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Abstract 
Early detection of Alzheimer’s Disease (AD) is essential for developing effective treatments. 
Neuroimaging techniques like Magnetic Resonance Imaging (MRI) have the potential to detect 
brain changes before symptoms emerge. Structural MRI can detect atrophy related to AD, but 
it is possible that functional changes are observed even earlier. We therefore examined the 
potential of Magnetoencephalography (MEG) to detect differences in functional brain activity 
in people with Mild Cognitive Impairment (MCI) – a state at risk of early AD. We introduce a 
framework for multimodal combination to ask whether MEG data from a resting-state provides 
complementary information beyond structural MRI data in the classification of MCI versus 
controls. More specifically, we used multi-kernel learning of support vector machines to 
classify 163 MCI cases versus 144 healthy elderly controls from the BioFIND dataset. When 
using the covariance of planar gradiometer data in the low Gamma range (30-48Hz), we found 
that adding a MEG kernel improved classification accuracy above kernels that captured several 
potential confounds (e.g., age, education, time-of-day, head motion). However accuracy using 
MEG alone (67%) was worse than MRI alone (72%). When simply concatenating (normalized) 
features from MEG and MRI into one kernel (early combination), there was no advantage of 
combining MEG with MRI versus MRI alone. When combining kernels of modality-specific 
features (intermediate combination), there was an improvement in multimodal classification 
to 75%. The biggest multimodal improvement however occurred when we combined kernels 
from the predictions of modality-specific classifiers (late combination), which achieved 78% 
accuracy (a reliable improvement in terms of permutation testing). We also explored other 
MEG features, such as the variance versus covariance of magnetometer versus planar 
gradiometer data within each of 6 frequency bands (delta, theta, alpha, beta, low gamma or 
high gamma), and found that they generally provided complementary information for 
classification above MRI, provided the frequency band was beta or higher. We conclude that 
high frequency information in MEG can improve on MRI-based classification of mild cognitive 
impairment.  
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Introduction 
 
Alzheimer’s disease (AD) is an age-related neurodegenerative disorder and a major challenge 
for healthcare and social care due to its high prevalence and costs. Early detection of AD is 
critival for  treatment and prevenetion, and this requires a robust biomarker that can identify 
the disease in prodromal stages such as Mild Cognitive Impairment (MCI) (Petersen, 2009). 
Such biomarkers may also provide disease progression monitoring in clinical trials. 
Neuroimaging techniques offer a range of potential biomarkers of structural, metabolic and 
functional changes in the brain related to AD and MCI (Cabeza et al., 2018; Tartaglia et al., 
2011; Woo et al., 2017).  
 
Magnetic Resonance Imaging (MRI) is a key such technique, which can be tuned to various 
tissue properties. The most common of these is the T1-weighted contrast between gray-matter 
and white-matter – so called “structural MRI” (sMRI) – which can be used to estimate reduction 
in the grey-matter volume of various brain regions owing to the atrophy in AD. This is a 
standard approach in assessment of dementia (Frisoni et al., 2010; Nestor et al., 2004). 
However, AD affects neuronal physiology before cell death and atrophy (Dubois et al., 2016; 
Han et al., 2012; Jack et al., 2017, 2013). Although functional MRI (fMRI) can be used to 
measure changes in neural activity and/or connectivity (Agosta et al., 2012; Suckling et al., 
2015; van den Heuvel and Hulshoff Pol, 2010; Wang et al., 2006), fMRI only provides an indirect 
measure of neural function. This is because it relies on the haemodynamic response to neural 
activity, and is therefore confounded by changes in the brain’s vasculature that occur with age 
and neurodegenerative disease (Tsvetanov et al., 2019). Furthermore, the slow haemodynamic 
response limits fMRI to a temporal resolution of seconds.  
 
More direct measures of neural activity can be obtained by Electroencephalography  (EEG) and 
Magnetoencephalography (MEG), which measure the electromagnetic fields produced by 
dendritic dipoles within active neurons (Hari, MD, PhD and Puce, PhD, 2017; Stam, 2010). 
These can be sampled at a resolution of milliseconds, revealing a rich repertoire of neural 
dynamics, including oscillatory rhythms that occur at frequencies between 2 and 100 Hz, such 
as “alpha” (8-12Hz) and “gamma” (30+Hz), some of which have also been implicated in AD 
(López-Sanz et al., 2018). MEG offers an advantage over EEG in that the magnetic fields are 
less distorted and smoothed by the brain-skull interface than are electric fields, resulting in 
higher spatial resolution (Maestú et al., 2019). We therefore focus on MEG measures of neural 
activity (during rest) to see if they provide information for MCI classification that is 
complementary to the structural information in sMRI. 
 
