations was larger than 0.7, only one annotation was 230 

kept. After model fitting, we kept annotations with the absolute values of effect sizes larger than 231 

0.01 and refit the model with the selected annotations. For multi-trait analyses, we constructed 232 

the annotation matrices using the features selected from each trait (see more details in the S1 233 

Text.) 234 

 235 

Hypothesis Testing 236 

Without loss of generality, we take the first trait as an example to illustrate our testing procedure. 237 

After we estimate the parameters, genes can be prioritized based on their joint local false 238 

discovery rate (Jlfdr) [39].  For joint analysis of two traits, the Jlfdr of whether gene 6 is 239 

associated with the first trait is 240 
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Jlfdr��
��, 
��� � 8B����� � ���� � 1|
��, 
���

� 	�� 8B�
��, 
��|���� � 1; �� � 	�� 8B�
�� , 
��|���� � 1; ��
∑ (	

�′
8B C
�� , 
��D�

��′
� 1; �E)

�′����, ��,��,��


� 	��Poisson�
�� , 20�1��Poisson�
��, 20�1�� � 	��Poisson�
�� , 20�1��Poisson�
��, 20�1�γ��
�

∑ (	
�′

8B C
��, 
��D�
��′

� 1; �E)
�′����, ��,��,��


, 

where γ
�1

� exp�-�1
� +

1
� and γ

�2
� exp�-�2

� +
2
�. When there is no annotation, both +

1
 and +

2
 241 

degrade from vectors to single intercept values. Then γ
�1

 and γ
�2

 share the same values exp�+�� 242 

and exp�+�� across all genes. Same formula can be used to compute the Jlfdr of each gene. 243 

The definition of the Jlfdr is the posterior probability of a null hypothesis being true, given the 244 

observed DNM count vector �
1, 
2�. If we consider the first trait, the corresponding null 245 

hypothesis is the gene 6 associates with both traits or only associates with the second trait, i.e., 246 

Zi00 � Zi01 � 1. And the corresponding Jlfdr is Jlfdr
1
�Yi1, Yi2� � Pr ���00 � ��01 � 1|
�1, 
�2�. In 247 

comparison, the p-value is defined as the probability of observing more extreme results given 248 

the null hypothesis being true, i.e., p-value� Pr �More extreme than �
�� , 
���|���� � ���� � 1�. To 249 

compute it, we need to firstly define a partial order for comparing two-dimensional vector �
�, 
��, 250 

with which the genes associate with the first trait can stand out. One way to define the partial 251 

order is to summarize the vector into a one-dimensional test statistic. Since this is not our focus, 252 

we will not discuss how to derive a new test statistic in the article. Although the Jlfdr
1
 already 253 

informs the probability of whether the gene is associated with the first trait, we should not 254 

directly use it as the p-value to infer the association status due to their different definitions and 255 

properties. 256 

 257 

The following relationship between Jlfdr and false discovery rates (Fdr) was shown in Jiang and 258 

Yu (39),  259 
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Fdr1�P� � Q�Jlfdr
1
�
1, 
2���
1, 
2� � P� > 1

|����1,��2���
|
∑ Jlfdr

1
�
�1, 
�2��Yi1,Yi2��� , 260 

where the rejection region is the set of two-dimensional vector �
1, 
2� such that the null 261 

hypothesis can be rejected based on a specific rejection criterion. For example, we can specify 262 

a rejection criterion to select genes with large values of the weighted average DNM 263 

counts:0.9
� � 0.1
� � 5, then the corresponding rejection region is the upper right region above 264 

the line of 0.9
� � 0.1
� � 5. Here we omit the gene indicator 6 since the rejection region is 265 

defined on DNM count pairs of two traits regardless of the exact gene labels. Jiang and Yu (56) 266 

showed that the most powerful rejection region for a given Fdr level q is  Jlfdr
1
�
1, 
2� T U�V�". 267 

