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 44 
 45 
Abstract 46 
 47 
Study question: What is the genetic basis of preeclampsia in Andean families residing at high 48 
altitudes? 49 
 50 
Summary answer: A top candidate region associated with preeclampsia containing clotting 51 
factor genes PROZ, F7 and F10 was found on chromosome 13 of the fetal genome in affected 52 
Andean families. 53 
 54 
What is known already: Preeclampsia, a multi-organ complication of pregnancy, is a leading 55 
cause of maternal morbidity and mortality worldwide. Diagnosed by the onset of maternal 56 
hypertension and proteinuria after 20 weeks of gestation, this disorder is a common cause of 57 
preterm delivery and affects approximately 5-7% of global pregnancies. The heterogeneity of 58 
preeclampsia has posed a challenge in understanding its etiology and molecular basis. 59 
However, risk for the condition is known to increase in high altitude regions such as the 60 
Peruvian Andes. 61 
 62 
Study design, size, duration: To investigate the genetic basis of preeclampsia in a high-altitude 63 
resident population, we characterized genetic diversity in a cohort of Andean families (N=883) 64 
from Puno, Peru, a high-altitude city above 3,500 meters. Our study collected DNA samples      65 
and medical records from case-control trios and duos between 2011-2016, thus allowing for 66 
measurement of maternal, paternal, and fetal genetic factors influencing preeclampsia risk.  67 
 68 
Participants/materials, setting, methods: We generated high-density genotype data for 69 
439,314 positions across the genome, determined ancestry patterns and mapped associations 70 
between genetic variants and preeclampsia phenotype. We also conducted fine mapping of 71 
potential causal variants in a subset of family participants and tested ProZ protein levels in post-72 
partum maternal and cord blood plasma by ELISA. 73 
 74 
Main results and the role of chance: A transmission disequilibrium test (TDT) revealed variants 75 
near genes of biological importance in pregnancy physiology for placental and blood vessel 76 
function. The most significant SNP in this cluster, rs5960 (p<6x10-6) is a synonymous variant in 77 
the clotting factor F10. Two other members of the coagulation cascade, F7 and PROZ, are also 78 
in the top associated region. However, we detected no difference of PROZ levels in maternal or 79 
umbilical cord plasma.  80 
 81 
Limitations, reasons for caution:  Our genome-wide association analysis (GWAS) was limited by 82 
a small sample size and lack of functional follow up. Our ELISA was limited to post-natal blood 83 
sampling (only samples collected immediately after birth). But, despite a small sample size, our 84 
family based GWAS design permits identification of novel significant and suggestive 85 
associations with preeclampsia. Further longitudinal studies could analyze clotting factor levels 86 
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and activity in other pregnant cohorts in Peru to assess the impact of thrombosis in 87 
preeclampsia risk among Andean highlanders. 88 
 89 
Wider implications of the findings: These findings support previous evidence suggesting that 90 
coagulation plays an important role in the pathology of preeclampsia and potentially underlies 91 
susceptibility to other pregnancy disorders exacerbated at high altitudes. This discovery of a 92 
novel association related to a functional pathway relevant to pregnancy biology in an 93 
understudied population of Native American origin demonstrates the increased power of 94 
family-based study design and underscores the importance of conducting genetic research in 95 
diverse populations. 96 
 97 
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Giannini Foundation postdoctoral fellowship, a Stanford Child Health Research Institute 102 
postdoctoral award, and a Stanford Dean’s Postdoctoral Fellowship awarded to E.T.Z.; the Chan 103 
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 129 

Introduction 130 

 131 

Preeclampsia is a hypertensive disorder of pregnancy that is a leading cause of morbidity and 132 

mortality for mothers and infants worldwide. The disorder complicates 5-7% of global 133 

pregnancies, causes nearly 40% of all premature births, and is associated with 10-15% of all 134 

maternal deaths (Duley, 2009, Rana et al., 2019, Valenzuela et al., 2012). This morbidity is even 135 

higher in developing countries and among communities with limited access to healthcare 136 

(Osungbade and Ige, 2011). Despite posing a significant global disease burden, the 137 

heterogeneity of preeclampsia has posed a major challenge for understanding its etiology and 138 

genetic basis (Phipps et al., 2019, Valenzuela et al., 2012).  139 

 140 

Clinical and pathological research suggests a major role for the placenta in preeclampsia, where 141 

shallow invasion of fetal cells into the maternal endometrium results in insufficient remodeling 142 

of the maternal vasculature (Yong et al., 2018). While it roots in early placental development, 143 

preeclampsia is usually not detected until the third trimester of pregnancy (>20 weeks 144 

gestation), when it is identified by a sudden onset of hypertension and signs of organ damage, 145 

typically proteinuria (excess protein in the urine). The severity of preeclampsia is determined by 146 

gestational age at onset, as well as the magnitude of hypertension and organ damage 147 

(American College of Obstetricians and Gynecologists, 2013). The disorder is known to be 148 

heritable with multicomponent risk determined by maternal, fetal, and paternal factors 149 

(McGinnis et al., 2017, Pappa et al., 2011, Phipps et al., 2019, Valenzuela et al., 2012). Other risk 150 
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factors include family history (Boyd et al., 2013, Cincotta and Brennecke, 1998), socioeconomic 151 

status (Silva et al., 2008) and chronic hypertension or diabetes (Rana, et al., 2019). Residence at 152 

high altitudes above 2,500 meters (m) also contributes considerably to risk of developing 153 

preeclampsia (Zamudio, 2007).  154 

 155 

Residence at high altitudes increases the risk for preeclampsia and other hypertensive 156 

pregnancy disorders at least two to threefold (Moore et al., 2011). For example, Bolivian 157 

communities living at 3,500 m altitude have an incidence of preeclampsia of up to 20% (Keyes 158 

et al., 2003), about three times higher than the world average (Abalos et al., 2013). In 159 

neighboring Peru, preeclampsia complicates up to 22% of all pregnancies and is the second 160 

leading cause of maternal deaths (Gil Cipirán, 2017, Guevara Ríos and Meza Santibáñez, 2014). 161 

Due to this high incidence, highland pregnancy studies have been proposed as a natural 162 

experiment to elucidate genetic factors involved in preeclampsia and other hypertensive 163 

pregnancy complications (Moore et al., 1982, Moore et al., 2004, Palmer et al., 1999, Tissot van 164 

Patot et al., 2009, Zamudio, 2007). Native Andean populations are of particular interest for this 165 

research due to their unique physiological adaptations to chronic high-altitude hypoxia, such as 166 

enhanced pulmonary volumes and elevated blood hemoglobin concentrations (Bigham et al., 167 

2013). Candidate genes involved in these adaptations include EGLN1, NOS2 and the hypoxia-168 

inducible factor 1 (HIF1) pathway, among others (Beall, 2014, Bigham, et al., 2013).  169 

 170 

Previous research has found that Highland Andean ancestry and long term, multi-generational 171 

residence at altitude are associated with lower rates of hypoxia induced pregnancy 172 
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complications among high altitude resident women (Julian et al., 2009, Moore, et al., 2011, 173 

Moore, et al., 2004). Because preeclampsia risk increases with altitude (Palmer, et al., 1999), 174 

these findings suggest that Andeans with Native American ancestry may carry rare adaptive 175 

variants or a unique repertoire of genetic risk factors for preeclampsia—distinct from other 176 

populations previously studied (Michita et al., 2018). Characterizing fine-scale ancestry and 177 

genetic structure patterns in native Andeans may uncover preeclampsia relevant genetic 178 

variation found at higher frequencies due to selection for altitude adaptation (Bigham and Lee, 179 

2014, Tishkoff, 2015).  180 

 181 

To this end, here we analyze genotype data from a large cohort of preeclamptic Andean 182 

families from Puno, Peru (Figure 1A). This city, located at 3,830 m altitude, has a population 183 

with one of the highest incidences of preeclampsia and associated maternal mortality in the 184 

world (Bristol, 2009, Gil Cipirán, 2017).  Our work takes a comprehensive approach to the 185 

genetic study of preeclampsia in a population adapted to high-altitude by employing a family-186 

study design within a case-control cohort. This enables identification of genetic regions that 187 

influence preeclampsia considering each of the family members that affect disease risk—188 

mothers, fathers, and offspring—unlike most genome-wide studies focused on pregnancy 189 

disorders which tend to solely include maternal or fetal genomes (Williams and Broughton 190 

Pipkin, 2011). We also aim to understand the role of ancestry-related susceptibility in this 191 

disorder by characterizing genetic diversity and admixture patterns in the Puno cohort. 192 