The general advantage of multi-modal integration (combining information from more than one 
neuroimaging technique) has been appreciated for many years, on the assumption that each 
modality reveals information about somewhat different aspects of the underlying neural 
circuity (Engemann et al., 2020; Henson et al., 2011; Kumral et al., 2020; Nentwich et al., 2020) 
and consistent with findings that combining multiple modalities can improve AD classification 
(Patel et al., 2008; Polikar et al., 2010). For example, using various different machine learning 
techniques, Patel et al. (2008) and Polikar et al. (2010) all found that combining EEG and sMRI 
improved diagnosis of AD versus controls compared to using individual modalities alone 
(though see (Farina et al., 2020)). Note however that the EEG data were collected during an 
auditory oddball paradigm, rather than the more common resting-state as used here. (Colloby 
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et al., 2016) is the only study we could find that compared resting-state EEG data and structural 
MRI, but they focused on distinguishing relatively late cases of  AD versus Lewy-body dementia, 
rather than distinguishing relatively early and probable cases of AD (i.e, MCI) versus healthy 
controls, as done here.  
 
Neuroimaging produces many measurable properties (or “features”) from each participant, 
such as ~100,000 voxels in an sMRI image or ~1,000,000 timepoints in ~300 sensors in MEG, 
which normally exceeds the number of participants (typically ~100). Identifying which features 
are important for classifying AD therefore benefits from machine learning techniques (Wolfers 
et al., 2015), such as kernel-based approaches. A kernel is a square matrix containing a measure 
of the similarity between every pair of participants in their feature values. Classification based 
on kernels rather than raw data is robust and efficient for high-dimensional pattern 
classification (Schölkopf and Smola, 2018; Shawe-Taylor and Cristianini, 2004). More 
specifically, we used Multiple Kernel Learning (MKL) (Gönen and Alpaydın, 2011), which 
optimises the weighting of kernels from each modality, which is generally better than simply 
concatenating features across modalities, particularly when the modalities differ in the number 
of features and/or those features are incommensurate (such as volume in mm3 for sMRI versus 
magnetic field power in fT2 for MEG) (Donini et al., 2016; Hughes et al., 2019; Korolev et al., 
2016; Liu et al., 2018; Peng et al., 2019; Wee et al., 2012; Youssofzadeh et al., 2017; Zhang et 
al., 2011). Adding kernels to the classification model is also a better way to accommodate 
potentially confounding variables (such as the age of MCI and Control cases) than is the more 
common approach of first adjusting the data (features) for those variables (Dinga et al., 2020; 
Snoek et al., 2019). 

Most importantly, we compared results from combining modalities at three different stages: 
early, intermediate and late (Figure 1). By early combination, we refer to simple concatenation 
of the features of each modality, after normalising them by their standard deviation across 
participants (i.e., to unit-less quantities with comparable numerical range). By intermediate 
combination, we refer to the typical MKL approach of optimising the weighting of kernels 
derived from the features of each modality (or confound). By late combination, we refer to the 
application of MKL to kernels derived from the class predictions after classifiers are run on each 
modality separately. The latter is closer to the “ensemble learning” philosophy (Kuncheva, 
2014) and “stacking” approach used by Engemann et al. (2020).  

Materials and Methods 
 

Participants 

We included resting-state MEG and T1-weighted structural MRI data from the BioFIND dataset 
(Vaghari et al., 2021), which includes patients with Mild Cognitive Impairment (MCI) and 
Healthy Elder Controls (HEC) from two sites: the MRC Cognition & Brain Sciences Unit (CBU) in 
Cambridge, England, and the Centre for Biomedical Technology (CTB) in Madrid, Spain. The 
MCI diagnosis was determined with intermediate probability according to the National 
Institute on Aging–Alzheimer Association criteria (Albert et al., 2011), i.e, given by a clinician 
based on clinical and cognitive tests, self- and informant-report, and in the absence of full 
dementia or obvious other causes (e.g, psychiatric). For technical details regarding the MEG 
and MRI data acquisition, see (Vaghari et al., 2021). After excluding 15 cases without an MRI, 
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and 2 with MRIs with dental artifacts, there were 163 HEC and 144 MCI datasets. A summary 
of sample characteristics is reported in Table 1, which includes variables that could affect MCI 
status (such as education) or could affect brain activity in general (such as time of day of 
testing) or could affect the MEG data specifically (such as head motion or distance from 
sensors). A small number of missing values were imputed using the mean from non-missing 
values for each variable. The imputed data are available in the tab-separated value file 
“participants-imputed.tsv” on the GitHub repository  
(https://github.com/delshadv/MRI_MEG_Combination).  
 
Table 1 Characteristics of BioFIND participants with clean MRIs. CBU = Cognition & Brain Sciences Unit (Cambridge); CTB = 
Centre for Biomedical Technology (Madrid). Translation calculated every second from Maxfilter stage (see (Vaghari et al., 
2021)). Distance from sensors was calculated after coregistering the MEG to the MRI, and averaging the Euclidean distance 
between every sensor and each of 2562 vertices on a cortical mesh. SD = standard deviation. MMSE = Mini-Mental State 
Examination. 