To determine the threshold U�V�, we sort the calculated Jlfdr�value of each gene in an 268 

ascending order first. Denote the a-th Jlfdr� value as  Jlfdr�
!. We can approximate the Fdr of the 269 

region Pa �  �
1, 
2�|Jlfdr
1
�
�1, 
�2� T Jlfdr

1
a " as 270 

Fdr �P#� � 1
W � Jlfdr�

$
#

$��
 

Denote X � max   W|Fdr �P#� T V" , and then the threshold U�V� for Jlfdr� is Jlfdr�
%. For testing 271 

association with the first trait, we reject all genes with Jlfdr��Y&� , Y&�� T U�V�. For both simulation 272 

and real data analyses, the global Fdr is controlled at V � 0.05. The global Fdr is abbreviated as 273 

FDR in the following text. 274 

 275 

Implementation of mTADA  276 

We used extTADA [11] to estimate the hyperpriors input for mTADA. For simulation and real 277 

data application, we applied 2 MCMC chains and 10,000 iterations as recommended by the 278 

authors [23]. We applied PP>0.8 as the threshold for risk gene inference. We benchmarked the 279 

computational time of mTADA and M-DATA on Intel Xon Gold 6240 processors (2.6GHZ).-  280 

 281 
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Misspecified Model 282 

We tested if M-DATA have proper power when functional annotations affect the latent variables 283 

��� , � �  00,01,10,11" rather than the relative risk parameters 7�� and 7��. Further, we assumed 284 

that the latent variable ���� is associated with the functional annotation vector -��, which is the 285 

functional annotation vector for gene 6 of the first trait, ���� is associated with -��, which is the 286 

functional annotation vector for gene 6 of the second trait, and ���� is associated with both -�� 287 

and -�� through the following forms: 288 

 P�Z���� � 1
1 � exp#-��

� +�& � exp�-��
� +�� � exp�-��

� +� � -��
� +�� 

P�Z���� � exp#-��
� +�&

1 � exp#-��
� +�& � exp#-��

� +�& � exp#-��
� +� � -��

� +�& 

P�Z���� � exp#-��
� +�&

1 � exp#-��
� +�& � exp#-��

� +�& � exp#-��
� +� � -��

� +�& 

P������ � exp�-��
� +� � -��

� +��
1 � exp#-��

� +�& � exp�-��
� +�� � exp�-��

� +� � -��
� +�� 

	�� � Pr����� � 1�, 
��|����~8:6;;:<�20�1��, 
��|����~8:6;;:<�20�1�� 289 

	�� � Pr����� � 1�, 
��|����~8:6;;:<#20�1�γ��
&, 
��|����~8:6;;:<�20�1�� 290 

	�� � Pr����� � 1�, 
��|����~8:6;;:<�20�1��, 
��|����~8:6;;:<�20�1�γ��
� 291 

	�� � Pr����� � 1�, 
��|����~8:6;;:<�20�1�γ��
�, 
��|����~8:6;;:<�20�1�γ��

�, 292 

where 	 is the corresponding risk proportion of genes belonging to each class, with 293 

∑ 	������,��,��,��
 � 1. Here, 1� is the mutability of gene 6. 0�, 7�� and -�� are the case cohort size, 294 

relative risk and annotation vector of gene 6 for the first trait. Similarly, 0�, 7�� and -�� are 295 

defined for the second trait.  296 

 297 

Verification and Comparison 298 
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Estimation Evaluation 299 

We conducted comprehensive simulation studies to evaluate the estimation and power 300 

performance of M-DATA. We set the total number of genes M to 10,000, where genes were 301 

randomly selected from gnomAD v2.1 [31]. We set the size of the case cohort at 2000, 5000 302 

and 10000, corresponding to a small, medium and large WES study. We assumed the 303 

proportion of risk genes to be 0.1 for each trait (i.e., 	�� � 	�� �  	�� � 	�� � 0.1), and varied the 304 

shared risk proportion 	��  at 0.01, 0.03, 0.05, 0.07 and 0.09. When 	�� � 0.01, it corresponds to 305 

