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 5 

Abstract 31 

Human immunodeficiency virus (HIV) infected adults are at a higher risk of pneumococcal 32 

colonisation and disease, even while receiving antiretroviral therapy (ART). To help evaluate 33 

potential indirect effects of vaccination of HIV-infected adults, we assessed whether HIV-infected 34 

adults disproportionately contribute to household transmission of pneumococci. We constructed a 35 

hidden Markov model to capture the dynamics of pneumococcal carriage acquisition and clearance 36 

observed during a longitudinal household-based nasopharyngeal swabbing study, while accounting 37 

for sample misclassifications. Households were followed-up twice weekly for 10 months for 38 

nasopharyngeal carriage detection via real-time PCR. We estimated the effect of participant’s age, 39 

HIV status, presence of a HIV-infected adult within the household and other covariates on 40 

pneumococcal acquisition and clearance probabilities. Of 1,684 individuals enrolled, 279 (16.6%) 41 

were younger children (<5 years-old) of whom 4 (1.5%) were HIV-infected and 726 (43.1%) were 42 

adults (³18 years-old) of whom 214 (30.4%) were HIV-infected, most (173, 81.2%) with high CD4+ 43 

count. The observed range of pneumococcal carriage prevalence across visits was substantially higher 44 

in younger children (56.9-80.5%) than older children (5-17 years-old) (31.7-50.0%) or adults (11.5-45 

23.5%). We estimate that 14.4% (95% Confidence Interval [CI]: 13.7-15.0) of pneumococcal-46 

negative swabs were false negatives. Daily carriage acquisition probabilities among HIV-uninfected 47 

younger children were similar in households with and without HIV-infected adults (hazard ratio: 0.95, 48 

95%CI: 0.91-1.01). Longer average carriage duration (11.4 days, 95%CI: 10.2-12.8 vs 6.0 days, 49 

95%CI: 5.6 - 6.3) and higher median carriage density (622 genome equivalents per millilitre, 95%CI: 50 

507-714 vs 389, 95%CI: 311.1-435.5) were estimated in HIV-infected vs HIV-uninfected adults. The 51 

use of ART and antibiotics substantially reduced carriage duration in all age groups, and acquisition 52 

rates increased with household size. Although South African HIV-infected adults on ART have longer 53 

carriage duration and density than their HIV-uninfected counterparts, they show similar patterns of 54 

pneumococcal acquisition and onward transmission. 55 

 56 
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 5 

Author summary 57 

We assessed the contribution of HIV-infected adults to household pneumococcal transmission by 58 

applying a hidden Markov model to pneumococcal cohort data comprising 115,595 nasopharyngeal 59 

samples from 1,684 individuals in rural and urban settings in South Africa. We estimated 14.4% of 60 

sample misclassifications (false negatives), representing 85.6% sensitivity of a test that was used to 61 

detect pneumococcus. Pneumococcal carriage prevalence and acquisition rates, and average duration 62 

were usually higher in younger or older children than adults. The use of ART and antibiotics reduced 63 

the average carriage duration across all age and HIV groups, and carriage acquisition risks increased 64 

in larger household sizes. Despite the longer average carriage duration and higher median carriage 65 

density in HIV-infected than HIV-uninfected adults, we found similar carriage acquisition and 66 

onward transmission risks in the dual groups. These findings suggest that vaccinating HIV-infected 67 

adults on ART with PCV would reduce their risk for pneumococcal disease but may add little to the 68 

indirect protection against carriage of the rest of the population. 69 

  70 
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 5 

Introduction 71 

Streptococcus pneumoniae (pneumococcus) caused an estimated 3.7 million cases of invasive 72 

pneumococcal disease (IPD) and 317,300 deaths in children <5 years-old, globally in 2015 [1,2]. 73 

While severe disease is largely concentrated in young children and older adults, human 74 

immunodeficiency virus (HIV)-infected adults are also at an increased risk of both colonisation and 75 

IPD [3–7]. HIV affects the T and B cell function, resulting in impaired responses to control 76 

pneumococcal carriage at mucosal level [8–10]. Although the universal scale-up of antiretroviral 77 

therapy (ART) [11,12] has successfully reduced IPD risk in HIV-infected adults [13,14], the IPD risk 78 

remains elevated if compared to HIV-uninfected adults [5,6]. ART partially reconstitutes mucosal 79 

immunity by increasing B and T cell quantity and functionality [8,15], but deficiencies in humoral 80 

mucosal response due to depleted or persistent defects in memory cell function persist after ART 81 

initiation [16–18]. 82 

 83 

Despite mature pneumococcal conjugate vaccine (PCV) infant immunisation programmes, continued 84 

circulation of vaccine preventable serotypes in adults has been observed throughout Africa [19–25]. 85 