Data Characteristic Groups 
HEC MCI 

1 Site (CBU/CTB) 89/74 63/81 
2 Sex (M/F) 82/81 74/70 
3 Age (years) 71.2 (7.0) 72.8 (6.8) 
4 Time of Day (24-hour) 12.8 (2.4) 12.6 (2.1) 
5 Mean head translation (mm) 2.0 (1.8) 2.1 (1.8) 
6 SD head translation (mm) 1.1 (1.1) 1.2 (1.1) 
7 Distance from sensors (mm) 113.0 (1.5) x103 113.3 (2.3) x103 
8 Education years 14.5 (4.4) 11.0 (5.2) 
- MMSE 28.8 (1.2) 25.9 (3.4) 

 

Confounds 

There were more HEC cases from the CBU site and more MCI cases from the CTB site, but the 
number of male/females was close to matched across the two groups. A two-sample T-test 
confirmed that, on average, the MCI group had lower MMSE scores, as expected from their 
clinical diagnosis, T(305)=9.63, p<0.001. However, they also had fewer years in education, 
T(305)=6.41, p<0.001, and were slightly older on average, T(305)=2.09, p<0.05, which may 
confound any group differences in MRI and/or MEG. While none of the other variables in Table 
1 differed significantly between the two groups, T’s<1.46, p>0.14, it is possible that 
combinations of them could predict MCI status above chance. We therefore included all of 
them as potential confounds (COFs), except MMSE. The reason we did not include MMSE as a 
confound is because this cognitive measure informs the MCI diagnosis, so would be circular 
(biased) to use as a predictor.  
 

MEG preprocessing 

The raw data were de-noised using signal space separation (SSS) implemented in MaxFilter 
2.2.12 (Elekta Neuromag) to suppress of environmental noise (Taulu and Kajola, 2005). For 
more details of max-filtered data and parameters applied to MEG data in BioFIND, please see 
(Vaghari et al., 2021). The max-filtered (and raw) data are available here: 
https://portal.dementiasplatform.uk/AnalyseData/AnalysisEnvironment. 
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The max-filtered data were read into MATLAB 2019a (MathWorks, Natick, MA, USA) using the 
SPM12 toolbox (http://www.fil.ion.ucl.ac.uk/spm/;(Penny et al., 2006). The minimum duration 
of resting-state data across participants was 120s, so the first 120s of data was used for all 
participants. The precise pre-processing steps are provided in the preproc_meg.m script in the 
GitHub repository (see above link). In brief, the 120s of data was down-sampled to 500 Hz and 
band-passed filtered from 0.5-98 Hz (via a high-pass filter followed by low-pass filter). The 
continuous data were then epoched into 2s segments, and bad epochs were marked using the 
OSL automatic artefact detection (https://ohba-analysis.github.io/osl-docs/). The number of 
bad epochs (M=4.66 for MCI and M=4.03 for HEC, out of 60 total) did not differ significantly 
between groups, T(305)=1.59, p=.11. Non-bad epochs were then concatenated again and 
bandpass filtered within each of six frequency bands. Visual inspection of the resulting data 
revealed residual some spikes, particularly in the high frequency bands (low gamma and high 
gamma). The number of outliers did not differ significantly between groups in any frequency 
band, T’s<1.33, p’s>.19, except Delta, T(305)=2.60, p=.01, and was always fewer than 1% of 
samples. These were replaced using the “clip” method of MATLAB’s filloutliers function.  
 

MRI preprocessing and feature extraction 

The de-faced, T1-weighted scans were processed in SPM’s DARTEL-VBM pipeline (Ashburner 
and Friston, 2000), as implemented in the preproc_mri.m script in the GitHub repository. Each 
MRI was first segmented into grey matter (GM) and white matter (WM) probability maps. 
These GM and WM images were then warped to an average template for the sample using 
diffeomorphic warping in the DARTEL toolbox (Ashburner, 2007), and this template 
transformed to MNI space. These transformation parameters were then applied to each 
participant’s GM image, modulated so as to preserve local GM volume, and the GM values 
resampled into MNI space together with a spatial smoothing by a 1mm FWHM isotropic 
Gaussian kernel to remove interpolation artifacts. Finally, 110 MRI features were used for 
classification, representing the mean across voxels within the 110 anatomical ROIs of the 
Harvard-Oxford Atlas (Kennedy et al., 1998; Makris et al., 1999)1.  
 

MEG Feature extraction 

We focused on sensor level features, rather than reconstructing the sources of the MEG data. 
Firstly, it is unclear whether source reconstruction provides additional information for 
classification with real data. Since sensor data are a linear combination of source data (mixed 
through a “forward model”, Hari & Puce, 2017), there no degrees of freedom are gained when 
estimating source amplitudes. Having said this, when classifying on the basis of non-linear 
functions of the data, such as the (co)variance (power) features used here, this equivalence 
between sensor and source features is lost (Sabbagh et al., 2019) It is true that an accurate 
forward model (which accommodates differences in head position and anatomy) helps align 
features across participants, and simulations show improvements when estimating sources 
(Sabbagh et al., 2020), though in practice there are always errors in the forward model and 
noise in the data that prevent perfect alignment. Indeed, there are normally more sources than 
sensors, rendering the source estimation problem ill-posed, and requiring additional 
assumptions to regularize the solution. Secondly, and perhaps more importantly, since an sMRI 
is necessary to construct an accurate head model, for present purposes of comparing MRI and 