Additionally, because preeclampsia presents in a spectrum of severity based on gestational age, 193 

organ damage, and hypertension, we take advantage of extensive cohort phenotyping to study 194 
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associations of genetic variants with disease severity. Our findings have implications for general 195 

understanding of preeclampsia, and human pregnancy hypertensive disorders more broadly, 196 

while also shedding light on the genetic factors that underlie human adaptations for successful 197 

reproduction at high altitudes. 198 

 199 

 200 

Materials & Methods 201 

 202 

Puno cohort 203 

Preeclamptic families (PRE) were recruited between 2011 and 2016 in the Puno regional 204 

hospital (Hospital Regional Manuel Nuñez Butrón) after their preeclampsia diagnosis. Expecting 205 

parents (mothers and fathers) had to be at least 18 years of age and report at least two 206 

generations of parents from Puno or nearby Andean regions. Recruited families and subjects 207 

included 136 trios (mother, father, and fetal umbilical cord), 197 duos (190 mother and fetal 208 

umbilical cord duos, and 7 mother and father pairs), and 14 singletons (mother or umbilical 209 

only). 100 healthy same-population control families from Puno (PUN) were also recruited at the 210 

hospital at their time of admission for labor. These included 4 trios and 96 duos (mother and 211 

fetal umbilical cord). Lastly, 110 unrelated population controls were recruited at the local 212 

university, Universidad Nacional del Altiplano (UNA) in Puno. In total, 1,129 samples were 213 

collected, including 815 PRE cases, 204 PUN and 110 UNA controls (Supplementary Table 1).  214 
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Ethical approval 215 

All participants were recruited with informed consent and with approval by the Stanford 216 

University Institutional Review Board eProtocols 20782 (Investigating the Genetic Basis of 217 

Preeclampsia in Populations Adapted to High Altitude) and 20839 (Population and Functional 218 

Genomics of the Americas). Local IRB approvals were provided by the ethics committee at the 219 

Manuel Nuñez Butrón Regional Hospital (01541-11-UADI-HR“MNB”-RED-PUNO) and the 220 

Peruvian National Institute of Health (213-2011-CIEI/INS) . 221 

 222 

Phenotypic data 223 

Preeclampsia was defined as new onset of hypertension with presence of proteinuria in urine 224 

after 20 weeks of gestation. Hypertension was defined as systolic blood pressure 30 mmHg 225 

higher than basal level, and diastolic blood pressure at least 15 mmHg higher over basal level. If 226 

no prior blood pressure measurements were available, average basal levels were used as prior 227 

(85/55 mmHg). Note that measured basal arterial pressure levels in pregnant women in Puno 228 

are around 80/50 – 90/60 mmHg (systolic/diastolic), much lower than the U.S. standards, 229 

possibly due to altitude adaptation (Segura-Vega, 2019). Proteinuria levels were confirmed to 230 

be at least 30mg/dL by dipstick in two tests 24 hours apart. Severity of preeclampsia was 231 

defined by the attending physician and categorized into mild or severe. Gestational time was 232 

self-reported by the mother (by date of last menstrual period: LMP) or determined by the 233 

neonate Capurro test. 234 

 235 
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Blood and tissue collection 236 

Whole blood from the mothers was collected within a few hours post-partum by venipuncture 237 

into EDTA tubes and frozen at -20C. Umbilical cord blood was collected by venipuncture 238 

following clamping of the cord immediately after delivery. Paternal blood, and blood from UNA 239 

controls, was obtained upon consent. For plasma, EDTA tubes were spun within 60min of 240 

collection at 1,200g for 10min in a tabletop centrifuge. Separated plasma was transferred to 241 

Eppendorf tubes, spun again under the same conditions for better purity, then stored at -20C in 242 

cryovials. 243 

 244 

Genotypic data 245 

DNA was obtained from whole blood with the Promega (USA) Wizard ® Genomic DNA 246 

Purification Kit following manufacturer’s instructions. DNA extracts were initially quantified 247 

with the Nanodrop. DNA content and quality were further assessed through quantification with 248 

the Qubit® Broad Range Assay and by visualizing on a 1% agarose gel, respectively. Samples 249 

that had both >10 ng/uL of DNA concentration and visible bands on the gel were selected for 250 

genotyping. Genotype data at over 800,000 sites across the genome were generated with the 251 

Affymetrix (USA) Axiom Genome-wide LAT 1 array for 950 samples in two batches. Batch 1 was 252 

genotyped in February 2014 at the University of California San Francisco, Gladstone Genomics 253 

Core in Mission Bay, San Francisco, CA. This batch included 360 PRE, 10 PUN and 110 UNA 254 

individuals (n=480). A total of 813,366 variants were successfully genotyped with Batch 1. Batch 255 

2 was genotyped in November 2018 at Affymetrix Research Services Laboratories, Thermo 256 

Fisher Scientific in Santa Clara, CA. This batch included 324 PRE and 146 PUN individuals 257 
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(n=470), as well as 10 controls added by the genotyping facility. Three samples failed the 258 

genotyping facility filtering metrics, therefore a total of 477 samples and 818,154 variants were 259 

successfully genotyped with Batch 2.  260 

 261 

Quality control 262 

Batch 1 data. The genotyping facility performed a first round of QC restricting the raw dataset 263 

to 713,709 recommended SNPs that passed filtering thresholds for heterozygous strength 264 

offset, cluster resolution, off-target variants, call rate and genotype quality. We further 265 

removed 42 variants with duplicate marker names and flipped 21 SNPs to the forward strand 266 

using snpflip (https://github.com/biocore-ntnu/snpflip) and Plink v1.9 (Chang et al., 2015). We 267 

revised that all variants had physical positions in the NCBI Build GRCh37 human reference (hg19 268 

assembly). After QC, Batch 1 dataset included 713,667 biallelic SNPs and 480 individuals.  269 

 270 

Batch 2 data. We removed 214 variants with duplicate marker names, 4,233 structural variants 271 

and 540 variants with no physical position in the NCBI Build GRCh37 human reference. 64 SNPs 272 

were flipped to the forward strand as above. Additionally, we followed the genotyping facility 273 

recommendations to restrict this dataset to 777,946 recommended SNPs that passed filtering 274 

thresholds for cluster resolution, off-target variants, call rate and genotype quality. The 10 275 

genotyping controls were also removed. After QC, Batch 2 dataset included 777,946 biallelic 276 

SNPs and 467 individuals. 277 

 278 
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Batch 1 and 2 merge. We intersected Batch 1 and 2 datasets at overlapping sites using Plink 279 

v1.9. The merged dataset contained 689,528 SNPs and 947 individuals. Using Plink, we removed 280 

1,438 SNPs with genotype missing call frequency >5% (flag: --geno 0.05) and 183,054 SNPs with 281 

minor allele frequency (MAF) <0.5% (flag: --maf 0.005). We also excluded two individuals with 282 

missing call frequency <10% (flag: --mind 0.1). 561 SNPs failing Hardy-Weinberg equilibrium at 283 

10e-10 were also excluded. We next filtered our dataset for families with excess Mendelian 284 

errors, cryptic relatedness, and duplicate samples (see Supplementary Table 2 for list of 285 

individuals assigned as unrelated after pedigree revision). 31 individuals were removed, and 56 286 

pedigrees were updated. Chromosomal sex was estimated and sex misassignments were 287 

corrected for 176 individuals whose biological sex was either not recorded or incorrectly 288 

recorded during data collection. After QC, the merged Batch 1 + 2 dataset included 504,475 289 

genome wide SNPs and 914 individuals (Supplementary Figure 1). 290 

 291 

Batch effect correction 292 

We tested for batch effects by calculating principal components analysis in Plink after filtering 293 

the dataset for linkage disequilibrium and removing related offspring (flags: --indep-pairwise 294 

100 10 0.1, --pca). We initially identified a strong batch effect with the top principal 295 

components statistically significantly associated with batch (P<0.05) (Supplementary Figure 2). 296 

To correct this effect, we conducted an additional round of site and sample-specific filtering. 297 

We removed symmetrical SNPs (AT, CG), excluded all sites not included in the “Best and 298 

Recommended” list provided by Affymetrix for this array, and filtered sites with genotype 299 

missingness <5% and MAF >0.5%. Additionally, we removed individuals with excess 300 
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heterozygosity (outliers >4SD), duplicate individuals and individuals with cryptic or unexpected 301 

relatedness. In total, 65,161 SNPs and 31 individuals were removed. We repeated the principal 302 

components calculation as above on the filtered dataset and found no statistically significant 303 

association between batch and the top principal components (Supplementary Figure 2). The 304 

final dataset after batch effect correction included 439,314 genome wide SNPs and 883 305 

individuals. 306 

 307 

Population structure 308 

We intersected our dataset with reference panels including five populations from 1000 309 

Genomes (1KG) Phase 3: Yoruba from Ibadan, Nigeria (YRI), Utah residents with Northern and 310 