In some countries, such as Malawi, Mozambique, and Kenya, this intersects with areas of high HIV 86 

prevalence. Adult HIV prevalence in Africa remains high [26] as a consequence of improved survival 87 

with ART use [11,12] and persistently high HIV incidence [27], thus the high risk of pneumococcal 88 

carriage and IPD in HIV-infected adults in Africa remains a concern. 89 

 90 

Vaccination of African HIV-infected adults with PCV, similar to the recommendations in many high-91 

income countries, may not only reduce their disease burden but also vaccine serotype pneumococcal 92 

acquisition and hence onward transmission and may thus benefit non-vaccinated populations [28]. We 93 

hypothesised that children living with HIV-infected adults have higher rates of pneumococcal carriage 94 

acquisition due to increased exposure from frequently colonised HIV-infected adults who usually 95 

have a prolonged higher carriage prevalence [5]. In this study, we assessed whether HIV-infected 96 
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adults contribute more to pneumococcal transmission within the household than their HIV-uninfected 97 

counterparts. 98 

 99 

Methods 100 

Data description 101 

The temporal dynamics of pneumococcal colonisation were observed in a cohort study (Prospective 102 

Household Observational Cohort Study of Influenza, Respiratory Syncytial Virus and Other 103 

Respiratory Pathogens Community Burden and Transmission Dynamics - PHIRST) conducted 104 

between 2016 and 2018 in a rural (Agincourt) and an urban (Klerksdorp) community in South Africa. 105 

Households were randomly selected, and were eligible for the study if they had ³3 household 106 

members and the household members resided in the household for ³1 year prior to study 107 

commencement, had no plan to relocate during study duration, and consented to participate in the 108 

study. Also, enrolment ensured that more than half of the households included at least one child aged 109 

<5 years, and a new cohort was enrolled every study year [29,30]. 110 

 111 

A total of 1,684 individuals from 327 households were enrolled and followed up from May to October 112 

in 2016 and January to October in 2017 and 2018. The median household size was 5 (interquartile 113 

range 4-7). Nasopharyngeal (NP) swabs were taken twice weekly, resulting in 115,595 total NP 114 

samples from 1,684 individuals [28]. The swabs were tested for the presence of pneumococci using 115 

real-time quantitative polymerase chain reaction (qPCR), targeting the autolysin (lytA) gene [31]. 116 

Serotyping was not performed. On enrolment, all household members were tested for HIV infection 117 

and the demographic characteristics of the study participants was recorded. 118 

 119 

Modelling framework 120 

We used a continuous time, time homogeneous, hidden Markov model (HMM) which assumed a 121 

Susceptible – Infected – Susceptible (SIS) framework [32–38], to fit to individual level trajectories of 122 

colonisation during the study period. An individual can be either infected (I) and currently carrying 123 
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pneumococci or be susceptible (S). Thus, the model can be described by transition intensities between 124 

S and I for acquisition (𝑞"#) and clearance (𝑞#") in the transition intensity matrix 𝑄 =125 

&
−𝑞"# 𝑞"#
𝑞#" −𝑞#"(. Covariates for acquisition and clearance rates are incorporated via a proportional 126 

hazard. To obtain the transition probabilities, matrix 𝑃 = *1 − 𝑝"# 𝑝"#
𝑝#" 1 − 𝑝#"

- is defined and 127 

explicitly calculated through matrix exponential, 𝑃 = exp1𝑄(𝑡)5, where 𝑝"# is the probability of 128 

being in state 2 (I) at time 𝑡 > 0, given that the previous state was 1 (S). A more detailed description 129 

of the Markov transition process is provided in the Supplement. 130 

 131 

In the hidden Markov modelling (HMM) framework [34,39–44], the states S and I of the Markov 132 

Chain (𝑋:(𝑡)) for individual 𝑖 at time 𝑡 are not observed directly, but approximated by the results of a 133 

NP swab. The link between the modelled, true infection status and observed pneumococcal carriage 134 

states in the model (𝑌:(𝑡)) is governed by emission probabilities conditional on the unobserved state. 135 

We assumed 100% specificity of the NP swab and the PCR (no false positive) while estimating the 136 

proportion of false negative results (e) probabilistically (observed vs hidden/truth states). Hence, the 137 

emission matrix is given as 𝐸 = * 1 0
𝑒#" 1 − 𝑒#"