 
1 ROI numbers 111-116 in the HOA are spurious or non-cortical. 
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MEG classification, we did not want information from the MRI to contaminate the MEG 
features.2  
 
The MEG data come from one magnetometer (MAG) and two, orthogonal planar gradiometers 
(GRD) at each of 102 locations above the head (i.e., 306 channels in total). MAGs measure the 
component of the magnetic field that is perpendicular to the sensor, whereas GRDs estimate 
the spatial derivative of the magnetic fields in two orthogonal directions in the plane of the 
sensor (which is roughly parallel to the scalp). By taking the spatial derivative, GRDs are less 
sensitive to distant sources, such as environmental noise, and so have a higher signal-to-noise 
ratio for signals close by, i.e., in superficial cortex. By contrast, MAGs are more sensitive to 
deeper signals in the brain, but also more susceptible to noise. The best way to combine GRD 
and MAG data is a matter of contention because they have different SI units (Garcés et al., 
2017), but by using separate kernels for each, we do not need to combine them directly. 
 
We focused on the second-order moments of MEG data, i.e., the data covariance across 
sensors (which is incidentally what most source localization methods are based on). The 
variances are related to the signal power in each sensor, whereas the covariances are related 
to the cross-spectral power. Note that sensor covariances capture aspects of both brain activity 
and connectivity (and can only be attributed solely to connectivity between sources after 
adjusting for field spread, i.e, linear mixing by the forward model, Engemann et al., 2020). This 
meant 102 features for MAG variance and 204 features for GRD variance, both corresponding 
to the spatial distribution of power across the scalp, with 5,151 covariance features for MAGs 
and 20,706 covariance features for GRDs. Note however that our preprocessing of the MEG 
data (during the MaxFilter stage above) includes a dimension reduction to 69 and 66 
components for MAG and GRD respectively (see Supplementary Figure 6), so the rank of the 
covariance matrices is less. This does not matter for our classification results, since when we 
reduced the dimensionality further, using principal component analysis (PCA) to calculate the 
number of components needed to explain 95% of the total variance in the MEG features across 
participants, the pattern of classification results was hardly changed (see Supplementary 
Figure 6), with slightly worse accuracies overall. 
 
Each of these features was calculated for 6 frequency bands: Delta [2-4 Hz], Theta [4-8 Hz], 
Alpha [8-12 Hz], Beta [12-30 Hz], low Gamma [30-48 Hz] and high Gamma [52-86 Hz]. Note 
that we did not relativize power in each frequency band to the total power (across all 
frequencies), e.g. by normalizing the timeseries before estimating power (Hughes et al., 2019). 
While such normalization allows for differences in overall signal strength owing to the 
proximity of the head (brain) to the sensors, the danger of normalizing power in this way is 
that it could also remove true power differences between MCI and HEC. We therefore used 
absolute power, but by including the mean distance between the brain and sensors as a 
confound, were able to make some allowance for different head positions (after squaring, since 
the magnetic field strength falls off with at least the square of distance). 
 

Multimodal Classification 

 
2 There are data-driven alternatives, for example to adjust the sensor covariance to more accurately reflect 
source covariance using Riemannian Embeddings (Sabbagh et al., 2020), which could be tried in future and 
compared with present results. 
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We compared three stages of combining MEG and MRI data: 1. Early combination: features 
from MRI and MEG are normalised and then concatenated and fed to a single classifier; 2. 
Intermediate combination: features from MRI and MEG are projected to kernels and MKL then 
forms an optimal kernel from a function of the original kernels that maximises multimodal 
classification accuracy; 3. Late combination: MRI and MEG features are fed to one or more 
classifiers whose continuous-valued outputs (a prediction related to the probability of 
membership of each class or distance to decision boundary) are then combined in an optimal 
way, again using MKL (Gönen and Alpaydın, 2011; Kuncheva, 2014; Noble, 2004). According to 
a common taxonomy of classifier ensemble methods, our late combination is a type of “stacked 
generalization”, since the outputs of the individual classifiers for each modality are treated as 
inputs to a meta classifier (here EasyMKL) (Engemann et al., 2020; Wolpert, 1992). It is also 
worth mentioning that in pattern recognition, early combination is categorised as “feature 
level” combination whereas late combination is classified in “decision level” combination. 
Using intermediate or late combinations can be a natural way to control confounds (COF) 
effect, namely by adding one or more kernels for the (see Discussion). A comparison schematic 
of these approaches is presented in Figure 1. 