Western European ancestry (CEU), Han Chinese from Beijing, China (CHB), Mexican Americans 311 

from Los Angeles, USA (MXL) and Peruvians from Lima, Peru (PEL). After merging, we removed 312 

offspring and related individuals, restricted to autosomes and re-applied quality filters. The 313 

filtered, merged dataset consisted of 422,224 variants and 1,057 individuals. The unsupervised 314 

clustering algorithm ADMIXTURE (Alexander et al., 2009) was run on this dataset to explore 315 

global patterns of population structure. As recommended by the ADMIXTURE manual, the input 316 

data was LD pruned using Plink (flag: --indep-pairwise 50 10 0.1). After LD pruning, 45,496 317 

variants remained for analysis. Ten ancestral clusters (K=2 through K=10) were tested and the 318 

best fit model was selected after examining cross-validation errors. To account for possible 319 

convergence variation, we performed 10 additional runs using different random seeds per run 320 

and estimated parameter standard errors using 200 bootstrap replicates per run. ADMIXTURE 321 

results were plotted with the R pophelper package (Francis, 2017). Principal components 322 
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analysis (PCA) was applied to the LD pruned dataset using EIGENSOFT v7.2.1 (Patterson et al., 323 

2006) and plots were generated using the ggplot2 package in R v4.0.3 (R Core Team, 2018, 324 

Wickham, 2016).  325 

 326 

Phasing and local ancestry estimation 327 

We used RFMix v1.5.4 (Maples et al., 2013) to determine genome wide local ancestry 328 

proportions for the Puno cohort founders, assuming a model of K=3 ancestral populations. The 329 

choice of K=3 reference populations was informed by the ADMIXTURE results. The reference 330 

panel included 108 YRI and 94 CEU individuals from 1000 Genomes Phase 3, and 94 native 331 

individuals from Mexico (30 Mixe, 15 Zapotec, 49 Nahua) genotyped as part of the GALA II 332 

study (Galanter et al., 2014). These reference samples were used as proxies for African, 333 

European, and Native American ancestral source populations, respectively. After merging, the 334 

analysis ready dataset consisted of 420,105 overlapping variants and 899 individuals. The data 335 

were phased with SHAPEIT2 (O'Connell et al., 2014). RFMix was run with default parameters 336 

and EM=2 iterations. Ancestry call cutoffs were determined with a 0.9 posterior probability 337 

threshold as recommended in (Kidd et al., 2012).  338 

 339 

Ancestry proportions analysis 340 

We tested for significant differences in proportions of Native American, European, and African 341 

ancestry components between PRE cases, PUN and UNA controls. We applied the Wilcoxon 342 

signed ranks test in R v3.5.1 (pairwise.wilcox.test function) with Bonferoni correction for 343 

multiple testing. This non-parametric test assesses whether significant differences exist 344 
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between two distributions (Moore et al., 2009). Our null hypothesis was that the distribution of 345 

each ancestry proportion was identical between PRE cases, PUN and UNA controls. 346 

 347 

Statistical analysis of clinical phenotypes 348 

We assessed batch bias of clinical phenotypes and correlation with each other by statistical 349 

analysis in R v3.4.0 (R Core Team, 2018). The following dichotomous phenotypes were tested 350 

for batch association with a chi squared test: severity of diagnosis (mild or severe), proteinuria 351 

(+/++ or +++), parity (nulliparous or more than one birth), sex of newborn and mode of delivery 352 

(vaginal or C-section). The following continuous phenotypes were tested for batch association 353 

by t-test: gestational time measured by the mother (date of last menstrual period, or LMP) and 354 

by the fetus (Capurro test), neonate weight, systolic and diastolic blood pressure 355 

measurements, and maternal age.  356 

 357 

Transmission-disequilibrium test (TDT) and parent of origin (POO) 358 

 Leveraging the trio family structure, we applied the transmission disequilibrium test (TDT) and 359 

parent-of-origin (TDT-POO) test on all 87 parent-offspring case trios (preeclamptic families with 360 

offspring) in Plink v1.9 using the --tdt flag, with and without the ‘poo’ modifier. Variants were 361 

then filtered by MAF > 0.05 within the analyzed cohort. The TDT test assumes Mendelian rules 362 

for transmission of alleles and tests if the queried allele is being transmitted/untransmitted 363 

disproportionately from parents to the affected offspring population (Purcell et al., 2007, 364 

Purcell et al., 2005). The POO analysis is part of TDT, and separately queries transmission from 365 
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each parent individually to assess paternal or maternal specific transmission. This test self-366 

corrects for covariate effects by treating each trio as a separate unit.  367 

 368 

GWAS for case-control association 369 

Puno cohort individuals were divided into offspring and mothers for two separate case-control 370 

GWAS analyses using logistic regression in Plink (flag: --logistic) with the first 3 PCs and 371 

sequencing batch as covariates. The analysis on the mothers includes 254 PRE and 70 PUN 372 

controls. The offspring analysis includes 225 PRE cases and 60 PUN controls. These analyses 373 

included individuals in trios, duos, and singletons. Variants were filtered by MAF > 0.05 within 374 

the analyzed cohort.  375 

 376 

GWAS in additional phenotypes 377 

Multiple phenotypes measured and captured in the recruited patient’s medical history allow for 378 

testing of additional genetic associations. We performed additional genome-wide association 379 

analyses of endophenotypes in the PRE mothers (N=254) and offspring (N=225), separately. 380 

These analyses included individuals in trios, duos, and singletons. The endophenotypes tested 381 

for each were: (1) gestational age, maternal measurement; (2) gestational age, fetal 382 

measurement; (3) diastolic blood pressure at diagnosis of preeclampsia; (4) systolic blood 383 

pressure at diagnosis of preeclampsia; (5) proteinuria at diagnosis and (6) severity of diagnosis. 384 

The first four were treated as continuous variables and analyzed by linear regression in Plink 385 

(flag: --linear). Proteinuria and severity of diagnosis were dichotomous variables analyzed in 386 

Plink by logistic regression (flag: --logistic), with proteinuria reduced to + and ++ vs. +++. 387 
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Genotyping batch was included as a discrete covariate and the first 3 PCs as continuous 388 

covariates. Several of these analyses included less individuals due to missing data. Specifically, 389 

GWAS with systolic and diastolic blood pressure included 253 PRE mothers and 224 PRE 390 

offspring, and GWAS with maternal measurement of gestational age included 252 PRE mothers 391 

and 223 PRE offspring. 392 

 393 

GWAS data visualization 394 

All genome-wide analyses were filtered by MAF >= 0.05 within the analyzed cohorts and 395 

visualized by Manhattan plots using the qqman R package v0.1.4 (Turner, 2017). QQ plots were 396 

generated with the same package to confirm no effects from population structure or other 397 

confounders. Regions of interest were selected if they met two criteria: (1) p-value (p<10E-4 in 398 

most cases—unless specified in the results section) and (2) the presence of nearby associated 399 

SNPs forming a skyscraper-like structure in the Manhattan plot. Top SNPs in these regions were 400 

selected, and their genomic regions plotted using LocusZoom (Pruim et al., 2010). Maps 401 

displaying the geographic distribution of candidate associated variants were produced using the 402 

Geography of Genetic Variants (GGV) browser (Marcus and Novembre, 2017).  403 

 404 

Capture sequencing 405 

We conducted fine mapping of potential causal variants in a subset of families genotyped in 406 

Batch 1 previous to Batch 2 genotyping. Preliminary data obtained from Batch 1 genotypes 407 

were analyzed using standard family-based TDT on Plink for preeclampsia associations (as 408 

above), and regression analysis on secondary phenotypes was conducted using linear mixed 409 
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models in GTCA (Yang et al., 2011) (flag: –mlma-loco). Based on these preliminary results, we 410 

designed a target capture assay including windows around top hits for preeclampsia and 411 

secondary phenotypes, as well as several genes previously suggested to be associated with 412 

preeclampsia in the GWAS catalog (release 2.0.5) (Buniello et al., 2019). The total capture size 413 

was approximately 10Mb (Supplementary File 1).  414 

 415 

We next selected families from Batch 1 with the strongest associations on the preliminary TDT 416 

analysis (n=86 individuals, Supplementary Table 1). Genomic DNA from 86 individuals 417 

(Supplementary Figure 3) was fragmented by mechanical shearing (Covaris) and prepared using 418 

the KAPA Hyperprep library preparation kit (Kapa Biosystems, now part of Roche, Switzerland). 419 

DNA capture was performed on the libraries using the Agilent (USA) SureSelect platform 420 

following manufacturer’s instructions. Paired-end sequencing of captured libraries was 421 

performed on the Illumina NextSeq. Sequence data were analyzed through a standard FASTQC-422 

BWA-GATK pipeline following guidelines as described in (Koboldt, 2020). We then performed 423 

the same GWAS analyses listed above (TDT test for the preeclampsia phenotype and linear 424 

regressions for continuous phenotypes) in the captured regions in a limited set of individuals: 425 