- where 𝑒#" = Pr(𝑌:(𝑡) = 1	|	𝑋:(𝑡) = 2). 138 

 139 

We assumed that the observed states are conditionally independent given the values of the unobserved 140 

states and that the future Markov chain is independent of its history beyond the current state (Markov 141 

property) (Fig 1). Thus, the likelihood is the product of the emission probability density and the 142 

transition probability of hidden Markov chain summed over all possible paths of the hidden states 143 

(explicitly defined in the Supplement). 144 

 145 

Our model assumed that carriage acquisition at the current observation point was a function of 146 

individual age group (younger child aged <5 years, older child aged 5-17 years, or adult aged ≥18 147 

years), HIV status (infected or uninfected), number of HIV-infected adult(s) in the household, place 148 

of carriage exposure (household or community), and household size. Carriage duration was modified 149 
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by individual age, HIV status, ART status, and antibiotic use. The place of carriage exposure is 150 

generally unknown without fine-scale serotype data. Crudely, we assumed that if a household member 151 

is currently infected while all other household members were susceptible at the last observation point, 152 

then current carriage acquisition of that member was attributable to community transmission [34]. 153 

Otherwise we assumed that the transmission was from within the same household (Fig 1). 154 

 155 

Model fit, convergence and prediction 156 

The model was fitted to longitudinal data of pneumococcal carriage dynamics in a maximum 157 

likelihood framework using Bound Optimisation By Quadratic Approximation optim algorithm 158 

facilitated by msm R package [34,45]. To ascertain convergence of the model, we purposefully 159 

selected five unique pairs of initial transition intensities {S, I} for the Q matrix, then refitted the 160 

model five times, each time starting a Markov chain with a unique dyad and iterating 1,000 times to 161 

obtain similar final transition intensities and -2log-likelihood. Model predictions were assessed by 162 

comparing infection and susceptibility prevalence in 14-day intervals for the observed data to the 163 

fitted values. (S1 Fig) [34]. 164 

 165 

Decoding the underlying carriage sequence 166 

After fitting the HMM, a Viterbi algorithm with the msm function was used to recursively construct 167 

the sequence of pneumococcal carriage with the highest probability through the hidden states [46]. 168 

The probability of each hidden state at each observation point, conditionally on all the data was 169 

computed using Baum-Welch forward/backward algorithm. Thus, an overall misclassification 170 

probability of the observed states given the hidden states was computed. Model estimates of carriage 171 

transition intensity and probability were adjusted for misclassification probability (S2 Fig). 172 

 173 

Sensitivity analysis 174 

In a sensitivity analysis, three alternative and potentially more parsimonious models were fitted 175 

separately to the data. Fits of these models were compared to the main model using the on Akaike 176 
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Information Criterion (AIC) [47] and checked whether they yielded qualitatively different results to 177 

the main model. Each of the four fitted models assumed the same number of covariates to modify 178 

carriage acquisition intensity but varying number of covariates assumed to modify carriage duration. 179 

Potential modifiers of carriage duration included age and HIV status for model 1; age, HIV status and 180 

antibiotic use for model 2; age, HIV status and viral load based ART status for model 3; and age, HIV 181 

status, antibiotic use and viral load based ART status for main model 4 (S1 Table). 182 

 183 

Further, we examined the impact of alternative stratification of covariates on the changes in carriage 184 

transition probabilities: (i) while the main analysis estimated age- and HIV-stratified carriage 185 

acquisition rates comparing households with ³1 HIV-infected adult(s) versus households without 186 

HIV-infected adults, in the sensitivity analysis, we estimated age- and HIV-stratified carriage 187 

acquisition rates comparing households with 0,1, 2, 3, 4 and 5 HIV-infected adult(s) and (ii) rather 188 

than assuming time-homogeneous intensities throughout the study period, we relaxed this assumption 189 

by fitting a time-inhomogeneous model with piecewise follow-up periods; 0-99 days, 100-139, 140-190 

199, 200-219 and 220-289 (S3 Fig). 191 

 192 

Statistical significance was set at <0.05. All analyses were conducted in R v3.5.0 [34,48] and are 193 

available via https://github.com/deusthindwa/hmm.pneumococcus.hiv.south-africa. 194 

 195 

Ethical approval 196 

The longitudinal pneumococcal carriage data described in this study were obtained from consenting 197 

South African children and adults as part of the PHIRST study. The use of data was granted by the 198 

University of Witwatersrand, Human Research Ethics Committee (HREC) and the Protocol Review 199 

