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Abstract

The coronavirus outbreak continues to pose a significant challenge to human lives
globally. Many efforts have been made to develop vaccines to combat this virus.
However, with the arrival of the COVID-19 vaccine, there is hesitancy and a mixed
reaction toward getting the vaccine. We develop a mathematical model to analyze
and investigate the impacts of education on individuals hesitant to get vaccinated.
The findings indicate that vaccine education can substantially minimize the daily
cumulative cases and deaths of COVID-19 in the United States. The results also
show that vaccine education significantly increases the number of willing susceptible
individuals, and with a high vaccination rate and vaccine effectiveness, the outbreak
can be controlled in the US.

Key words and phrases: COVID-19 disease model, vaccination rate, vaccine hesitancy,
vaccine education.

1 Introduction
The severe acute respiratory syndrome coronavirus (SARS–CoV–2) strain that caused
2019 novel coronavirus disease (COVID-19) pandemic was first observed in Wuhan, China,
in December 2019 and was later declared a pandemic by the World Health Organization
(WHO) on March 11, 2020 [1]. The first case of coronavirus in the United States of
America was revealed on January 20, 2020, in Washington State. Since then, the number
of positive cases has reached more than 30 million across the country in just over one year.
COVID-19 is spread from person to person mainly through respiratory droplets released
when an infected person sneezes, coughs or speaks [1, 2]. Several non-pharmaceutical
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measures, including face mask use, social distance, quarantining, etc., are recommended
to reduce the virus’s spread. However, there is still a need for public health and clinical
interventions to successfully contain the disease.

Health experts agree that the best way to end the pandemic is to vaccinate most of the
population [3, 4]. Currently, three COVID-19 vaccines are already known, recommended,
and being used in the USA. The first is the Pfizer-BioNTech; one must complete two
doses, about three weeks apart, recommended for individuals aged 16 years and older.
The second vaccine available is called Moderna COVID-19 vaccine. It is also to be taken
in two doses, one month or 28 days apart, introduced by a shot in the muscle of the
upper arm. It is recommended for people aged 18 years and older. The third vaccine is
called Johnson and Jonson’s Janssen COVID-19 vaccine, got emergency use authorized
on February 27, 2021. These vaccines are intended for the prevention of coronavirus
disease. They may help to mitigate the spread of the coronavirus once most individuals
make an effort to be vaccinated. However, a large proportion of the American population
is reluctant about the COVID-19 vaccines. Lack of information about the side effects,
especially the long-term effects, time-line of the COVID vaccines production, political [5]
and conspiracy theory, are among the reasons for vaccine hesitancy.

The population opinion and the trust in the vaccine are of the most significant impor-
tance for appropriate coverage. A report in the American Medical Association Journal
shows that skepticism toward the COVID-19 Vaccines is on the rise among Americans.
A survey by the Kaiser Family Foundation shows that about 29% of health workers were
hesitant to accept the vaccine [6]. In [7], a sample of 1878 adult Americans was asked dif-
ferent questions related to vaccination. The sample is composed of (52%) Females, (74%)
Whites, (81%) non-Hispanic, (56%) married, (68%) employed full time, (77%) with a
bachelor’s degree and higher. The probability of receiving the vaccine in the research
was as follows: (52%) for very likely, (27%) for somewhat likely, (15%) not likely, (7%)
definitely not. Vaccine hesitancy was also higher in African Americans, Hispanics, and
pregnant women, and breastfeeding moms.

Mathematical models are powerful tools for investigating human infectious diseases,
such as COVID-19, contributing to the understanding of infections’ dynamics, and can
provide valuable information for public-health policymakers [8, 9]. Numerous mathemat-
ical models have been used to provide insights into public health measures for mitigating
the spread of the coronavirus pandemic [10, 11, 12, 13]. For example, Eikenberry et al.
in [14] developed a mathematical model to assess the impact of mask use by the general
public on the transmission dynamics of the COVID-19 pandemic. Their results showed
that broad adoption of even relatively ineffective face masks might reduce community
transmission of COVID-19 and decrease peak hospitalizations and deaths.