25 trios, 4 duos (3 mother-offspring, 1 father-offspring) and 3 singletons (1 offspring and 2 426 

mothers). Candidate loci identified in these analyses were individually merged and annotated 427 

with ANNOVAR (Yang and Wang, 2015) and overlapped with GTEx single-tissue cis-eQTL data 428 

(version V6p) from the online database (https://gtexportal.org/home/datasets) to find relevant 429 

GTEx annotations in our data set (Carithers et al., 2015, Carithers and Moore, 2015). 430 

 431 
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ProZ ELISA 432 

ProZ levels in post-partum maternal and cord blood plasma were assayed using the human-433 

ProZ ELISA kit from MyBioSource (USA, Cat. No. MBS765710), following manufacturer 434 

instructions. Maternal and fetal plasma samples were diluted at 1:400 in sample diluent and all 435 

washes were performed manually with a multichannel pipet. Final optical density absorbance at 436 

450nm was read using the Bio Rad (USA) iMarkTM Microplate Absorbance reader. A 4-437 

Parameter curve fit was applied to the standards, and the resulting equation was used to 438 

calculate concentration in the experimental samples. Boxplots and t-tests were done in R v3.4.0 439 

(R Core Team, 2018). 440 

 441 

 442 

Results  443 

 444 

We obtained blood samples and maternal clinical records from consented families at the 445 

Hospital Regional Manuel Nuñez Butrón, and blood alone from individuals recruited at the 446 

Universidad Nacional del Altiplano. At the time of recruitment, mothers from case families 447 

(labeled PRE throughout this study) were at hospital experiencing pregnancy with a 448 

preeclampsia diagnosis, defined as hypertension and proteinuria after 20 weeks of gestation. It 449 

is important to note that basal blood pressure in this population is lower than in the U.S., and 450 

hypertensive levels can be as low as 110/65 mmHg, compared to 140/90mmHg in U.S. 451 

guidelines. Rather than based on a cutoff, hypertension was defined as a systolic measurement 452 

30 mmHg higher than basal and diastolic at least 15 mmHg higher than basal for each individual 453 
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(see Materials & Methods for more details). For consistency, and to control for other 454 

hypertensive complications of pregnancy, we included proteinuria in the diagnosis, despite this 455 

factor not being currently required in many diagnostic guidelines (American College of 456 

Obstetricians and Gynecologists, 2020).  457 

 458 

Mothers from control families (labelled PUN) were experiencing a pregnancy without 459 

complications at time of hospital recruitment. 88 PRE families and two PUN families were 460 

collected as complete trios—including both biological parents and offspring; the rest are duos 461 

(one parent and offspring) and single individuals (mothers) (Table I). Overall, the Puno cohort 462 

collected for this study includes 815 individuals from the PRE group, 204 from the hospital 463 

control group (PUN), and 110 from the university (UNA) as `population controls. We extracted 464 

DNA from blood and genotyped PRE, PUN and UNA individuals in two batches on the Affymetrix 465 

Axiom LAT array. Our final dataset after quality filtering included 439,314 genome wide SNPs 466 

and 883 individuals (see Table I and Supplementary Table 1 for breakdown of PRE, PUN and 467 

UNA). 468 

 469 

Puno individuals have high proportions of Native American ancestry  470 

We sought to understand the demographic history of our test population by characterizing 471 

patterns of genetic diversity and population structure in the Puno study cohort. To this end we 472 

intersected the entirety of the Puno cohort dataset (883 individuals) with a reference panel 473 

including five continental populations from the 1000 Genomes (1KG) Project Phase 3 panel: 474 

Yorubans (YRI), Europeans (CEU), Mexicans (MXL), Han Chinese (CHB) and Peruvians from Lima 475 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 21, 2021. ; https://doi.org/10.1101/2021.05.20.21257549doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.20.21257549


21 
 

 

(PEL). Using principal component (PC) analysis, we find that individuals from Puno (either PRE, 476 

PUN, UNA) cluster together in PC space, and are distributed in a clinal pattern alongside 477 

Peruvians from Lima who have high proportions of Native American ancestry (Figure 1B, 478 

Supplementary Figure 4).  479 

 480 

We next investigated admixture patterns in the Puno population with the goal of characterizing 481 

proportions of Native versus non-Native genomic ancestry. Using the clustering algorithm 482 

ADMIXTURE (Alexander, et al., 2009), we explored unsupervised models assuming K=2 through 483 

K=10 ancestral clusters (Supplementary Figure 5). Cross-validation errors for each K cluster are 484 

shown in Supplementary Figure 6. At K=4, we observe a clear separation of continental-scale 485 

ancestry components. We find that Puno individuals have large proportions of Native American 486 

ancestry and small proportions of European ancestry, represented by blue and red in Figure 1C, 487 

respectively. At the best fit model of K=6, ADMIXTURE analysis finds substructure within the 488 

Native American ancestry component of the Puno cohort. Specifically, we observe a Puno-489 

specific ancestry component (shown in light blue in Figure 1C) which is not present within the 490 

Native American ancestry components of 1KG Mexican and Peruvian individuals. This 491 

substructure may derive from an Andean specific ancestry component that has been previously 492 

identified among Indigenous and mestizo communities from the Andean Highlands (Barbieri et 493 

al., 2019, Harris et al., 2018). Overall, we find that individuals in the Puno cohort are 494 

predominantly of Native American ancestry (95.7% on average) and have low levels of non-495 

Native American admixture (approximately 4.2% on average; Supplementary Table 3). We 496 

further find that the Puno population carries a Highland-specific Native American sub-497 
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continental ancestry component, as noted in previous work (Barbieri, et al., 2019, Harris, et al., 498 

2018). 499 

 500 

Finally, we tested for significant differences in ancestry proportions between cases (PRE) and 501 

controls (PUN, UNA) in the Puno cohort. Guided by the findings of the ADMIXTURE analysis, we 502 

used RFMix to determine local ancestry proportions in the Puno cohort assuming a model of 503 

K=3 ancestral components. We next extrapolated average ancestry proportions per individual 504 

from the RFMix local ancestry calls (Supplementary Tables 4-5). The results of this estimation 505 

further confirm the predominantly Native American ancestry background and highlight the 506 

small proportion of European admixture present in our sample. We next performed a Wilcoxon 507 

rank test to contrast ancestry proportions between PRE, PUN and UNA. This test identified a 508 

small but significant difference in European ancestry proportions between PRE and UNA but 509 

found no significant differences in Native American or African ancestry proportions 510 

(Supplementary Figure 7, Supplementary Table 6). Overall, UNA individuals have slightly higher 511 

proportions of European ancestry than PRE and PUN individuals. However, proportions of 512 

Native American ancestry are not significantly different between cases (PRE) and controls (PUN, 513 

UNA). These findings support the results of the ADMIXTURE analysis and further underscore the 514 

primarily Native American ancestry background of the Puno cohort.  515 

 516 

 517 
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Family-based analysis reveals association of a cluster of clotting factor genes (PROZ, F7, F10) 518 

with preeclampsia 519 

Next, we sought to identify genetic loci associated with the risk of preeclampsia in this highly 520 

susceptible population adapted to the hypoxic conditions of the Andean Highlands. As decades 521 

of genetic research have shown a role for maternal, paternal and offspring genomes on 522 

preeclampsia risk (Galaviz-Hernandez et al., 2018, Gray et al., 2018, Phipps et al., 2019), we 523 

collected family trios from 88 cases, as well as duos when trio sampling was not possible (either 524 

for lack of consent or due to samples failing genotyping QC), enabling all three genomes to be 525 

evaluated. Since preeclampsia is a complex disease with wide ranging phenotypes, we provide 526 

summaries of relevant phenotypic data for all case pregnancies organized by batch and in trio 527 

cases only (Table II).  By statistical comparison, we find that there is moderate batch bias in 528 

approximately half of the measured phenotypes (e.g., Batch 2 had significantly more vaginal 529 

deliveries than C-sections, when compared to Batch 1, p<0.04), but none likely to influence the 530 

analysis when supported by batch correction. In addition to the data shown in Table II, most 531 

mothers (>98%) had no history of chronic hypertension or diabetes and all were non-smokers.  532 

 533 

To find genetic linkage between genomic loci and preeclampsia, we first performed a parent-534 

offspring trio GWAS analysis, or transmission-disequilibrium test (TDT), in the 88 affected (PRE) 535 

trios. The TDT offers a robust association test of genotype to phenotype in affected families by 536 

measuring over-transmission of alleles from heterozygous parents to the offspring. With this 537 

analysis, we identified a group of SNPs in linkage disequilibrium (LD) over a cluster of blood 538 

clotting factor genes with a high odds ratio for preeclampsia (Figure 2; Table III; Supplementary 539 
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Figure 8). The most significant SNP in this cluster, rs5960 (OR 3.05, 95% CI 1.841-5.054, p<6x10-540 