Committee (PRC) under approval #150808, the US CDC’s Institutional Review Board relied on the 200 

local review (#6840), and the London School of Hygiene & Tropical Medicine Observational 201 

Research Ethics Committee under approval #17902. 202 

 203 
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 5 

Results 204 

Descriptive analysis 205 

A total of 327 households were recruited in the PHIRST study of which 166 (50.8%) had at least one 206 

member living with HIV infection. At enrolment, of 1,684 individuals included in the study, 279 207 

(16.6%) were younger children aged less than 5 years old of whom 4 (1.5%) were HIV-infected, and 208 

679 (40.3%) were older children aged between 5-17 years old of whom 31 (4.7%) were HIV-infected. 209 

Among the 726 (43.1%) study participants aged 18 years or older (“adults”), 214 (30.4%) were HIV-210 

infected, and 505 (69.6%) were females. Among those HIV-infected adults, 196 (86.7%) self-reported 211 

to be on ART, although only 151 (79.5%) had CD4+ cell count of more than 350. Most adults were 212 

non-smokers (69.6%) and did not regularly consume alcohol (57.4%). A similar proportion of 213 

children lived in households with (50.6%) and without (49.4%) at least one HIV-infected adult. 214 

Among 231 younger children with vaccine information available, 227 (98.3%) received first PCV 215 

dose at 6 weeks, 225 (97.4%) second dose at 14 weeks and 216 (93.5%) third dose at 9 months of age 216 

(Table 1). 217 

 218 

Carriage prevalence and density 219 

Among HIV-uninfected participants, observed pneumococcal carriage prevalence was higher in 220 

younger children (range across visits: 56.9-80.5%) than older children (31.7-50.0%) and was lowest 221 

in adults (11.5-23.5%) (Fig 2A). Among HIV-infected participants, pneumococcal carriage 222 

prevalence fluctuated in younger children (0-100%), in older children (30-77%), and in adults (14-223 

34%) (Fig 2A). The likelihood of detecting pneumococcal carriage during visits was higher for 224 

children than adults and for HIV-infected younger children or older children or adults than their HIV-225 

uninfected counterparts (Fig 2B). Carriage prevalence among younger HIV-uninfected children was 226 

lower in households with less than 6 members (65.5%, 95%CI: 64.5-66.5) than in households with 6-227 

10 (72.5%, 95%CI: 71.5-73.5) or household more than 10 members (85.6%, 95%CI: 82.4-88.8) but it 228 

was similar in HIV-infected children across household size groups (Fig 2C). Carriage prevalence 229 

fluctuated across visits by HIV-infection and sex in adults, with similar ranges between HIV-230 
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uninfected male adults 10.8-25.3% and HIV-uninfected female adults 10.2-24.0%, and between HIV-231 

infected male adults 6.3-40.7% and HIV-infected female adults 12.3-34.6% (S5A Fig). 232 

 233 

Median pneumococcal carriage density, in genome equivalents per millilitre (GE/ml), was 234 

significantly higher in younger children (24,341, 95%CI: 22,638-26,122) than older children (3,490, 235 

95%CI: 3,168-3,754) or adults (476, 95%CI: 429-522). Also, median carriage density was higher in 236 

HIV-infected than HIV-uninfected older children (11,156, 95%CI: 8,681-13,948 vs 3,221, 95%CI: 237 

2,911-3,472) or adults (622, 95%CI: 507-714 vs 389, 95%CI: 311-435), and not in younger children 238 

(33,050, 95%CI: 22,690-42,293 vs 24,124, 95%CI: 22,547-25,838) (Fig 2D). Conversely, median 239 

carriage density was similar between those not on ART compared to those on ART in older children 240 

(9,624, 95%CI: 5,289-11,843 vs 8,818, 95%CI: 5,102-12,720) or adults (861, 95%CI: 508-1,001 vs 241 

499, 95%CI: 382-586), and not in younger children (25,430, 95%CI: 13,138-40,245 vs 91,566, 242 

95%CI: 43,355-265,628) (Fig 2E). About 14.4%, 95%CI: 13.7-15.0 of negative NP swab results were 243 

estimated probabilistically to be false negatives. 244 

 245 

Pneumococcal carriage acquisition 246 

Overall, pneumococcal carriage acquisition was higher in older children (1.15, 95%CI: 1.08-1.23) and 247 

younger children (1.52, 95%CI: 1.38-1.68) than adults. Acquisition of carriage was more frequently 248 

observed when at least another household member was infected half a week before (and hence 249 

attributed to household transmission) than in previously uninfected households (1.80, 95%CI: 1.68-250 