Given the pervasiveness of vaccine hesitancy, we develop a compartmental model to
study the impacts of education for individuals unwilling to accept the COVID-19 vac-
cines. We explore policy-related questions, including investigating the vaccination rate
and vaccine education impact on disease dynamics in the USA.

2 Model formulation
We consider a compartmental model for the infection’s transmission dynamics and con-
trol. With the arrival of various COVID–19 vaccines, there is a mixed reaction to get
vaccinated or not. We classify the US’s total population into two subgroups: Those will-

2

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 25, 2021. ; https://doi.org/10.1101/2021.05.21.21257612doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.21.21257612
http://creativecommons.org/licenses/by-nc-nd/4.0/


ing to get the vaccine and those unwilling to receive the vaccine. We further sub-divide
the populations into eleven mutually exclusive compartments of willing susceptible (Sw),
unwilling susceptible (Su), willing early-exposed (Eew), unwilling early-exposed (Eeu),
willing late-exposed (Elw), unwilling late-exposed (Elu), willing infected (Iw), unwilling
infected (Iu), willing recovered (Rw), unwilling recovered (Ru), and vaccinated population
(V ) so that the total population at time t, denoted byN(t) is

N(t) = Sw(t)+Su(t)+Eew(t)+Eeu(t)+Elw(t)+Elu(t)+Iw(t)+Iu(t)+Rw(t)+Ru(t)+V (t).

We incorporate education for the unwilling populations at a rate σ. The willing
populations receive the vaccine at rate r and progress to the vaccinated class. There is
evidence that individuals exposed or infected should wait for 90 days before receiving
the COVID-19 vaccine; we exclude exposed and infected individuals from the vaccination
until they are recovered. Figure 1 fully illustrates the flow of populations in the various
compartments; the model’s parameters and their descriptions are listed in Table 2.

Figure 1: Schematic diagram of the COVID–19 model

The dynamics in Figure 1 can be represented as a system of nonlinear ordinary differ-
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ential equations given by

dSw

dt
= −(1− θr)(λw + λu)Sw − θrSw + σSu

dSu

dt
= −(λw + λu)Su − σSu

dEew

dt
= (1− θr)(λw + λu)Sw − kEew + σEeu

dEeu

dt
= (λw + λu)Su − (k + σ)Eeu

dElw

dt
= kEew − αElw + σElu

dElu

dt
= kEeu − (α + σ)Elu

dIw
dt

= αElw − (γ + δ)Iw + σIu

dIu
dt

= αElu − (γ + δ + σ)Iu

dRw

dt
= γIw − θrRw + σRu

dRu

dt
= γIu − σRu

dV

dt
= θr(Sw +Rw)

(1)

where the forces of infection are given by

λw = β

(
Iw + ρElw

N

)
, λu = β

(
Iu + ρElu

N

)
. (2)

Table 1: Description of state variables of the COVID-19 model.

State variable Description
Sw(Su) The population of willing (unwilling) susceptible individuals
Eew(Eeu) The population of willing (unwilling) early-exposed individuals (i.e,

newly-infected individuals who are not yet infectious)
Elw(Elu) The population of willing (unwilling) late-exposed individuals (i.e.,

exposed individuals who are close to surviving the incubation period
and are shedding virus)

Iw(Iu) The population of willing (unwilling) infected individuals
Rw(Ru) The population of willing (unwilling) recovered individuals
V The population of vaccinated individuals
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Table 2: Description of the parameters of the COVID-19 model (1).