the absence of pleiotropy between two traits, and we expect our multi-trait models to perform 306 

similarly as our single-trait models.  307 

 308 

We first evaluated the performance of estimation for our models, and then we conducted power 309 

analysis for our single-trait models and multi-trait models. To evaluate the estimation 310 

performance for multi-trait models, we simulated the true model with two Bernoulli annotations, 311 

and set the parameter of the Bernoulli distributions to 0.5 for both traits. We varied the effect 312 

sizes of annotations �+'� , +'� , +'��, Z � 1,2 from �3,0.1, 0.1� �3,0.1,0� and �3,0,0�, which 313 

corresponds to the cases when both annotations are effective, only the first annotation is 314 

effective and no annotation is effective. We evaluated the estimates of shared proportion of risk 315 

genes 	�� and the risk gene proportion for a single trait. There are in total 27 simulation settings 316 

for estimation evaluation. To obtain an empirical distribution of our estimated parameters, we 317 

replicated the process for 50 times for each setting. We simulated the two traits in a symmetrical 318 

way, so we only present the results of the first trait. The performance of estimation under the 319 

scenario that both annotations are effective��+'� , +'�� � �0.1,0.1�, Z � 1,2� are shown in Fig 1. 320 

The rest of scenarios are shown in Fig A in the S1 Text.  321 

 322 
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323 

Fig 1. Multi-trait analysis can accurately estimate the proportion of shared risk genes and single-trait risk 324 

genes. Top panels show the estimation of shared risk proportion, and bottom panels show the estimation of a single 325 

trait. For each panel, each plot from left to right represents study sample size of 2000, 5000, and 10000, respectively. 326 

Within each plot, boxes from left to right represent the proportion of shared risk genes being 0.01, 0.03, 0.05, 0.07 327 

and 0.09, respectively. Each scenario is replicated for 50 times in our simulations.  True values are shown in red 328 

dashed lines.  329 

 330 

Power Evaluation 331 

Given that the effective number of functional annotations for DNM data in real world is unknown, 332 

we explored the power performance of single-trait and multi-trait models when annotations are 333 

only partially observed. We varied the effect size of annotations  from 334 

  and , which corresponds to the cases when effect of 335 

annotations is weak, moderate, and strong. We assumed that only the first two annotations can 336 

be observed. We first demonstrated our model can control FDR (Fig B in the S1 Text) under 337 

theses settings and then evaluated power (Fig 2), type I error (Fig C in the S1 Text), and AUC 338 

(Fig D in the S1 Text) for our single-trait models and multi-trait models. There are in total 45 339 

 

. 

n, 
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simulation settings. Under each setting, the data were simulated based on our multi-trait model 340 

with annotations (Methods).  341 

342 

Fig 2. Power performance under different strengths of annotations. The panels from top to bottom show the 343 

power performance under weak, moderate and strong annotations, respectively. For each panel, each plot from left to344 

right represents study sample size of 2000, 5000, and 10000, respectively. Within each plot, boxes from left to right 345 

represent the proportion of shared risk genes being 0.01, 0.03, 0.05, 0.07 and 0.09, respectively. Each scenario is 346 

replicated for 50 times in our simulations.  347 

 348 

 

to 
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With the increase of the sample size, the performance of all four models becomes better. Under 349 

weak annotations, the power performance of models with annotations and without annotations 350 

are comparable. However, when annotations are stronger, the power performance of models 351 

with annotations are better than models without annotations (Fig E and Fig F in the S1 Text). 352 

With the increase of shared risk proportion, the power performance of multi-trait models become 353 

better than single-trait models. 354 

 355 

Comparison with mTADA 356 

Under the same settings in the previous section, we compared the power performance of 357 

mTADA and M-DATA. The sample size of the DNM cohort was set as 5000 for both traits. In the 358 

simulation, we observed that both methods could control FDR, while mTADA was more 359 

conservative than M-DATA for FDR control (Fig G in the S1 Text). M-DATA has higher power 360 

than mTADA when the effect size of annotations is larger (Fig 3). The result is consistent with 361 

our observation in the real data (Application). In the time comparison, we observed that our 362 

method converged faster than the MCMC method adopted by mTADA (Table D in the S1 Text). 363 