1.93). Irrespective of age and HIV status, acquisition rates from within the household increased with 251 

household size; by 1.05 (95%CI: 1.00-1.10) in households with 6-10 members and by 1.41 (95%CI: 252 

1.24-1.60) in households with 11 or more members compared to households with less than 6 253 

members. However, within household carriage acquisition rates in children, irrespective of age group 254 

and HIV status, were not higher in the households with at least one HIV-infected adult (0.95, 95%CI: 255 

0.91-1.01) (Table 2, Fig 3). In addition, daily carriage acquisition rates in HIV-uninfected younger 256 
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children did not significantly vary between households with HIV-infected female adults (0.14, 257 

95%CI: 0.12-0.17) and those with HIV-infected male adults (0.13, 95%CI: 0.11-0.15) (S5 Fig). 258 

 259 

We estimated 3.8 carriage acquisition episodes per year, (95%CI: 3.4-4.2) for HIV-infected younger 260 

children, 5.9 (95%CI: 5.4-6.3) for HIV-uninfected younger children, 7.4 (95%CI: 6.7-8.1) for HIV-261 

infected older children and 10.6 (95%CI: 10.2-11.0) for HIV-uninfected older children from 262 

households with at least one HIV-infected adult, and these were similar to their counterparts from 263 

households without HIV-infected adults (3.8, 95%CI: 3.3-4.2 and 5.8, 95%CI: 5.4-6.3, and 7.3, 264 

95%CI: 6.6-8.0 and 10.3, 95%CI: 9.9-10.8, respectively) (Fig 3, S2 Table). 265 

 266 

Pneumococcal carriage duration 267 

The average duration of pneumococcal carriage was highest in HIV-infected and HIV-uninfected 268 

younger children (107.9 days, 95%CI: 92.1-124.7 and 56.3 days, 95%CI: 51.1-62.1) followed by 269 

HIV-infected and HIV-uninfected older children (33.9 days, 95%CI: 29.9-38.6 and 17.9 days, 95%CI: 270 

16.8-18.5), and HIV-infected and HIV-uninfected adults (11.4 days, 95%CI: 10.2-12.8 and 6.0 days, 271 

95%CI: 5.6-6.3) (Fig 4C, Fig 4D, and S3 Table). 272 

 273 

Pneumococcal carriage cleared slower in older children (Hazard Ratio [HR]: 0.34, 95%CI: 0.31-0.36) 274 

and younger children (HR: 0.10, 95%CI: 0.09-0.12) when compared to adults. Carriage clearance was 275 

slower in HIV-infected than in HIV-uninfected individuals (HR: 0.52, 95%CI: 0.46-0.59), and faster 276 

in HIV-infected individuals with successfully suppressed viral load than in those without successful 277 

viral suppression (HR: 1.29, 95%CI: 1.13-1.47) (Fig 4B, Table 2). Antibiotic use may have 278 

accelerated pneumococcal clearance; however, the effect was not statistically significant (HR: 1.47, 279 

95%CI: 0.67-3.25) (Fig 4A, Table 2). 280 

 281 
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Sensitivity analysis 282 

In the sensitivity analysis, a model that included age, HIV status, antibiotic use, and ART status as 283 

potential modifiers for pneumococcal carriage duration had the lowest AIC score as well as for 284 

including both antibiotic use and ART status (S1 Table). Increasing the number of HIV-infected 285 

adults within household to 1, 2, 3, 4, and 5 resulted in similar estimates of pneumococcal carriage 286 

acquisition in younger or older children (S3A Fig). Our results were also robust when instead of 287 

assuming a time homogeneous hidden Markov model, we allowed for the estimation of time varying 288 

transition probabilities (S3B Fig) 289 

 290 

Discussion 291 

We used a HMM to better understand pneumococcal carriage dynamics, and the role of HIV-infected 292 

adults in it, using data from a densely sampled longitudinal South African cohort using data from 293 

115,595 nasopharyngeal swabs. We estimated that children have higher acquisition rates and duration 294 

of carriage than adults, and that, within a household, HIV-infected adults are not more likely to 295 

transmit pneumococci to children than HIV-uninfected adults. Pneumococcal acquisition events 296 

increased with larger household size irrespective of age and HIV status. Although ART use reduced 297 

pneumococcal carriage duration in HIV-infected children and adults, they still carry pneumococci for 298 

longer than their HIV-uninfected counterparts. 299 

 300 

Higher household acquisition rates in children than adults have been reported previously [32,49–53], 301 

although not consistently across studies [35,54]. This may reflect setting-specific population mixing 302 

behaviour and immunisation levels. Similarly, and for the first time in the presence of a mature infant 303 