Parameter Description
β Effective contact rate
r Vaccination rate for the Sw (Rw) individuals
θ Efficacy of the vaccine
α Rate of progression from exposed classes to the infected classes
σ Education rate for unwilling individuals
γ The recovery rate of infected individuals
δ Disease-induced mortality rate for infected individuals
ρ Modification parameter
k Rate of progression from early-exposed to the late-exposed class

3 Results

3.1 Disease-free equilibrium and reproduction number

The model (1) has a disease-free equilibrium (DFE) given by

D0 : (S∗
w, S

∗
u, E

∗
ew, E

∗
eu, E

∗
lw, E

∗
lu, I

∗
w, I

∗
u, R

∗
w, R

∗
u, V

∗) = (S∗
w, S

∗
u, 0, 0, 0, 0, 0, 0, 0, 0, N

∗−S∗
w−S∗

u),

where N∗ is the initial total population size, S∗
w, S

∗
u, V

∗ > 0, and 0 < S∗
w +S∗

u +V ∗ ≤ N∗.
The next generation operator method [15, 16, 17] can be used to analyze the asymptotic
stability property of the disease-free equilibrium, D0. In particular, using the notation in
[15, 16, 17], it follows that the associated next generation matrices, F and V , for the new
infection terms and the transition terms, are given, respectively, by

F =


0 0 (1− θr)βρ S∗

w

N∗ (1− θr)βρ S∗
w

N∗ (1− θr)β S∗
w

N∗ (1− θr)β S∗
w

N∗

0 0 βρ S∗
u

N∗ βρ S∗
u

N∗ β S∗
u

N∗ β S∗
u

N∗

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,

and,

V =


k −σ 0 0 0 0
0 k + σ 0 0 0 0
−k 0 α −σ 0 0
0 −k 0 α + σ 0 0
0 0 −α 0 γ + δ −σ
0 0 0 −α 0 γ + δ + σ

 .
The control reproduction number is given by

Rc = ρ(FV −1) =
β (S∗

wA1 + S∗
uA2)

K1K2K3K4αN∗ , (3)

where
A1 = K1K2K4(1− rθ)(α +K3ρ)

A2 = kK3α(α +K4ρ) + (K2K4α + kα(K4 + α) + (k +K2)K3K4ρ)σ
(4)
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with K1 = k + σ, K2 = α + σ, K3 = γ + δ, and K4 = γ + δ + σ.
The reproduction number is the average number of new COVID-19 cases generated

by a typical infectious individual introduced into a population where a certain fraction is
protected; it is a measure of contagiousness of infectious diseases.

Theorem 3.1 The disease-free equilibrium (DFE) of the model (1) is locally-asymptotically
stable if Rc < 1. When Rc > 1, we will initially observe a near exponential growth of
infectious cases, reach a peak, and eventually declines to an equilibrium.

3.2 Parameter estimation

The proposed model is fitted and validated using the USA COVID–19 daily cumulative
cases and deaths from December 14, 2020, to January 20, 2021. The choice of this data
is motivated by the commencement of national vaccination on December 14, 2020, in the
USA. There are nine parameters underlying the model; however, three of the parameters,
i.e., γ, δ, and θ, were fixed, and the rest were estimated. It is worth noting that the model
parameters may not be uniquely identifiable based only on cumulative cases and deaths
of USA COVID–19 data available. We addressed this identifiability problem by using an
inverse modelling, sensitivity and Monte Carlo analysis method built in FME [18] package
in R (see also [19]). This method analyzes mathematical models with data, performs local
and global sensitivity, and Monte Carlo analysis. It addresses parameter identifiability
issues and fits a model to data using existing optimization methods such as the constrained
quasi-Newton method.

The estimated parameter values obtained from the best model prediction are given in
Table 3. The fitted models and the observed data for the coronavirus cumulative cases
and deaths in the USA are displayed in Figure 2. We observe that the model fit the
observed data significantly.

Table 3: Estimated parameter values for the model (1) using data for the US.