6; 1000G MAF 0.623), is a synonymous variant in the clotting factor F10. Two other members of 541 

the coagulation cascade, F7 and PROZ, are also in this region. Another top hit in the TDT, SNP 542 

rs553316 (OR 0.339, 95% CI 0.2041-0.5629, p=1.15E-05; 1000G MAF 0.408), is in high LD with 543 

rs5960 in 1KG Peruvian populations (R2=0.7476) (Machiela and Chanock, 2015). Additionally, 544 

rs553316 is annotated in GTEx as an eQTL for PROZ on mammary tissue (note that, as of our 545 

analysis, no placental or pregnancy blood data were available on GTEx). The global distribution 546 

of allele frequencies for rs5960 and rs553316 in 1KG reference populations are shown in 547 

Supplementary Figure 9 and noted in Supplementary Table 7.  548 

 549 

Given the importance of clotting genes in pregnancy, we sought to complement the genotype 550 

analysis by performing deep sequencing of targeted genomic regions surrounding rs5960 in a 551 

subset of cohort participants (Supplementary Table 8, Supplementary Figure 3). To fine-map 552 

potential causal variants, we repeated the same TDT analysis described above in the fine-553 

mapped individuals and cross-referenced with the GTEx database for expression phenotypes in 554 

relevant tissues. This analysis found a strong association of preeclampsia with several eQTLs for 555 

PROZ (Supplementary Table 9). Other top hits from the genotype TDT that were recapitulated 556 

in this analysis include variants in the SLC46A3 and CUL4A genes, also located on chromosome 557 

13 (Supplementary Table 9). Both genes have been previously associated with preeclampsia risk 558 

in clinical studies (McGinnis, et al., 2017, Tan et al. 2017). These data suggest that clotting 559 

factors on chromosome 13 may play an important role in preeclamptic pregnancies.  560 

 561 
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Finally, we asked whether this PROZ eQTL resulted in differential PROZ protein expression 562 

between PRE cases and PUN controls. Since the TDT identifies associated variants in the 563 

offspring, we analyzed the umbilical cord plasma of 8 PUN controls and 16 PRE cases by ELISA. 564 

In this limited sample, we detected no difference of PROZ levels in umbilical cord plasma 565 

(difference in means = 41.550 ug/mL, 95% CI -342.758 to 425.858, p = 0.85) collected after 566 

delivery (Supplementary Table 10, Supplementary Figure 10). However, future testing could 567 

evaluate PROZ levels in the placenta, where interaction with the maternal environment is more 568 

significant to the preeclampsia phenotype than in umbilical cord blood.  569 

 570 

Clotting factor locus shows paternal inheritance  571 

We next examined whether there were loci associated with preeclampsia that were 572 

disproportionately inherited either maternally or paternally. To this end, we performed parent-573 

of-origin TDT GWAS in the same 88 trios tested above. This test investigates whether any of the 574 

associated SNPs are disproportionately inherited from fathers versus mothers, and vice versa. 575 

The most significant SNP from the TDT analysis, rs5960 in F10, is suggested to be paternally 576 

inherited more often than expected by chance (p=10-4, Figure 2, Table IV, Supplementary Figure 577 

11). Other loci show evidence of paternal inheritance, such as rs79278805 (p = 1.77E-04), 578 

located within SPAG6 on chromosome 10, and rs9399401 (p=2.76E-04) in ADGRG6/GPR126 on 579 

chromosome 6. Similarly, we find several SNPs that show maternal origin bias. The most 580 

significant is rs130121 (p=1.91E-04) on chromosome 22 in the FAM19A5/TAFA5 gene, followed 581 

by rs10282765 (p=2.39E-04) on chromosome 8 within a ncRNA (Table IV, Supplementary 582 

Figures 12-13). Several genes in the vicinity of these SNPs have been implicated in 583 
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reproduction. SPAG6 is recognized by anti-sperm antibodies and might be involved in infertility 584 

(Cooley et al., 2016, Neilson et al., 1999). ADGRG6/GPR126 is a G-coupled protein receptor 585 

involved in angiogenesis. It is upregulated in umbilical vein endothelial cells and was found 586 

previously to be upregulated in preeclamptic placentas (Cui et al., 2014, Sitras et al., 2009). 587 

Overall, these parent-of-origin effects support the hypothesis that maternal and/or paternal 588 

bias might contribute to preeclampsia disease.  589 

 590 

Case-control analysis, placental gene S100P is associated with preeclampsia in the offspring 591 

While the TDT identifies preeclampsia risk variants from inheritance analysis, a more common 592 

way to test for disease risk variants is to compare cases and controls. The collection of control 593 

(PUN) mother-offspring duos allowed us to compare preeclamptic to healthy pregnancies in 594 

both the mothers and the offspring. To this end, we performed two case-control GWAS of 595 

preeclampsia using Plink (see Materials & Methods): (1) 268 PRE vs. 70 PUN mothers; and (2) 596 

230 PRE and 60 PUN offspring. Several genetic regions showed suggestive association with 597 

preeclampsia in both test groups (Supplementary table 11; Supplementary Figures 14-15). The 598 

most interesting association was the top SNP in the offspring, rs34360485 on chromosome 4 (p 599 

<2E-5, OR 3.615, 95% CI 2.003-6.524, MAF 0.36, (Table V), which contains the placental gene 600 

S100P. S100P is a calcium-binding protein strongly expressed in the placenta (Zhu et al., 2015) 601 

that promotes trophoblast proliferation in culture (Zhou et al., 2016). The global distribution of 602 

allele frequencies for rs34360485 in 1KG reference populations is shown in Supplementary 603 

Figure 16 and noted in Supplementary table 9. 604 

 605 
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Associations of secondary phenotypes reveal loci with roles in placental biology   606 

Preeclampsia is a heterogeneous disease with varying potential markers of severity. For 607 

instance, the earlier in gestation preeclampsia occurs, the more severe it is considered to be 608 

(Gong et al., 2012, Wojtowicz et al., 2019). Likewise, all the characteristic clinical features 609 

associated with preeclampsia (such as proteinuria and elevated blood pressure) can present at 610 

varying levels of severity. Harnessing the availability of clinical records for all individuals in the 611 

PRE cohort, we next performed GWAS tests on six secondary phenotypes of preeclampsia 612 

measured at the time of diagnosis: (1) gestational age, maternal measurement; (2) gestational 613 

age, fetal measurement; (3) diastolic blood pressure; (4) systolic blood pressure; (5) proteinuria 614 

and (6) severity of diagnosis as stated by the clinician. It is worth clarifying that gestational age 615 

(the time of the fetus in the womb) was measured in two different ways throughout the study. 616 

The fetal measurement was done by the “Capurro” test, which combines five different 617 

measurements in the neonate, while the maternal measurement relies on the date of the 618 

mother’s last menstrual period before pregnancy.  619 

 620 

To investigate possible genetic associations with secondary phenotypes of preeclampsia, we 621 

performed GWAS analyses by logistic and linear regression for each of the six phenotypes in 622 

254 mothers and 225 offspring, separately. In total, we ran 12 GWAS tests. Logistic regression 623 

was applied to binary phenotypes (proteinuria and severity of diagnosis), while linear 624 

regression was applied to continuous phenotypes (gestational age and blood pressure 625 

measurements). All analyses were corrected for batch and the first three principal components 626 

were included as continuous covariates. With this analysis we found several strong associations 627 
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of SNPs to secondary maternal phenotypes (Table V; Supplementary table 12). These findings 628 

point to several genetic regions containing relevant genes associated with pregnancy and the 629 

complex biology of preeclampsia, as detailed below.    630 

 631 

Gestational Age 632 

Gestational age was associated in mothers with one locus on chromosome 1 (rs952593, beta -633 

1.66, 95% CI ± 0.61, p=3.12x10-7, MAF 0.13). This region is near TBX15 (Table V; Supplementary 634 

Table 12; Supplementary Figure 17-20), a t-box transcription factor shown to be downregulated 635 

in intrauterine growth restricted placentas (Chelbi et al., 2011). The association held true with 636 

both measurements of gestational age (by maternal last period and neonate Capurro test). The 637 

maternal measurement, but not the fetal measurement, of gestational age was associated with 638 

a multigenic locus on chromosome 11 (top SNP rs2581927, beta -2.03, 95% CI ± 0.85, p = 639 

4.85x10-6; MAF 0.06). A gene of interest in this locus is APLNR, the receptor to ELABELA, which 640 

causes preeclampsia symptoms in mice (Supplementary Figures 21-22) (Ho et al., 2017).  641 

 642 

Diastolic and Systolic Blood Pressure 643 

Diastolic blood pressure reached genome-wide significance for one association in the maternal 644 

genome on chromosome 4 (top SNP rs1874237, p<5x10-8, beta -4.257, 95% CI -5.711 ─ -2.804, 645 