 

 

Kernel methods project the data features into matrices (kernels) that represent the similarity 
of the feature vectors between every pair of observations (here, participants), and optimise 

 

 
Figure 1. Schematic showing the three different combination stages used here: early (feature 
concatenation), intermediate (kernel combination) and late (decision combination). N is number of 
kernels. GM = Gray-Matter, HOA = Harvard-Oxford Atlas, COFs = (potential) Confounds. 
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classification performance based on these kernels (thus each kernel in the present case was a 
307 x 307 matrix, regardless of the number of features per modality). Kernels are the basis of 
several types of classifiers such as MKL (Gönen and Alpaydın, 2011). A linear MKL learns a 
coefficient vector η that weights each kernel k to produce an optimal kernel K according to: 

𝐊 = #η!𝐤!	, 	η! > 0
"

!#$

 

 
where n = 1,2,…N is number of base kernels. Note that we used linear kernels (as well as linear 
combination), which is recommended when the number of features is larger than the number 
of participants, i.e., when there is insufficient data to fit more complex nonlinear kernels.  
 
EasyMKL is a MKL algorithm that estimates the relative weighting of each kernel by solving a 
quadratic optimization problem. Kernels that are not helpful for classification are down-
weighted. EasyMKL’s empirical effectiveness has been demonstrated across a large range of 
kernel numbers (Aiolli and Donini, 2015; Donini et al., 2016). All features were Z-scored across 
participants before projecting into kernels. We also employed L1 (min-max) normalization of 
kernels to project all their elements to the interval [0 1]. To ensure that any differences 
between combination methods did not reflect details of the classifier, the same EasyMKL 
algorithm was used in all cases (even when only N=1 kernel in the case of early combination).  
 
The EasyMKL algorithm use a regularization parameter, lambda (λ). A value of λ close to 1 
penalizes less informative data, though potentially under-fits data, while a value of λ close to 
zero does not penalize less informative data, so potentially over-fits data (in that results may 
be sensitive to outliers in the training data;(Hastie et al., 2009). Here, we use λ=0.1 for Early 
and Intermediate combination. For Late combination, the same λ=0.1 was used for the first 
stage of feature kernel combination, but for the second stage of decision combination, we used 
λ=1 because previous work showed better performance with higher regularization of the 
second stage relative to first stage (Reid and Grudic, 2009). These values were set a priori (i.e., 
we did not optimize them using nested-cross-validation). Note however that the better 
classification for Late combination is not simply because of this larger regularization parameter 
(in the second stage), because accuracy for Early and Intermediate combination was actually 
worse, rather than better, when we did a control analysis with λ=1 for Early and Intermediate 
combination. 
 
Classification performance was estimated using 5-fold cross-validation. Note this applied to 
both stages of late combination, i.e., performance was always assessed using the untrained 
fold. Though the overall sample was unbalanced (with more HEC cases than MCI cases), the 
training set was always selected to be balanced, and the excess HEC participants were assigned 
to the test set. Given this imbalance in the test set, we report “balanced” classification 
accuracy, i.e., the mean accuracy across each class separately. Noise simulations in the 
Supplementary Figure 1 confirmed that our estimation procedure was unbiased. 
  
Cross-validation was repeated 1000 times with random selections of the data, in order to 
estimate classification reliability. Note that the specific random assignment of participants to 
training/test sets was matched when comparing different combination methods, meaning that 
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classification accuracies could be directly subtracted for each comparison of interest, such that 
we could determine the percentage of the distribution of differences in classification 
accuracies that was greater than zero. This provides an approximation of the reliability of any 
improvement offered by one approach versus another (e.g., combined MEG and MRI versus 
MRI alone, or intermediate vs late combination of MEG and MRI).  
 
Results 
 

Confounds and single MRI and MEG modalities 

 
Panel a1 in Figure 2 shows the distribution across 1000 permutations of classification 
accuracies based on 8 kernels, each representing one of the potentially-confounding variables 
(COFs). The mean accuracy was 58.7%, and above chance (50%) on 98% of occasions. These 
results come from late combination of the 8 kernels; results using intermediate and early 
combination are shown in Supplementary Figure 3 and 4. This relatively low level of 
performance suggests that the two groups were reasonably well-matched in these variables, 
but the reliable above-chance classification (which may be accidental or causal) provides a 
baseline to compare with classification using the MEG and MRI features. 
 
For a single kernel based on the MRI features (of GM volume within 110 anatomical ROIs), 
Panel b1 of Figure 2 shows a mean accuracy of 72.0% (note that there is no distinction between 
early, intermediate and late combination for a single kernel). To test whether this is a reliable 
improvement relative to COFs alone, Panel a2 of Figure 2 shows the distribution of differences 
between accuracies based on MRI versus COFs (when using the same permutations), which 
showed that MRI was more accurate on 100% of occasions. This demonstrates that MRI 
provides more information about MCI status than the potential other confounds considered. 
 