Parameters 14/12/2020–20/1/2021 Source
β 0.1519 Estimated
r 0.0131 Estimated
α 0.5000 Estimated
σ 0.6397 Estimated
ρ 0.2230 Estimated
k 0.7550 Estimated
γ 0.1 [20]
δ 0.0015 [20]
θ 0.9469 Assumed
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Figure 2: The fitted model and the observed COVID–19 cumulative cases and deaths in
USA from December 14, 2020 to January 20, 2021

3.3 Sensitivity analysis

This section uses the Latin Hypercube Sampling and Partial Rank Correlation Coefficients
(PRCC) to perform sensitivity analysis [21, 22] on the model parameters. The analysis is
needed to identify model parameters that significantly impact model outcomes using the
reproduction number (Rc) as the response function [12, 21, 22]; that is, to determine the
model robustness to parameter values. Parameters with large PRCC greater than +0.50
are strongly positively correlated with the response function. In contrast, those less than
−0.50 are said to be largely negatively associated with the response function [21, 22].
Figure 3 displays the PRCC analysis plot of the model parameters considered. The results
show that the effective contact rate (β) and the modification parameter (ρ) positively
affect Rc, meaning that an increase in these parameters will increase Rc. On the other
hand, the education rates for unwilling individuals (σ), the vaccination rate r, and vaccine
efficacy (θ) have a negative effect on the Rc, and increasing these parameters would lower
the Rc. The results further indicate that the parameters; the effective contact rate,

7

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 25, 2021. ; https://doi.org/10.1101/2021.05.21.21257612doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.21.21257612
http://creativecommons.org/licenses/by-nc-nd/4.0/


education rate for unwilling individuals, the vaccination rate, and the vaccine efficacy
mainly influence the response function (Rc).

r
Parameters

-0.5

0

0.5

Figure 3: Partial rank correlation coefficients (PRCCs) showing the impact of model
parameters on the reproduction number (Rc) of the model. Parameter values used are as
given in Table 3.

3.4 Contour plots results

We generated contour plots to analyze the reproduction number (Rc) of the model as
a function of desired parameters as displayed Figure 4. Parameter values used for the
simulation are as given in Table 3.
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Figure 4: Contour plot of the reproduction number (Rc) of the model (1), as a function
of: (a) Education rate (σ) and the ratio

(
Su

Sw+Su

)
, (b) Vaccination rate (r) and the ratio(

Sw

Sw+Su

)
, and (c) Vaccination efficacy (θ) and vaccination rate (r).

Based on the contour plot results in Figure 4, the following observation inferences are
made:
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(i) To effectively curb the outbreak, that is, reducing (Rc) to a value less than unity,
the Figure 4 (a) suggests that a high education rate (σ) is needed. The lower the
fraction of individuals hesitant to accept the vaccine, the lower the education rate
required and vice versa. For example, to decrease the reproduction number below
one, at least an education rate of 0.3 is needed if about 40% of the susceptible
population is unwilling to vaccinate.

(ii) The Rc decreases as more individuals are being educated and are willing to receive
the vaccine, and the vaccination rate is high, Figure 4 (b).

(iii) Figure 4 (c) illustrates the impact of a relatively high vaccination rate and efficacy.
One can observe that a high combined effects cause the Rc to drop to below one.

3.5 Time evolution analysis, and predictions

In this section, we analyze the effects of vaccine education σ, the vaccination rate r,
and the efficacy of the vaccine θ, on the cumulative US COVID-19 cases and deaths. In
addition, we provide some future predictions of the cumulative cases and deaths with
their associated uncertainty.

First, we begin with the effects of the education for unwilling individuals and its impact
on the cumulative cases and deaths. Table 4 provides numerical description while Figure
5 graphically explains the decrease and increase in cumulative cases and deaths when the
education rate is increased or decreased, respectively. For example, from Table 4, a 25%
increase in education rate reduces the cumulative cases from 25441752 to 25108128 and
from 425513 to 422423 for the cumulative deaths.

Table 4: A summary of various increase in education rate.