 364 
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365 

Fig 3. Comparisons of M-DATA and mTADA under different strengths of annotations. The panels from top to 366 

bottom show the power performance under weak, moderate and strong annotations, respectively. For each panel, 367 

each plot from left to right represents study sample size of 2000, 5000, and 10000, respectively. Within each plot, 368 

boxes from left to right represent the proportion of shared risk genes being 0.01, 0.03, 0.05, 0.07 and 0.09, 369 

respectively. Each scenario is replicated for 50 times in our simulations.  370 

 371 

Robustness to Model Misspecification 372 
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We also evaluated the power performance of M-DATA under misspecified models (Methods), 373 

where we simulated two Bernoulli annotations that affect the latent variables 374 

��� , � �  00,10,01,11", and set the parameter of the Bernoulli distributions to 0.5 for both traits. 375 

We varied the effect sizes of annotations on the latent variables #+'�, +'�, +'�&, Z � 1,2 at (-376 

3,0.5,0.5), (-3,1,1) and (-3,1.5,1.5), which corresponds to the case when the effect of 377 

annotations is weak, moderate, and strong, respectively. The relative risk parameters 7�� and 378 

7�� were set at 25. We simulated DNM counts under this misspecified model and evaluated the 379 

performance of M-DATA multi-trait models for different sizes of DNM cohort (1000, 2000, and 380 

4000). We observed that M-DATA can control FDR under all settings and the multi-trait model 381 

with annotations had better power than the multi-trait model without annotation with the increase 382 

of the effect size of annotations (Fig 4). 383 
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384 

Fig 4. Power and FDR of M-DATA under model misspecification. The top panel and bottom panel show the 385 

power and FDR under weak, moderate and strong annotations on the latent variables  386 

respectively. For each panel, each plot from left to right represents study sample size of 1000, 2000, and 4000, 387 

respectively. Each scenario is replicated for 50 times in our simulations.  388 

 389 

Application 390 

We applied M-DATA to real DNM data from 2,645 CHD probands reported in Jin et al. [4] and 391 

5,623 autism probands acquired from denovo-db [40]. We only considered damaging mutations 392 

(LoF and Dmis) in our analysis as the number of non-deleterious mutations is not expected to 393 

provide information to differentiate cases from controls biologically [41]. Details of functional 394 
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annotation and feature selection are included in Methods and S1 Text. In total, there were 395 

18,856 genes tested by M-DATA. 396 

 397 

We performed single-trait analysis on CHD and autism data separately, followed by joint 398 

analysis both CHD and autism data with the multi-trait models. We compared the performance 399 

of single-trait models and multi-trait models for CHD under different significance thresholds. 400 

With a stringent significance threshold (i.e., FDR < 0.01), single-trait model without annotation 401 

identified 8 significant genes, single-trait model with annotation identified 10 significant genes, 402 

multi-trait model without annotation identified 11 significant genes, and multi-trait model with 403 

annotation identified 14 genes. With FDR < 0.05, single-trait model without annotation identified 404 

15 significant genes, single-trait model with annotation identified 19 significant genes, multi-trait 405 

model without annotation identified 18 significant genes, and multi-trait model with annotation 406 

identified 23 significant genes (Table 1). It demonstrates that M-DATA is able to identify more 407 

genes by jointly analyzing multiple traits and incorporating information from functional 408 

annotations. We visualized the identified genes with Venn diagrams (Fig 5 and Fig H in Text S1). 409 