For the MEG features, we start with using the covariance across GRDs in the low Gamma range  
(see later for results using other MEG features). Panel c1 of Figure 2 shows a mean accuracy of 
67.3%. While this MEG performance was higher than the baseline provided by the COFs on 
98% of occasions (Panel b2), it was lower than for MRI on 91% of occasions (Panel c2). This 
finding that MRI is generally better than MEG is not surprising, since an MRI is also often used 
to define the MCI label, i.e., is likely to be biased (see Discussion). The more interesting 
comparison is whether combining MEG and MRI improves classification relative to MRI alone, 
which we return to after the next section. 
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Adjusting for confounds 

Panels d1 and e1 show results from late combination of the COF kernels and either the MRI or 
MEG kernel respectively. The addition of the COF kernels slightly improves accuracy for both 
neuroimaging variables, but the more important result is in Panels d2 and e2, which show that 
these combinations are better than COFs alone on 100% of occasions for both MRI and MEG. 
This method of combining predictions from confounds (covariates) with those from features 
of interest (e.g. MRI) is arguably a better way to adjust for confounds than projecting them out 
of the features of interest themselves (Dinga et al., 2020; Snoek et al., 2019). 

Advantages of early, intermediate and late combination of MRI and MEG 

  
Figure 2 Left column: Classification accuracies (chance = 50%) from 1000 random permutations 
using late combinations of MRI, MEG (covariance of gradiometers in low-gamma band) and the 8 
potential confounding variables. Right column: Differences in classification performance for each 
permutation when comparing various combinations of features in left column (where 0 = means no 
difference). “A,B” means combining two (or nine - in presence of confounds) predictions derived 
from models trained using modality-type A and modality-type B. 
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Figure 3 shows classification accuracies when combining the MRI and MEG features at either 
early, intermediate or late stages. Panel a1 shows that accuracy for early combination is 69.7% 
which is less than MRI alone (72.0%). This demonstrates that concatenating features from 
different modalities is not an efficient way to combine them. For Intermediate combination on 
the other hand, performance is improved on 94% of occasions (Panel a2), with a mean accuracy 
of 75.2% (Panel b1). This demonstrates that combining feature kernels is better than 
concatenating features for these data. Late combination improves performance still further, 
improving on Intermediate combination on 93% of occasions (Panel b2), with a mean accuracy 
of 78.2% (Panel c1). This demonstrates that combining decision kernels is better than 
combining feature kernels for these data. 

 
Perhaps the most important result is shown in Panel c2, which shows that late combination of 
MEG and MRI improves classification accuracy compared to MRI alone on nearly 100% of 
occasions (99.7%). This suggests that MEG provides information about MCI status that is 
complementary to that in MRI. The same improvement occurred on 99.7% of occasions when 
the 8 COF kernels were also added (Panel d1 and d2), showing that this complementary 
information is also different from anything captured by the potential confounds. The same 
improvement was also found when massively reducing the ratio of MEG features relative to 
MRI features by using PCA (Supplementary Figure 6). 

Combining MRI and other MEG features  

Given that we selected the COV of GRD in low Gamma as the MEG features, it is possible that 
the above results are biased by this selection: i.e., when examining all 24 possibilities of 
variance/covariance (VAR/COV), gradiometers/magnetometers (GRD/MAG) and the 6 
frequency bands, it is possible that one or more of them would show better performance when 
combined with MRI (than MRI alone) due to chance alone. We therefore repeated the above 
analyses across all frequency bands using both VAR and COV of both GRD and MAG. The results 

  
Figure 3 Left column: Classification accuracies (chance = 50%) from 1000 random permutations 
using MEG, MRI with early, intermediate and late combinations (see methods). Right column: 
Differences in classification performance for each permutation when comparing various 
combinations approach (where 0 = means no difference). 
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are shown in Table 2, where the top numbers show the mean and standard deviation of 
classification performance when using late combination of that MEG feature with MRI, and the 
bottom numbers show the percentage of permutations in which this combination was better 
than MRI alone. (See Supplementary Table 1 for raw performances for MEG features alone.) 
 
Note that for low frequencies (Delta, Theta and Alpha), accuracy when combining them with 
MRI did not exceed that for MRI alone (72%) – i.e. was only greater on 50% occasions, as 
expected by chance. For the Beta band, combined accuracy increased slightly, being better 
than MRI alone on 94% of occasions for the COV of GRD. For low Gamma, multimodal accuracy 
was consistently better for all four types of feature, suggesting that the choice of VAR/COV or 
MAG/GRD does not make a big difference (see Supplementary Figure 5 for more evidence). 
The same was also true of high Gamma. The finding that multimodal combination improved 
accuracy for over a third of the feature space suggests that the improvement is not a fluke 
occurrence.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