14/12/2020–20/1/2021
Education rate (σ) Cumulative Cases Cumulative Deaths

Baseline 25441752 425513
25% increase 25108128 422423
25% decrease 25938095 430248
50% increase 24832044 419893
50% decrease 27393963 444084
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Figure 5: Effects of increasing and decreasing the baseline education rate parameter σ

We observe that an increase in vaccine education decreases the COVID-19 cumulative
cases and deaths. On the other hand, a lower vaccine education increases the baseline
cumulative cases and deaths. This suggest that, an increase of education parameter from
the baseline, lowers the spread of COVID-19. It is worth noting that while the curves for
the baseline education parameter and its increase or decrease overlap up until the end of
the year 2020, they are separated beginning of January 2021.

Second, we analyze the effects of increasing or decreasing the vaccination rate r, on
cumulative cases and deaths numerically and graphically. The results are displayed in
Table 5 and Figure 6.
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Table 5: A summary of various increase in vaccination rate.

14/12/2020–20/1/2021
Vaccination rate (r) Cumulative Cases Cumulative Deaths

Baseline 25441752 425513
25% increase 24771267 419830
25% decrease 26223401 431946
50% increase 24192245 414785
50% decrease 27141116 439270
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Figure 6: Effects of increasing and decreasing the baseline of vaccination rate, r

Note that 50% increase or decrease in the vaccination rate decreases or increases the
cumulative cases and deaths significantly compared to the baseline scenario. For instance,
a 50% increase in the baseline rate of vaccination reduces the cumulative cases and deaths
from 25441752 and 425513 to 24192245 and 414785 respectively. On the other hand,
the same reduction rate from the baseline increases the cumulative cases and deaths to
27141116 and 439270, respectively. Note also that the 50% increase of the vaccination
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rate is significantly below the baseline after January 15, 2021, while a 50% reduction of
the rate of vaccination is significantly above the baseline curve. This suggests that as
the vaccination rate increases, the cumulative cases and deaths of COVID–19 in the USA
decreases.

Finally, we consider the effects of the efficacy of the vaccine and report the numerical
and graphical results of varying the parameter θ. Note that the baseline vaccine efficacy
was high, and thus the maximum increment adopted in this communication stands at
5%, which represents 99.4% efficacy. The quantitative results and graphical description
of various decrease and an increase in the efficacy of the vaccine is displayed in Table 6
and Figure 7.

Table 6: A summary of various decrease and an increase in the efficacy of COVID–19
vaccine.

14/12/2020–20/1/2021
Efficacy of the vaccine (θ) Cumulative Cases Cumulative Deaths

Baseline 25441752 425513
5% increase 25299458 424320

45% decrease 26945280 437726
35% decrease 26572557 434760
25% decrease 26223401 431946
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Figure 7: Effects of increasing and decreasing the baseline efficacy of the COVID–19
vaccine θ

We observe that a lower vaccine efficacy has the highest cumulative cases and deaths of
COVID-19. Note that a 45% reduction of vaccine efficacy from the baseline, i.e., a 52.1%
vaccine efficacy increases the cumulative cases and deaths from the baseline 25441752 to
26945280 and 425513 to 437726, respectively. Also, note that the curve of the 5% increase
of the baseline efficacy of the vaccine is similar to the baseline line.

We validate our model by predicting the cumulative cases and deaths every two weeks
after January 20, 2021 for the USA COVID–19 outbreak; all the data are given in the
format of 95% Confidence Interval (CI) of the predicted values. The uncertainty of the
predicted values are characterized using the the 95% confidence intervals (CI). We com-
pared the estimated predicted values to the actual values reported in [23] within the 95%
CI, as shown in Table 7. Our model is robust and can be replicated for other countries.
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Table 7: Prediction and reported values.