PCV routine vaccination programme, we find that children both have higher acquisition rates than 304 

adults and carry pneumococci for longer, making them a likely key source for pneumococcal 305 

transmission in and beyond the household [55,56]. 306 

 307 
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We postulated that HIV-infected adults were more likely to carry pneumococci and may have higher 308 

carriage density which individually or in combination may increase their risk for pneumococcal 309 

transmission compared to HIV-uninfected adults. Prior to infant PCV introduction, a study in Malawi 310 

showed that HIV-infected adults on ART had higher carriage prevalence than those not on ART [5], 311 

and two studies in South Africa also found that HIV-infected adults (mothers) had higher carriage 312 

prevalence than their HIV-uninfected counterparts, irrespective of ART status [32,49]. In addition, 313 

HIV-infected adults (mothers) were found to transmit pneumococci to their children more often than 314 

HIV-uninfected peers [32]. We generated additional evidence showing that, in the PCV era, carriage 315 

prevalence is slightly increased in HIV-infected adults on ART compared to HIV-uninfected adults as 316 

a result of reduced carriage clearance rates. We also show that median carriage density is higher in 317 

HIV-infected than HIV-uninfected adults. However, we find no evidence that carriage density is 318 

modified by ART status in HIV-infected adults (Fig 2). Further research may need to investigate 319 

whether differential effects of ART on pneumococcal carriage density in adults by country may be 320 

driven by types of ART regimens used. 321 

 322 

Furthermore, our model estimates that the presence of an HIV-infected adult in the household does 323 

not increase the risk for pneumococcal carriage acquisition in co-habiting children. Although it is 324 

possible that there may have been other HIV-infected adults within households who were not enrolled 325 

into the study, it is unlikely this would alter the results given the insensitive acquisition estimates with 326 

increasing number of HIV-infected adults within household (S3A Fig). These findings support the 327 

notion that ART largely, but not completely, reconstitutes the anti-pneumococcal mucosal immune 328 

response in HIV-infected adults [8]. This would imply that HIV-infected adults do not contribute 329 

disproportionally to pneumococcal transmission when on ART and hence that their vaccination is 330 

unlikely to substantially add to the herd protection already induced by the childhood immunisation 331 

programme although vaccination will provide direct protection against IPD in HIV-infected adults. 332 

 333 

Our observation of increasing pneumococcal carriage acquisition rates with higher household size has 334 

also been reported previously [36] and suggests density dependent transmission in the household [57]. 335 
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In line with evidence before infant PCV introduction [32,36], we find that pneumococcal carriage 336 

acquisition probabilities from the community were higher in children than in adults irrespective of 337 

HIV status, likely in part due to frequent effective contacts among playschool children [49,58] and 338 

immature immunity in children relatively to adults. We also estimate that children were twice as 339 

likely to get infected from within the household than from the community. However, we base this 340 

inference on the identified pneumococcal carriage in a household member at the previous visit.  341 

 342 

In the absence of serotyping of the pneumococcal isolates, our inferences may be prone to 343 

overestimation within household transmission by linking family members who in fact were infected 344 

with different pneumococcal serotypes. Similarly, serotyping would enhance our ability to 345 

differentiate a single and long carriage episode from almost immediate re-acquisition or the clearance 346 

of the dominant serotype while the previously subdominant serotype persists. This may have led to an 347 

overestimation of carriage duration and underestimated clearance rates. However, the mean carriage 348 

duration of 56 days (51-62) in HIV-uninfected children estimated in this study aligns with studies that 349 

used serotype data [32,35,49,59]. While both the estimates for duration of carriage and the 350 

contribution of household transmission may be somewhat exaggerated, the lack of serotyping should 351 

not have affected our primary outcome, the relative contribution of HIV infected adults to 352 

pneumococcal transmission. 353 

 354 

The use of ART, as inferred from measured viral load in study participants, reduced pneumococcal 355 

carriage duration by 22% compared to no ART use within each age group of HIV-infected 356 

participants. However, mean pneumococcal carriage duration remained slightly higher than their 357 