MAF 0.45; Table V; Figure 3). This SNP is within an uncharacterized non-coding RNA locus near 646 

NKX6-1, a gene involved in β-cell development and function (Taylor et al., 2013). In the 647 

offspring, both systolic and diastolic blood pressure were strongly associated with SNPs in 648 

KCNS3/K(V)9.3 (top SNP rs4553827, beta 7.44, 95% CI ± 2.82, p = 5.26x10-7, MAF 0.25), a 649 
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voltage-gated potassium channel gene that is highly expressed in the human placenta, where it 650 

localizes to placental vascular tissues and syncytiotrophoblast cells (Fyfe et al., 2012) 651 

(Supplementary Table 13; Supplementary Figures 23-26). 652 

 653 

Proteinuria and Severity of Diagnosis  654 

Proteinuria was most strongly associated in the mothers with rs2760751 on chromosome 17 655 

(OR 2.83 ± 1.02, p = 5.65E-06, MAF 0.29). This SNP is intronic to SMG6, a telomerase binding 656 

protein. A second association with proteinuria in the maternal genome was found with SNP 657 

rs12276362 (OR 0.41 ± 0.14, p = 1.19E-05, MAF 0.49) in chromosome 11, by the PIWIL4 gene 658 

(Supplementary Figures 27-30). This region is also correlated with severity of diagnosis in the 659 

mothers (rs1940640, OR 2.4 ± 0.8, p = 1.30E-05, MAF 0.43; Supplementary Figures 29, 31). It is 660 

not surprising that proteinuria and severity of diagnosis share a common association, since 661 

these two phenotypes are correlated—clinically severe cases generally have higher levels of 662 

protein in the urine. Aberrant PIWI proteins, which interact with pi-RNAs to drive post-663 

transcriptional gene regulation, have been found in cancers (Wang et al., 2016), and theoretical 664 

evidence from piRNA evolution suggests a role in placentation, although this has yet to be 665 

proven empirically (Chirn et al., 2015). In the offspring genome, proteinuria showed an 666 

association with placental gene RARB, or retinoic acid (RA) receptor beta (rs4241542, OR 0.26 ± 667 

0.14, p=7.04x10-6, MAF 0.21) (Comptour et al., 2016, Huebner et al., 2018), while the strongest 668 

association with proteinuria is on a different region, in a SNP intronic to STK32B (rs62297274 669 

(OR 0.35 ± 0.12, p=3.5104x10-6; Supplementary Table 13; Supplementary Figure 32-33). 670 

Interestingly, the minor allele for SNP rs62297274 is found at high frequencies in Peruvians 671 
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compared to other global populations. In the Puno cohort MAF for this variant is 0.49, slightly 672 

higher than among Peruvians from Lima sampled in the 1KG (PEL MAF 0.41) (Supplementary 673 

Figure 34). In contrast, the minor allele is found at low frequencies in the rest of the Americas 674 

(1KG AMR MAF 0.19) and is rarely observed globally (1KG MAF <0.05) (Supplementary Table 9).  675 

 676 

 677 

Discussion 678 

 679 

In this analysis, we investigate the genetic diversity of a preeclampsia cohort of Andean families 680 

from Puno, Peru; a population with one of the highest incidences of this disease in the world 681 

(Bristol, 2009, Gil Cipirán, 2017). We harness the power of a trio study design to uncover 682 

maternal, paternal, and fetal genetic factors influencing the incidence and severity of 683 

preeclampsia in this cohort. In contrast to previous preeclampsia GWAS studies, which have 684 

been hampered by limited phenotyping and heterogeneous sampling (Williams and Broughton 685 

Pipkin, 2011), the present work includes a case-control cohort sampled from a single 686 

population, treated at the same hospital, and exposed to similar selective pressures due to 687 

long-term residence at high altitude. Thus, despite a small sample size, our family based GWAS 688 

design permits identification of novel significant and suggestive associations with preeclampsia 689 

that would remain otherwise undiscovered (Tishkoff, 2015).  690 

 691 

Most genetic studies on preeclampsia have not investigated whole family units (Boyd, et al., 692 

2013, Cincotta and Brennecke, 1998, McGinnis, et al., 2017, Salonen Ros et al., 2000), despite 693 
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the evidence of a complex genetic risk involving factors from both parents and the fetus 694 

(Valenzuela, et al., 2012). This reinforces the strength of our approach, where the top 695 

association in the trio study was rs5960, an intronic variant in the clotting factor gene PROZ, in 696 

a locus with two other clotting factors: F7 and F10. PROZ, a vitamin K-dependent factor, is an 697 

anticoagulant protein with a role in factor X inhibition (Almawi et al., 2013). Several previous 698 

studies have suggested a hypercoagulative state in preeclampsia (reviewed in Ismail and 699 

Higgins, 2011), as spiral arteries of preeclamptic pregnancies often present thrombosis and 700 

atherosis (Haram et al., 2014). In fact, strong evidence supporting an effect of thrombotic 701 

processes on preeclampsia is based on the observation that aspirin, a known blood thinner, 702 

successfully delays preeclampsia onset (Wright and Nicolaides, 2019).  703 

 704 

Low PROZ levels are associated with thrombotic disorders, and many adverse pregnancy 705 

outcomes have also been linked with maternal PROZ levels (Almawi et al., 2013). A small, 706 

prospective case-control study found low PROZ levels associated to intrauterine growth 707 

restriction (IUGR) and intrauterine fetal demise, but not preeclampsia (Bretelle et al., 2005). In 708 

contrast, a larger cross-sectional study found lower median levels of PROZ in preeclampsia 709 

outcomes but not IUGR or fetal demise (Erez et al., 2007). One study found a correlation 710 

between lower PROZ levels and severity of HELLP syndrome (a complication of preeclampsia 711 

that stands for haemolysis, elevated liver enzymes, and low platelets), which occurs in 10-20% 712 

of preeclamptic pregnancies (Haram, et al., 2014, Kaygusuz et al., 2011). However, no study on 713 

PROZ or other clotting factors in preeclampsia has been successfully replicated, likely due to the 714 

extreme heterogeneity of the disease and the mix of populations studied.   715 
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As most previous studies on PROZ have focused on the mother’s genome (Erez, et al., 2007, Xu 716 

et al., 2018), ours is the first study to suggest a correlation between the fetal PROZ/F7/F10 717 

locus on chromosome 13 and preeclampsia. In a subset of our sample, we found no differences 718 

in protein plasma levels of PROZ between preeclamptic and healthy pregnancies in the mother 719 

or the offspring. However, this analysis was limited by small sample size and post-natal blood 720 

sampling. In other words, since samples were only collected immediately after birth, we were 721 

unable to monitor changes in PROZ protein levels throughout the pregnancy. Further 722 

longitudinal studies could analyze clotting factor levels and activity in this pregnant population 723 

to assess the impact of thrombosis in preeclampsia risk among Andean highlanders. 724 

 725 

Expanding the TDT to a parent of origin analysis (POO), we found several associations to genetic 726 

regions with suggested paternal inheritance. For instance, the top TDT hit on F10, rs5960, is 727 

also the locus with the strongest paternal origin effect in the TDT-POO. Although future 728 

research examining variation at the PROZ/F7/F10 region in a larger population will be needed 729 

to confirm this finding, our results are of interest to studies investigating the role of paternal 730 

genetic factors, genomic imprinting and paternal-offspring conflict in preeclampsia and other 731 

pregnancy disorders (Christians et al., 2017, Galaviz-Hernandez, et al., 2018, Hollegaard et al., 732 

2013, Pilvar et al., 2019, Wikstrom et al., 2012, Zadora et al., 2017).  733 

 734 

Other top regions in the TDT-POO include biologically relevant genes SPAG6 and ADGRG6, 735 

previously described as being involved in infertility and the immune system (SPAG6) (Cooley, et 736 

al., 2016, Neilson, et al., 1999), or angiogenesis (ADGRG6/GPR126) (Cui, et al., 2014, Sitras, et 737 
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al., 2009). Of these, only ADGRG6 has been associated with preeclampsia in previous research 738 

that found it upregulated in preeclamptic placentas (Cui et al., 2014, Sitras et al., 2009). Future 739 

work could investigate potential roles of these candidate genes in the maternal-fetal interface 740 

and elucidate their involvement in the pathophysiology of preeclampsia.  741 

 742 

We also found several placental genes associated with secondary phenotypes that underline 743 

the severity of preeclampsia, such as hypertension, gestational age, and proteinuria. 744 