Cumulative Date Predicted 95% CI Reported[23]

Cases

Feb. 3, 2021 28218225 (24890729 - 31545721) 27216525
Feb. 17, 2021 30994706 (21977405 - 40012007) 28544574
Mar. 3, 2021 33771187 (17445706 - 50096669) 29502980
Mar. 17, 2021 36547669 (11597638 - 61497699) 30299662
Mar. 31, 2021 39324150 (4610138 - 74038162) 31166344

Deaths

Feb. 3, 2021 471357 (465599 - 477116) 469431
Feb. 17, 2021 517202 (500904 - 533500) 504302
Mar. 3, 2021 563047 (532582 - 593512) 532807
Mar. 17, 2021 608891 (560978 - 656805) 551583
Mar. 31, 2021 654736 (586236 - 723236) 565256

4 Discussion and conclusions
The coronavirus outbreak poses a severe threat to human lives globally. Since the be-
ginning of the pandemic, a campaign to use non-pharmaceutical measures to prevent the
virus’s spread has been underway, including a face mask, social distancing, and frequent
hand washing. The emergence of vaccines sounds promising; however, there is a challenge
of vaccine hesitancy. It is therefore essential to understand how educating the general
public will impact the fight against the outbreak. In this paper, we use a compartmental
model with vaccine education to study the dynamics of the COVID-19 infection. We
classify the US’s total population into two subgroups: Those willing to accept the vaccine
and those unwilling to receive the vaccine. The vaccine education is incorporated for
the general public hesitant to take the vaccine. We assessed the impact of the education
campaign on the control of the outbreak.

First, we computed an expression for the reproduction number (Rc), a threshold that
measures the contagiousness of infectious diseases. We performed a sensitivity analysis of
the reproduction number. The result shows that vaccine education negatively influences
the reproduction number; that is, an increase in the vaccine education implies a decrease
in the Rc. Epidemiologically, when Rc ≤ 1, then the transmission will fade or die out. In
contrast, the infected number of people is expected to increase if Rc > 1. The sensitivity
analysis result also shows that vaccine efficacy and vaccination rate negatively impact the
Rc, and raising them will reduce the Rc.

Using contour plots, we further analyzed the reproduction number as a function of two
independent variables, the vaccine education and the proportion of unwilling susceptible
individuals ( S∗

u

S∗
u+S∗

w
). The prospect of curtailing the outbreak is achievable with a high

education rate. For instance, the result in Figure 4 (a) shows that if a high proportion of
the susceptible populations is unwilling to accept the vaccine, high public education can
help diminish the reproduction number and mitigate the virus. Also, vaccine education
raises the willing susceptible individuals, and with a high vaccination rate and vaccine
efficacy, it will be possible to control the spread of the outbreak.

Next, we analyze the effects of vaccine education, vaccination rate, and the efficacy
of the vaccine on the daily cumulative cases and deaths from December 14, 2020 to
January 20, 2021. The results suggest that higher rates of vaccine education, vaccination,
and vaccine efficacy contribute to the mitigation of the spread of the COVID-19 disease
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outbreak. For example, the result in Figure 5 shows that a lower vaccine education
contributes to the higher projected cumulative cases and deaths. On the other hand,
higher education rates help to control the outbreak. The effect of these higher rates
becomes evident over time. These results suggest that a combined effect of higher vaccine
education, vaccination, and vaccine efficacy rates would contribute to slow the pace of the
spread of the COVID-19 outbreak and thus help the government to control the disease.
The mitigation effect of higher rates of education, vaccination, and vaccine efficacy is
clearly evident over time as we observe from the curves in Figures 5, 6 and 7; thus, these
mitigation strategies need to be enforced consistently over time.

Finally, to validate and test the robustness of our proposed mathematical model, we
predicted the cumulative cases and deaths every two weeks after January 20, 2021. The
reported cumulative cases and fatalities in Table 7 almost all fall within the prediction
interval of 95% confidence level. The results suggest that our model is robust and is
applicable for COVID–19 vaccine hesitancy models in other countries.
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