HIV-uninfected counterparts (Fig 4). Our model also estimated the sensitivity of the swabbing and 358 

qPCR testing regime for the detection of pneumococcal carriage. We estimate that about 1 in 7 swabs 359 

were misclassified as pneumococcal negative. False negatives might have arisen as a result of the 360 

sampling technique or if samples contained insufficient quantities of bacteria to successfully amplify 361 

and detect [58]. We assumed 100% specificity of an assay targeting the autolysin gene as the 362 
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probability of false positives is seemingly very low [31,59]. Our estimated misclassification 363 

probability in this study is within 10-20% range of values that were reported elsewhere [59,60]. 364 

 365 

In conclusion, we used one of the most densely sampled longitudinal pneumococcal carriage studies 366 

to infer the role of HIV-infected adults in pneumococcal transmission in the PCV and ART era. We 367 

find that the transmission risk from HIV-infected adults largely aligns with that of their uninfected 368 

counterpart. This implies that PCV use in HIV-infected adults who have access to ART would reduce 369 

their risk for pneumococcal disease but may have little added benefit over vaccinating other adults to 370 

the indirect protection against carriage of the rest of the population. 371 

  372 
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Table 1. Baseline demographic and clinical characteristics of children and adults who were followed up twice 

weekly for ten months for nasopharynx swabbing for pneumococcal carriage in South African households 

between 2016 and 2018. 

Description  
Total 

 
N=1,684 

Younger children 
 <5 years 

n=279 (16.6%) 

Older children 
5-17 years 

n=679 (40.3%) 

Adults 
³18 years 

n=726 (43.1%) 
Mean age (SD) 22.1 (±19.8) 2.2 (±1.3) 10.5 (±3.7) 40.5 (±16.7) 
Study site     
Agincourt (rural) 849 (50.4) 171 (61.3) 376 (55.4) 302 (41.6) 
Klerksdorp (semi-urban) 835 (49.6) 108 (38.7) 303 (44.6) 424 (58.4) 
Sex     
Female 1,009 (59.9) 137 (49.1) 367 (54.1) 505 (69.6) 
Male 675 (40.1) 142 (50.9) 312 (45.9) 221 (30.4) 
HIV status     
Negative (-) 1,379 (84.7) 256 (98.5) 634 (95.3) 489 (69.6) 
Positive (+) 249 (15.3) 4 (1.5) 31 (4.7) 214 (30.4) 
Viral-load based ART status†     
Not on ART 93 (40.8) 1 (50.0) 13 (52.0) 79 (39.3) 
On ART 135 (59.2) 1 (50.0) 12 (48.0) 122 (60.7) 
Self-reported ART status     
Not on ART 30 (13.2) 0 (0.0) 1 (3.8) 29 (14.5) 
On ART 198 (86.8) 2 (100.0) 25 (96.2) 171 (85.5) 
Mean CD4 count (SD) 
CD4+ cell count‡ 

673 (±430) 
 

1,210 (±13.4) 
 

857 (±418) 
 

645 (±426) 
 

Low 49 (22.8) 0 (0.0) 10 (43.5) 39 (20.5) 
High 166 (77.2) 2 (100.0) 13 (56.5) 151 (79.5) 
Living with ³1 HIV+ adults     
No 818 (48.7) 133 (47.8) 346 (51.1) 339 (46.9) 
Yes 860 (51.3) 145 (52.2) 331 (48.9) 384 (53.1) 
PCV13 doses received#     
At 6 weeks 227 (98.3) 227 (98.3) N/A N/A 
At 14 weeks 225 (97.4) 225 (97.4) N/A N/A 
At 9 months 216 (93.5) 216 (93.5) N/A N/A 
Smoking (³18 years)     
No 505 (69.6) N/A N/A 505 (69.6) 
Yes 221 (30.4) N/A N/A 221 (30.4) 
Alcohol use (³18 years)     
No 417 (57.4) N/A N/A 417 (57.4) 
Yes 309 (42.6) N/A N/A 309 (42.6) 
† ART use status based on viral load results (on ART = Undetected; Not on ART = <20 copies per ml) 
‡ Low CD4+ count ≤350 cells/mm3 and high CD4+ count >350 cells/mm3 in adults, and low CD4+ count 
≤750 cells/mm3 and high CD4+ count >750 cells/mm3 in children, in HIV-INFECTED only 
# Pneumococcal conjugate vaccine (PCV13) vaccination status in younger children from available records 
Standard deviation (SD) 
N/A not applicable 
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Table 2. Effects of included covariates on pneumococcal acquisition and clearance 

rates estimated in the hidden Markov model. 