Model FDR<0.05 FDR<0.01 

Single no Anno: CHD/Autism 15/28 8/17 

Single with Anno: CHD/Autism 19/35 10/22 

Multi no Anno: CHD/Autism 18/28 11/19 

Multi with Anno: CHD/Autism 23/37 14/23 

Table 1. Results for M-DATA Single-Trait and Multi-Trait Models 410 

 411 

We further demonstrate the results by taking CHD as an example. Compared with the single-412 

trait model without annotation, the multi-trait model without annotation identified 3 additional 413 

genes, which are FRYL, NAA15 and PTEN. Compared with the single-trait model with 414 

annotations, the multi-trait model with annotations identified 6 additional genes, including 415 
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CDK13, FRYL, LZTR1, NAA15, PTEN and RPL5. There are two additional genes identified by 416 

the single-trait model with annotations, but not the multi-trait models. Both of these two genes 417 

did not have DNMs in autism and are around the margin of FDR threshold (0.05) for the multi-418 

trait model with annotations (AHNAK 0.056, MYH6 0.061).  419 

 420 

421 

Fig 5. Venn diagram of identified genes in different models. Compared to the single-trait model without 422 

annotation, the single-trait model with annotations identified 4 additional genes. Compared to the multi-trait model 423 

without annotation, the multi-trait model with annotations identified 5 additional genes. In total, the multi-trait models 424 

identified 6 different genes compared to the single-trait models, including 4 novel human CHD genes (CDK13, FRYL, 425 

LZTR1 and NAA15). 426 

 427 

To further illustrate the gain of power from multi-trait analysis, we visualized the posterior 428 

probability of being shared risk gene for CHD and autism of identified genes in the multi-trait 429 

model with annotations in Fig 6A (CHD) and Fig I in the S1 Text (autism). In the main text, we 430 

further illustrate the results with the 23 significant CHD genes. All genes identified by the multi-431 
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trait models are annotated with gene names, and the 6 additional genes identified by multi-trait 432 

analyses are colored red. From this figure, we can see that most genes (5/6) have high 433 

posterior probability of being shared. RPL5 is at the margin of FDR threshold in the single-trait 434 

models and may be prioritized in the multi-trait models by chance (Fig 6B). In addition, we 435 

checked the correlation between the FDR of top genes identified by the multi-trait model with 436 

annotations in the single-trait model with annotations (Fig 6B). All 6 genes have low FDR (<0.2) 437 

in the single-trait model with annotations, which indicates multi-trait analysis can prioritize 438 

marginal signals in single-trait analysis. 439 

 440 

441 
Fig 6. Multi-trait analyses prioritized additional genes with high posterior probability of being shared risk 442 

genes for CHD. Gene names of the 23 genes identified by the multi-trait model with annotations are shown on the 443 

plot and the additional 6 genes that were identified by the multi-trait models are marked in red. (A) shows that the 6 444 

additional genes identified by the multi-trait models had high posterior probability of being shared. The x-axis 445 

represents the posterior probability of being shared calculated from the multi-trait model with annotations. The y-axis 446 

represents the FDR of genes calculated from the multi-trait model with annotations. (B) shows that the top genes in 447 

the multi-trait model with annotations also had low FDR (<0.2) in the single-trait model with annotations. The x-axis 448 

represents the FDR of genes calculated from the single-trait model with annotations. The y-axis represents the FDR 449 

of genes calculated from the multi-trait model with annotations. 450 
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We take the 5 CHD genes identified by the multi-trait models, but not the single-trait models as 451 

examples to demonstrate the pleiotropic effect. We selected the DNM counts of CHD and 452 

autism, FDR of the single-trait model with annotations and FDR of the multi-trait model with 453 

annotations model from the results (Table 2). From this table, we can see CDK13, FRYL, 454 

LZTR1, NAA15 and PTEN have 2 DNM counts for CHD and at least 1 shared DNM count with 455 

autism. For PTEN, it has 4 shared counts with autism, and we can see a substantial increase of 456 

significance in terms of FDR. Thus, the insight is that genes with shared counts with autism are 457 

more likely to be prioritized for CHD in multi-trait analyses by leveraging the pleiotropic effect. 458 