Differential expression of these genes may contribute to the insufficiency of placental 745 

development in early pregnancy that leads to hypertension and proteinuria in the third 746 

trimester. Some of our suggestive associations are near genes previously shown to have roles in 747 

pregnancy, vascular processes, and even preeclampsia. One such gene is APLNR, the receptor 748 

to ELABELA, which causes preeclampsia symptoms in mice (Ho, et al., 2017) and is lower in the 749 

serum and placentas of some women with late-onset, but not early-onset preeclampsia (Zhou 750 

et al., 2019). However, this gene is in a multigenic locus, and fine-mapping approaches with 751 

functional studies are required to discover the effect of this locus in our cohort.  752 

 753 

Our study is one of only a few preeclampsia GWAS studies to include the offspring genome. 754 

One recent study with a large cohort found a gene, sFLT1, associated with late (but not early) 755 

preeclampsia (Gray, et al., 2018, McGinnis, et al., 2017), suggesting that dysregulation of genes 756 

in the fetal genome contribute to preeclampsia. In our study, we found novel fetal associations 757 

with preeclampsia and its severity phenotypes in the fetus. For instance, we found an 758 

association between severity of hypertension (systolic and diastolic pressure measurements) 759 
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and KCNS3/K(V)9.3 a gene that is highly expressed in the human placenta, where it localizes to 760 

placental vascular tissues and syncytiotrophoblast cells (Fyfe, et al., 2012). We also found an 761 

association of the retinoic acid (RA) signaling gene RARB and severity of the proteinuria in the 762 

preeclamptic fetal genome. RA signaling is essential for healthy placental and fetal 763 

development in animal models, with evidence of similar requirement in humans (reviewed in 764 

(Comptour, et al., 2016)). RARB is expressed in the extravillous part of the placenta and its 765 

activation induces RARRES, shown in one study to be overexpressed in preeclamptic placentas 766 

(Huebner, et al., 2018). Our study adds to this body of literature and highlights the role of RA in 767 

proper placentation. Lastly, the most interesting region in the offspring genome was identified 768 

in our case-control study; the S100P gene, a calcium-binding protein strongly expressed in the 769 

placenta (Zhu, et al., 2015) that promotes trophoblast proliferation in culture (Zhou, et al., 770 

2016). This finding suggests that fetal biology, and specifically placental development driven by 771 

fetal genes, highly contributes to the pathology of preeclampsia.  772 

 773 

We examined the global distribution of allele frequencies for each of the candidate associated 774 

SNPs detailed above. Most alleles were shared among several global populations (see global 775 

distribution plots in Supplementary Figures). A notable exception is SNP rs62297274, an 776 

intronic variant located in gene STK32B which is associated with proteinuria in the offspring 777 

genome. The minor allele reaches its highest global frequency in Peruvian populations 778 

(Supplementary Figure 34). As of this writing SNP rs62297274 has no reported clinical 779 

significance in dbSNP. However, intronic variants are known to have functional impacts on RNA 780 

splicing patterns (Cooper, 2010). To elucidate the functional significance of this variant, future 781 
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research could evaluate its pathogenic potential in Peruvian populations (Joynt et al., 2020, Lin 782 

et al., 2019). 783 

 784 

As discussed, several genes found in our analyses are involved in placental function. 785 

Interestingly, morphological studies comparing placentas from Andean-descent and European-786 

descent individuals in Bolivia, at both low and high altitudes, describe differences in placental 787 

composition (Jackson et al., 1987, Jackson et al., 1988). Highland placentas from individuals of 788 

both ancestries show more intervillous space but less villi, and the Andean highland placenta, 789 

compared to the European, have more trophoblast and villous stroma on average. Differences 790 

in placental morphology suggest an adaptive mechanism to the lower oxygen pressure at high 791 

altitude, but one that does not lower the risk of preeclampsia.  792 

 793 

In conclusion, this study investigates a cohort of preeclamptic Highland Andean families from 794 

Puno, Peru to elucidate the genetic basis of this pregnancy disorder at high altitudes. We 795 

generated high-density genotype data at over 400,000 positions across the genome and used 796 

these data to determine ancestry patterns and map associations between genetic variants and 797 

preeclampsia phenotypes. Our trio-based recruitment strategy, including genotype data from 798 

mothers, fathers, and offspring, allowed us to identify novel genetic regions not previously 799 

reported in preeclampsia genome-wide association studies. Specifically, we identified strong 800 

associations with several variants near genes involved with placental and blood vessel function, 801 

and therefore, of functional importance for human pregnancy biology. The strongest 802 

association hit involves a cluster of clotting factor genes on chromosome 13 including PROZ, F7 803 
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and 10 in the fetal genome. This finding provides supporting evidence that coagulation plays an 804 

important role in the pathology of preeclampsia and potentially underlies other pregnancy 805 

disorders exacerbated at high altitude.  806 

 807 

Studying diverse human groups with unique genetic adaptations enables identification of the 808 

primary genetic factors underlying complex phenotypes and gene function. This research 809 

examined Andean populations as a model to understand human pregnancy physiology in 810 

hypoxic conditions. This natural experimental setting provides a unique opportunity to 811 

understand the genetic factors influencing human reproductive fitness in challenging 812 

environments worldwide and to discover population-specific variants underlying biomedical 813 

traits. Our work also underscores the importance of including diverse populations in genome 814 

wide association studies and functional variant discovery efforts to better understand human 815 

physiology and disease globally. 816 
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Table legends 1102 

 1103 

Table I. All individuals genotyped by group (case/control) and batch after QC filtering.  1104 

Table II. Phenotypic characteristics of analyzed case families with preeclampsia (duos and 1105 

trios). The sum of batch 1 and 2 correspond to the total in the first column. “Trios only” 1106 

identifies the subset from the total that are in whole trio units (the rest are mother-offspring 1107 

duos). The last column represents chi-squared or t-test p-values for each phenotype between 1108 

batches. Significant tests with p<0.05 are identified with an asterisk (*).  1109 

 1110 

Table III. GWAS statistics and genomic annotations of top hits (P<5x10-4) from the TDT. 1111 

 1112 

Table IV. GWAS P values and genomic annotations of top hits (P<5x10-4) from the TDT-POO 1113 

 1114 

Table V. Statistics and annotations of the top SNPs (p<5x10-4) with biological relevance for 1115 

preeclampsia of secondary phenotype and case-control GWAS analyses. All SNPs in this table 1116 

are described in the text (for a complete list of regions at p<5x10-4, see supplemental tables. 1117 

Beta values are reported for linear regressions and odds ratio (OR) for logistic regressions. GA, 1118 

gestational age; BP, blood pressure.  1119 
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 1120 

Figures 1121 

 1122 

 1123 

 1124 

Figure 1. Location and population structure of the Puno preeclampsia cohort. A) Approximate 1125 

location of Puno, Peru. B) Principal components analysis including PRE cases, PUN and UNA 1126 

controls, and five continental reference populations from the 1000 Genomes. C) ADMIXTURE 1127 

analysis results showing unsupervised clustering models assuming K=4 and K=6. At K=6 a Puno-1128 

specific sub-continental ancestry component not shared with 1000 Genomes Peruvians from 1129 

Lima appears in the Puno cohort (shown in light blue). 1130 

 1131 
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 1132 

 1133 

 1134 

Figure 2. Top associations from trio analyses by TDT and TDT-POO. A) Manhattan plot showing 1135 

top association with preeclampsia in the offspring genome: SNP rs5960 on chromosome 13 at 1136 

p<10e-5 suggestive of significance (shown in red). B) Locus Zoom plot depicting the top 1137 

associated SNP cluster from the TDT on chromosome 13.  C) Locus Zoom plot depicting the top 1138 

paternal region from TDT-POO analysis on chromosome 13. 1139 

 1140 

 1141 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 21, 2021. ; https://doi.org/10.1101/2021.05.20.21257549doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.20.21257549


49 
 

 

 1142 

 1143 

Figure 3. Manhattan plot showing top association in the maternal genome with diastolic 1144 

blood pressure. SNP rs1874237 on chromosome 4 at p<5x10-8, genomewide significance 1145 

(shown in red). 1146 
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Data Availability Statement 1148 
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Table I. All individuals genotyped by group (case/control) and batch after QC filtering.  
 

Family 

Category1 

PUN and UNA Controls PRE Cases 
Total No. 

of Individuals Batch 1 

individuals 

Batch 2 

individuals 

Batch 1+2 

individuals 

Batch 1+2 

family units 

Batch 1 

individuals 

Batch 2 

individuals 

Batch 1+2 

individuals 
Batch 1+2 

family units 

Trios 2  

(M+F+UC) 
0 6 6 2 241 21 262 882 268 

Duos 10 106 116 58 110 192 302 151 418 

M+UC 8 106 114 57 66 188 254 127 368 

P+UC 2 0 2 1 18 2 20 10 22 

M+F 0 0 0 0 26 2 28 14 28 

Singletons 3 106 24 130 -- 19 48 67 -- 197 

All individuals 116 136 252 60 370 261 631 239 883 

 
1M= Mother, F=Father, UC=Umbilical cord. 
2 Includes one trio with two offspring from family PRE061. 
3 Includes individuals coded as UNR (unrelated and no longer connected to medical records), UNA (university controls), and some individuals collected as part of PRE/PUN (still 
connected to medical records). 
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Table II. Phenotypic characteristics of analyzed case families with preeclampsia (duos and trios). The sum of 
batch 1 and 2 correspond to the total in the first column. “Trios only” identifies the subset from the total that 
are in whole trio units (the rest are mother-offspring duos). The last column represents chi-squared or t-test p-
values for each phenotype between batches. Significant tests with p<0.05 are identified with an asterisk (*).  
  