Description  Hazard Ratio (95%CI)‡ 

Pneumococcal carriage acquisition  

Age in years (y)  
Adult, ³18y Reference 
Older child, 5-17y 1.15 (1.08-1.23) 
Younger child, <5y 1.52 (1.38-1.68) 
HIV status  
Negative Reference 
Positive 0.95 (0.87- 1.04) 
Children living with ³1 HIV-infected adults  
No Reference 
Yes 0.95 (0.91- 1.01) 
Place of carriage exposure  
Community Reference 
Within household 1.80 (1.68- 1.93) 
Household size  
<6 members Reference 
6-10 members 1.05 (1.00-1.10) 
11+ members 1.41 (1.24-1.60) 

Pneumococcal carriage clearance  

Age in years (y)  
Adult, ³18y Reference 
Older child, 5-17 0.34 (0.31-0.36) 
Younger child, <5y 0.10 (0.09-0.12) 
HIV status  
Negative Reference 
Positive 0.52 (0.46-0.59) 
Antibiotic use  
No Reference 
Yes 1.47 (0.67-3.25) 
Viral load-based ART status†  
Not on ART Reference 
On ART 1.29 (1.13-1.47) 
† ART use status based on viral load results 
‡ 95% confidence interval (95%CI) 

  632 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted May 25, 2021. ; https://doi.org/10.1101/2021.05.21.21257622doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.21.21257622


 

 5 

 633 
Figure 1. Susceptible-infected-susceptible (SIS) hidden Markov model schemas of pneumococcal 634 

carriage dynamics in South African households between 2016-2018. Continuous-time time-635 

homogeneous hidden Markov model where 𝑋(𝑡) represents hidden states, and 𝑌(𝑡) observed states, 636 

and in which 𝑌(𝑡) is conditionally independent given 𝑋(𝑡) and the Markov property holds (A). 637 

Pneumococcal nasopharynx (NP) carriage sequence of a specified individual representing hidden and 638 

observed states, with a probability that an individual truly carrying a pneumococcal serotype may be 639 

detected negative by a real-time quantitative polymerase chain reaction test (B). An SIS hidden 640 

Markov model structure that captures a snapshot of part A and carriage sequence of part B in order to 641 

estimate transition rates and probability of misclassification/false negative (C). Transition intensity 642 

matrix, Q, and emission matrix, E, respectively capture the SIS model transition rates and emission or 643 

misclassification probability in part C to compute the maximum likelihood estimates of transition 644 

intensities and misclassification probability (D). 645 
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 647 
Figure 2. Human immunodeficiency virus (HIV)-stratified pneumococcal carriage dynamics in 648 

younger children (<5 years-old), older children (5-17 years-old) and adults (³18 years-old) in South 649 

African households between 2016-2018. Age and HIV-stratified pneumococcal carriage prevalence 650 

by different nasopharyngeal sampling visits (A), the likelihood of detecting pneumococcal carriage 651 

during visits (B), pneumococcal carriage prevalence by household sizes with 95% confidence 652 

intervals (CI) (C) and carriage densities with mean (black diamond), median and associated 95%CI of 653 

median, 25th and 75th percentiles, minimum and maximum, and outlier where carriage density is 654 

measured as genome equivalents per millilitre (GE/ml) (D). Age and antiretroviral therapy (ART) 655 

stratified carriage density with mean (red diamonds), median and associated 95%CI of median, 25th 656 

and 75th percentiles, minimum and maximum, and outlier (notched boxplot) (E) 657 
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 659 
Figure 3. Community and within household (HH) acquisitions of pneumococcal carriage in younger 660 

children (<5 years-old), older children (5-17 years-old) and adults (³18 years-old) in South African 661 

households between 2016-2018. Age and human immunodeficiency virus (HIV) stratified estimates 662 

of community carriage acquisition probability per day (A) and within household carriage acquisition 663 

probability per day over the total follow-up period (B), comparing household without HIV-infected 664 

adult(s) (HIV-) to households with HIV-infected adult(s) (+). 665 
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 667 
Figure 4. Duration of pneumococcal carriage in younger children (<5 years-old), older children (5-17 668 

years-old) and adults (³18 years-old) in South African households between 2016-2018. Age and 669 

human immunodeficiency virus (HIV) stratified average carriage duration in days comparing 670 

individuals on antibiotics (ABX) (triangular shape) to those not on ABX (circular shape) (A), and 671 

individuals on antiretroviral therapy (ART) (triangle shape) to those not on ART (circle shape) (B). 672 

Age and HIV stratified overall average carriage duration in days (C). Age and HIV stratified daily 673 

probability of carriage clearance (D). 674 
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