Gene CHD Counts Autism Counts FDR Single Anno FDR Multi Anno 

CDK13 2 1 0.137 0.0353 

FRYL 2 2 0.172 0.0461 

LZTR1 2 1 0.0749 0.0257 

NAA15 2 3 0.0609 0.00726 

PTEN 2 4 0.151 0.00882 

Table 2. Pleiotropic effect boosts power for M-DATA multi-trait models. 459 

 460 

Among the 23 identified genes from joint model with annotations, 11 were well established 461 

known CHD genes based on a previously compiled gene list with 254 known CHD genes [4]. 462 

They are involved in essential developmental pathways or biological processes, such as Notch 463 

signaling (NOTCH1), RAS signaling (PTPN11, RAF1, SOS1), PI3K/AKT signaling (PTEN), 464 

chromatin modeling (CHD7, KMT2D, NSD1), transcriptional regulations (GATA6), and cell 465 

structural support (ACTB, RPL5) [42, 43]. 466 

 467 
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Among the 12 novel genes, RBFOX2, SMAD2, CDK13 are three emerging CHD risk genes that 468 

have been recently reported to cause hypoplastic left heart syndrome [9, 44, 45], laterality 469 

defect [1, 46], and septal defects and pulmonary valve abnormalities [47], respectively. 470 

 471 

Additionally, 4 novel genes, POGZ, KDM5B, NAA15, and FRYL, harbored at least two de novo 472 

mutations in both CHD and autism cohorts.  473 

 474 

POGZ, encoding a heterochromatin protein 1 alpha-binding protein, participates in chromatin 475 

modeling and gene regulations. It binds to chromatin and facilitates the packaging of DNA onto 476 

chromosomes. POGZ damaging de novo mutations were strongly linked with autism spectrum 477 

disorders and other neurodevelopmental disorders [48, 49]. Interestingly, one of the reported 478 

mutation carriers also presented cardiac defect [50].  479 

 480 

KDM5B is a lysine-specific histone demethylase. Studies have shown that it regulates H3K4 481 

methylation near promoter and enhancer regions in embryonic stem cells and controls the cell 482 

pluripotency [51, 52]. The deletion of KDM5B in mice is neonatal lethal with respiratory failure 483 

and neurodevelopmental defects [53]. Recessive mutations in the gene were associated with 484 

mental retardation (OMIM: 618109) and one reported patient presented atrial septal defect.  485 

 486 

NAA15 encodes the auxiliary subunit of N-Alpha-Acetyltransferase 15, which catalyzes one of 487 

the most common post-translational modification essential for normal cell functions. Protein-488 

truncating mutations in NAA15 were reported in intellectual disability and autism patients, some 489 

of whom also presented a variety of cardiac abnormalities including ventricular septal defect, 490 

heterotaxy, pulmonary stenosis and tetralogy of Fallot [54]. 491 

 492 
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POGZ, KDM5B, and NAA15 are all highly expressed in developmental heart at mice embryonic 493 

day E14.5 [4]. POGZ and NAA15 are intolerant for both LoF and missense mutations, given that 494 

they have a pLI score > 0.9 and a missense z-score > 3. KDM5B is intolerant for missense 495 

mutations with a missense z-score of 1.78. Considering their intolerance of protein-altering 496 

variants, the identification of damaging de novo mutations in them is highly unlikely. Therefore, 497 

our analyses suggest that POGZ, KDM5B and NAA15 may be considered as new candidate 498 

CHD genes. 499 

 500 

Furthermore, among the 17 genes with at least one de novo mutation in CHD and autism 501 

cohorts, 5 genes (KMT2D, NSD1, POGZ, SMAD2, KDM5B) play a role in chromatin modeling. 502 

Such high proportion is consistent with previous studies that chromatin modeling-related 503 

transcriptional regulations are essential for both cardiac and neuro-development, and genes 504 

with critical regulatory roles in the process may be pleotropic [9]. 505 

 506 

Further, we compared the performance of M-DATA with mTADA [23] using the same real data 507 

of CHD and autism. We fitted both methods with damaging mutations (LoF and Dmis mutations). 508 

mTADA identified all 18 genes identified by our no annotation model, and missed 3 genes 509 