MEG Feature 
 

Frequency band 

COV  
of MAG 

VAR  
of MAG 

COV  
of GRD 

VAR  
of GRD 

Delta 
2-4 Hz 

72.1 (2.4) 
> MRI on ~50% 

72.1 (2.5) 
> MRI on ~50% 

72.1 (2.3) 
> MRI on ~50% 

72.0 (2.3) 
> MRI on ~50% 

Theta 
4-8 Hz 

72.1 (2.4) 
> MRI on ~50% 

72.1 (2.5) 
> MRI on ~50% 

72.1 (2.3) 
> MRI on ~50% 

72.0 (2.4) 
> MRI on ~50% 

Alpha 
8-12 Hz 

72.2 (2.4) 
> MRI on ~50% 

72.1 (2.5) 
> MRI on ~50% 

72.0 (2.3) 
> MRI on ~50% 

72.0 (2.4) 
> MRI on ~50% 

Beta 
12-30 Hz 

72.5 (2.3) 
> MRI on ~72% 

72.2 (2.5) 
> MRI on ~50% 

74.2 (2.4) 
> MRI on ~94% 

72.4 (2.4) 
> MRI on ~70% 

Low-Gamma 
30-48 Hz 

75.1 (2.5) 
> MRI on ~99% 

73.1 (2.4) 
> MRI on ~87% 

78.2 (2.4) 
> MRI on ~100% 

75.8 (2.4) 
> MRI on ~99% 

High-Gamma 
52-86 Hz 

74.5 (2.5) 
> MRI on ~98% 

73.5 (2.4) 
> MRI on ~93% 

76.9 (2.4) 
> MRI on ~99% 

74.6 (2.4) 
> MRI on ~95% 

Table 2 Exploring the MEG feature space. The top numbers show mean (and SD in brackets) of 
classification accuracy when combining the relevant MEG feature with MRI, while the percentage below 
shows the percentage of permutations in which this accuracy exceeded that of MRI alone (72%), where 
chance = 50%. 
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Discussion 
 
The main finding of the present study was that certain features of MEG resting-state data, 
particularly in the low and high Gamma frequency range, improve classification of MCI patients 
versus healthy controls when combined with features from structural MRI data. While 
classification accuracy with MEG alone never exceeded that for MRI alone, this is not 
necessarily surprising, since an MRI is typically used by the clinicians to support the diagnosis 
of MCI (i.e., giving MRI an unfair advantage). The important result was that combining MEG 
with MRI improved classification relative to MRI alone. This indicates that MEG contains 
complementary information about MCI. This information might include changes in functional 
activity and/or connectivity that precede structural change, at least as measured by regional 
gray-matter volume as here (Dubois et al., 2016; Han et al., 2012; Jack et al., 2017, 2013). 
 
The second main finding of the present study was that late combination of MEG and MRI data 
was best for multimodal classification, i.e., better than intermediate or early combination. Late 
combination here refers to combining the class predictions of classifiers trained on each 
modality separately, analogous to ensemble learning (Kuncheva, 2014). Permutation tests 
showed that this combination at the “decision-level” reliably improved accuracy relative to 
intermediate combination at the “feature-level”, where kernels derived from the features of 
each modality were combined directly. As expected, intermediate combination via kernels was 
in turn better than simply concatenating (normalized) features into a single kernel. Note that 
these findings were obtained when the same classification algorithm (EasyMKL; (Aiolli and 
Donini, 2015) - i.e., multi-kernel learning of support vector machines - was used for each level 
of multimodal combination. 
 
A third finding was that, while the choice of using either the variance or covariance of MEG 
magnetometers or planar gradiometers did not make a big difference to multimodal 
classification accuracy, it was important to consider high-frequency components of the MEG 
data, specifically the low (30-48 Hz) or high (52-86 Hz) Gamma range. Accuracy when using the 
Beta range did not produce such a large improvement over MRI alone, while that for Alpha, 
Theta or Delta provided no improvement. This suggests that the important information for MCI 
classification exists in frequencies above approximately 30 Hz (see below for further 
discussion). 
 
A fourth outcome was the demonstration that potential confounds in any classification 
problem can be accommodated within a multi-modal combination approach, in which 
confounds are combined with the features of interest during classification (note this applies 
whether the combination is early, intermediate or late). To “control for” such confounds, one 
can show that classification accuracy with the combined data reliably exceeds that for the 
confounds alone. This is better than the common approach of first adjusting the features of 
interest by the confounds (e.g., by projecting out of the features of interest anything that can 
be explained by a linear combination of the confounds, i.e., before creating the feature 
kernels), because it takes into account the potential shared dependency between the features 
of interest and the confounds in their ability to predict the class (Dinga et al., 2020). 
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Furthermore, some classifiers are non-linear, and therefore potentially sensitive to effects of 
confounds that cannot be removed from the features by linear methods. 
 

Complementary information in MEG/EEG for MCI classification 

 
Previous studies have shown that EEG and/or MEG provide complementary information 
beyond structural MRI, whether that be in predicting age (Engemann et al., 2020) or classifying 
types of dementia (Colloby et al., 2016; Patel et al., 2008; Polikar et al., 2010). Some of these 
have used evoked EEG responses during tasks (e.g., auditory oddballs (Patel et al., 2008; Polikar 
et al., 2010), which may provide further information on neurodegeneration than the resting-
state data used here, though resting-state data are at least more common and easier to obtain, 
particularly in patients who might struggle with some tasks. In the data paper describing the 
format and access to the BioFIND dataset (Vaghari et al., 2021), we reported validation 
analyses that showed that MEG power across all sensors, or power across all cortical sources, 
or connectivity between all pairs of sources (based the correlation of the power envelopes) 
achieved similar classifcation accuracies between 63-67%, comparable to the figure of 67% 
here for MEG alone (at least for COV of GRD in low Gamma). However, in that paper, we did 
not compare MEG classification with that from MRI. In a previous paper describing the larger 
BioFIND project (Hughes et al., 2019), we did report preliminary findings that intermediate 
combination of MEG and sMRI improves classification, using a subset of roughly half (N=168) 
of the present cases. However, this finding used different features (interpolated 3D scalp-
frequency power images for MEG and voxel-level GM images for sMRI) and did not establish 
the reliability of the improvement using permutation. The present work confirms the reliability 
of these findings, and extends the approach to demonstrate the added value of late 
combination of modalities, and the potential value of covariance, rather than power, across 
MEG sensors within certain frequency bands.  
 