Total Batch 1 Batch 2 Trios only Batch pval 

Diagnosis, n Mild (n=119) 63 56 47 0.68 

Severe (n=106) 60 46 41 

Mode of delivery, 
n 

C-section (n=92) 58 34 42 0.04* 

Vaginal (n=132) 64 68 45 

Maternal age, 
years 
mean(median) 

26.64(26.00) 26.75(25.00) 26.51(26.00) 27.44(26.00) 0.76 

Gestational age - 
maternal, weeks 
mean(median) 

38.11(39.00) 37.80(38.00) 38.48(39.00) 37.84(38.00) 0.04* 

Gestational age - 
fetal, weeks 
mean(median) 

38.29(39.00) 38.20(39.00) 38.39(39.00) 38.17(39.00) 0.52 

Newborn weight, 
grams       
mean(median) 

601.3(600.0) 611.9(605.0) 569.6(565.0) 620.6(620.0) 0.07 

Systolic BP at 
admission, mmHg 
mean(median) 

133.0(130.0) 131.1(130.0) 135.3(130.0) 130.9(130.0) 0.02* 

Diastolic BP at 
admission, mmHg 
mean(median) 

89.82(90.00) 87.68(90.00) 92.43(90.00) 87.1(85.0) 2.12E-05* 

Parity, n nulliparous 
(n=128) 

72 56 45 0.68 

1 or more (n=97) 51 46 43 

Sex of newborn, n female (n=100) 46 54 35 0.03* 

male (n=125) 77 48 53 

Proteinuria, n + (n=124) 64 60 49 0.38 

++/+++ (n=101) 59 42 39 
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Table III. GWAS statistics and genomic annotations of top hits (P<5x10-4) from the TDT. 
 

Chr BP cytoBand rsID Ref Alt TDT GWAS stats Function Genes in region Puno MAF 

OR 95% CI P 

13 113801737 13q34 rs5960 C T 3.05 1.841-5.054 5.23E-06 exonic F10 0.4929 

13 113930853 13q34 rs9549724 C T 0.2963 0.1696-0.5176 5.58E-06 intergenic CUL4A, LAMP1 0.4278 

13 113812962 13q34 rs2273971 A G 0.3276 0.1951-0.55 8.81E-06 upstream PROZ 0.499 

13 113838015 13q34 rs553316 G A 0.339 0.2041-0.5629 1.15E-05 intronic PCID2 0.4827 

13 113810186 13q34 rs7335409 T C 2.95 1.777-4.899 1.15E-05 intergenic F10, PROZ 0.4939 

13 113915303 13q34 rs3814260 G A 0.3396 0.199-0.5797 3.27E-05 intronic CUL4A 0.4236 

2 109581319 2q12.3 rs260692 C T 19 2.544-141.9 5.70E-05 intronic EDAR 0.0551 

1 228715705 1q42.13 rs11586639 G A 0.4 0.2492-0.6422 8.57E-05 intergenic BTNL10, 
MIR7641-2 

0.4587 

6 42252385 6p21.1 rs9471831 A G 0.4242 0.2727-0.6601 8.88E-05 intronic TRERF1 0.4562 

13 113910926 13q34 rs3861723 A G 0.36 0.2101-0.617 1.04E-04 intronic CUL4A 0.4228 

1 228805855 1q42.13 rs765070 C T 0.4107 0.2528-0.6673 2.05E-04 intergenic DUSP5P1, RHOU 0.4347 

2 109557099 2q12.3 rs260711 T C 9.5 2.213-40.78 2.08E-04 intronic EDAR 0.05612 

1 229076157 1q42.13 rs10916389 G A 0.325 0.1738-0.6076 2.08E-04 intergenic RHOU, MIR4454 0.2368 

13 113923202 13q34 rs77626225 A G 0.3878 0.2283-0.6586 2.75E-04 intergenic CUL4A, LAMP1 0.2307 

13 113949751 13q34 rs9549380 G A 0.4 0.2382-0.6718 3.36E-04 intergenic CUL4A, LAMP1 0.3201 

2 109513601 2q12.3 rs3827760 A G 9 2.088-38.79 3.47E-04 exonic EDAR 0.05793 
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Table IV. GWAS P values and genomic annotations of top hits (P<5x10-4) from the TDT-POO 
 

Chr BP cytoBand rsID Ref Alt Pval Function Genes in region Puno 
MAF 

Paternal TDT-POO 

13 113801737 13q34 rs5960 C T 1.38E-04 exonic F10 0.4929 

10 22686205 10p12.2 rs79278805 G A 1.77E-04 intronic SPAG6 0.05499 

6 142668901 6q24.1 rs9399401 C T 2.76E-04 intronic ADGRG6 0.4575 

11 115757874 11q23.3 rs4938220 C T 3.86E-04 intergenic LINC00900, 
LOC101929011 

0.3585 

11 115761165 11q23.3 rs639053 C T 4.99E-04 intergenic LINC00900, 
LOC101929011 

0.3344 

Maternal TDT-POO 

22 49095071 22q13.32 rs130121 G A 1.91E-04 intronic FAM19A5 0.2912 

8 98411402 8q22.1 rs10282765 C T 2.39E-04 ncRNA_intronic LOC101927066 0.1194 

8 98428772 8q22.1 rs2331465 A G 2.39E-04 ncRNA_intronic LOC101927066 0.122 

22 49099888 22q13.32 rs4925446 C T 3.86E-04 intronic FAM19A5 0.2827 

8 98432618 8q22.1 rs4588816 C T 3.93E-04 ncRNA_intronic LOC101927066 0.122 
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Table V. Statistics and annotations of the top SNPs (p<5x10-4) with biological relevance for preeclampsia of secondary phenotype and case-
control GWAS analyses. All SNPs in this table are described in the text (for a complete list of regions at p<5x10-4, see supplemental tables. Beta 
values are reported for linear regressions and odds ratio (OR) for logistic regressions. GA, gestational age; BP, blood pressure.  

 

GWAS Chr BP cytoBand rsID Ref Alt 

GWAS stats 

Function 
Genes in 

region 

Puno 

MAF BETA/O

R 
95% CI P 

GA, fetal measurement, 

maternal genome 
1 119404210 1p12 rs952593 T C -1.656 -2.273 ─      

-1.039 3.12E-07 intergenic SPAG17, TBX15 0.13 

GA, maternal 

measurement, maternal 

genome 

1 119425100 1p12 --- A C -1.439 -2.013 ─      
-0.8641 1.69E-06 downstream TBX15 0.14 

11 57203942 11q12.1 rs2581927 C T -2.034 -2.887 ─      
-1.182 4.85E-06 intergenic SLC43A3, 

RTN4RL2 0.06 

Diastolic BP, maternal 

genome 
4 85200613 4q21.23 rs1874237 G A -4.257 -5.711 ─      

-2.804 2.79E-08 ncRNA intronic LOC101928978 0.45 

Severity,  maternal 

genome 
11 94360812 11q21 rs1940640 T G 2.407 1.622 ─      

3.572 1.30E-05 ncRNA intronic LOC105369438 0.43 

Proteinuria, maternal 

genome 

17 2028106 17p13.3 rs2760751 A G 2.829 1.806 ─      
4.432 5.65E-06 intronic SMG6 0.29 

11 94356914 11q21 rs12276362 C T 0.4146 0.2795 ─      
0.6148 1.19E-05 ncRNA intronic LOC105369438 0.49 

Systolic BP,  

fetal genome 
2 18099832 2p24.2 rs4553827 C T 7.443 4.622 ─      

10.26 5.26E-07 intronic KCNS3 0.25 

Proteinuria,  

fetal genome 

4 5341148 4p16.2 rs62297274 C T 0.3512 0.2257 ─      
0.5465 3.51E-06 intronic STK32B 0.49 

3 25052754 3p24.2 rs4241542 C T 0.2598 0.1443 ─      
0.4678 7.04E-06 intronic RARB 0.21 

Case-Control,  Offspring  4 6671568 4p16.1 rs34360485 A G 3.615 2.003 ─      
6.524 1.99E-05 downstream LINC02482, 

S100P 0.36 
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