(CDK13, SAMD11, and RPL5) identified by our annotation model for CHD (Table 2). We 510 

visualized the results with Venn diagrams (Fig 6 and Fig J in the S1 Text). We also compared 511 

our results with the results of CHD-ASD pair reported by mTADA using CHD data [55] autism 512 

data [11], and mutability data downloaded from the github webpage of mTADA (Table E in the 513 

S1 Text). 514 

 M-DATA No M-DATA Anno mTADA 

CHD 18 23 20 

Autism 28 37 28 

Table 3. Comparison of M-DATA multi-trait models with mTADA 515 
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 516 

Fig 7. Venn diagram of genes identified by M-DATA and mTADA for CHD. M-DATA multi-trait model with 517 

annotations identified 3 additional genes (CDK13, SAMD11 and RPL5).   518 

 519 

Discussion  520 

In this paper, we have introduced M-DATA, a method to jointly analyze de novo mutations from 521 

multiple traits by integrating shared genetic information across traits. The implemented model is 522 

available at https://github.com/JustinaXie/MDATA. This approach can increase the effective 523 

sample size for all traits, especially for those with small sample size. M-DATA also provides a 524 

flexible framework to incorporate external functional annotations, either variant-level or gene-525 

level, which can further improve the statistical power. Through simulation study, we 526 

demonstrated that our multi-trait model with annotations could not only gain accurate estimates 527 

on the proportion of shared risk genes between two traits and the proportion of risk genes for a 528 

single trait under various settings, but also gained statistical power compared to the single-trait 529 

models. In addition, M-DATA adopts the Expectation-Maximization (EM) algorithm in estimation, 530 

is 

n, 
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which does not require prior parameter specification or pre-estimation. In our simulation study, 531 

we found that the algorithm converges faster than methods that use MCMC for estimation 532 

(Table D in the S1 Text). 533 

 534 

Despite the success, there are some limitations in the current M-DATA model. In our real data 535 

analysis, we used two different data sources for CHD and autism. Samples with both diseases 536 

in our multi-trait analysis may bring bias because of the violation of independence assumption in 537 

our multi-trait models. The autism DNM data in our analysis are from different studies, and 538 

different filtering criteria across studies may also bring bias and dilute our signals. In addition, 539 

we only considered two traits simultaneously. Though it is straightforward to extend our model 540 

to more than two traits, the number of groups (i.e., the dimension of latent variables ��) 541 

increases exponentially with the number of traits (2( for N traits) [23]. This might bring difficulty 542 

in estimation and have more computational cost. Model performance with more than two traits 543 

need further exploration. Currently, we did not consider the influence of admixed population in 544 

M-DATA. In a recent study, Kessler et al. studied DNM across 1,465 diverse genomes and 545 

discovered mutation rates may be affected by the environment more significantly than 546 

previously known [56]. Confounding from the environment on mutation rates could be further 547 

explored through cross-ancestry rare variant studies.  548 

 549 

In conclusion, M-DATA is a novel and powerful approach to performing gene-based association 550 

analysis for DNMs across multiple traits. Not only does M-DATA have better statistical power 551 

than single-trait methods, it also provides reasonable estimation of shared proportion of risk 552 

genes between two traits, which gives novel insights in the understanding of disease 553 

mechanism. We have successfully applied M-DATA to study CHD, which identified significant 554 

23 genes for our multi-trait model with annotations. Moreover, our method provides a general 555 

framework in extending single-trait method to multi-trait method which can also incorporate 556 
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information from functional annotations. Recently, there are several advancements in the 557 

association analysis for rare variants, such as jointly analyzing DNMs and transmitted variants 558 

[41], analyzing DNMs from whole-genome sequencing (WGS) data [25], and incorporating 559 

pathway information [57]. Extension of these methods to multi-trait analysis is a potential future 560 

direction. 561 
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