It is important to note that we have only used one type of structural brain information – namely 
gray-matter volume as estimated within 110 ROIs from a T1-weighted MRI. Other MRI 
modalities (e.g., T2-weighted MRI, diffusion-weighted MRI, magnetic resonance spectroscopy, 
MRS) – or indeed even other ROI selections or different pre-processing of the current T1-
weighted images – might enable better MCI classification, to the extent that MEG no longer 
adds further improvement. Furthermore, other imaging techniques like PET might do better 
still, given their ability to measure neurotransmitters or molecular pathologies directly related 
to AD. However, our main purpose here was to compare MEG with the most common type of 
brain image available on MCI patients, and most common type of informal inspection done by 
clinicians, i.e. looking for gray-matter atrophy. 
 
We cannot tell whether the complementary information provided by MEG here relates to the 
fact that it measures brain activity/connectivity rather than brain structure, or simply that it is 
a completely different type of brain measurement with different spatial and temporal 
properties. Indeed, it would be interesting to apply the present multimodal classification 
approach to fMRI data, to see if MEG continues to provide more information than fMRI. If MEG 
does not improve classification beyond fMRI, then the key additional information for better 
MCI classification might simply be the inclusion of measures of brain function rather than 
structure; alternatively, if MEG does improve beyond fMRI, it may be that MEG captures neural 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 22, 2021. ; https://doi.org/10.1101/2021.05.20.21257522doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.20.21257522
http://creativecommons.org/licenses/by/4.0/


15 
 

activity more directly (bypassing the vascular confounds in fMRI) and/or neural activity that is 
beyond the temporal resolution of fMRI. Unfortunately resting-state fMRI is not available in 
BioFIND, but is likely to be available together with MEG/EEG and sMRI in future cohorts being 
studied around the world. Likewise, one could test whether the improved spatial resolution of 
MEG over EEG also provides additional information for MCI classification, and whether task-
based MEG/EEG provides additional information beyond the resting-state data used here. 
 

Multimodal classification approaches 

 
Our best classification accuracy of 78% when using MEG and MRI may not seem particularly 
impressive, for example relative to figures reported in other papers using different modalities 
and datasets. However, it is important to note that our aim was not simply to achieve the best 
classification possible. For example, while we found similar results after PCA to reduce the 
feature dimensionality (Supplementary Figure 6), we could have employed more sophisticated 
feature selection approaches that might have improved classification accuracy, particularly 
given the large number of MEG features relative to participants, or we could have tried to 
minimize effects of field spread on our second-order (covariance) features by employing spatial 
filtering or Riemannian Embeddings (Sabbagh et al., 2020). Furthermore, we could have used 
neuroscientific knowledge to select features, for example based on knowledge that the medial 
temporal lobes include some of the structures affected in the earliest stages of AD (Frisoni et 
al., 2010; Shi et al., 2009). We could have even optimized the EasyMKL hyper-parameter (e.g., 
using nested cross-validation) instead of choosing a fixed value at the outset. Rather, our aim 
was only to compare the relative performance of different modalities and different methods 
of combining those modalities, while holding other factors constant. 
 
It is also important to note that there are likely to be errors in our MCI labels, since they are 
based on clinician’s diagnoses. For example, some of the participants labelled as MCI in the 
BioFIND dataset may in fact have healthy brain structure and/or function (i.e., no evidence of 
early AD), but just perform poorly on cognitive tests because of other reasons like depression. 
Indeed, an appreciable proportion of clinically diagnosed MCI cases later turn out to have no 
detectable AD pathology (Petersen, 2009). Conversely, some participants labelled as healthy 
controls may have had early AD and impairments of brain function and/or structure, but 
performed normally on cognitive tests because of high pre-morbid ability or some form of 
“cognitive reserve” (Stern, 2009). This places an upper limit on how well MEG and/or MRI could 
classify the present data. These issues can only be resolved by longitudinal follow-up, possibly 
with additional biomarkers (e.g., CSF Tau levels) and ultimately post mortem examination to 
confirm who had AD. While follow-up data are available on some of the BioFIND participants, 
and may be added in future, there was not currently enough to be able to utilize in the present 
analyses.  
 
It is important to note that, while the BioFIND dataset may be the largest sample of MCI 
patients and controls with MEG data, it is still small for machine-learning approaches, relative 
to the potential number of features (e.g., 20,706 for covariance of planar gradiometers). This 
dearth of training data may also explain why higher classification accuracies have been 
reported for other neuroimaging markers (e.g., sMRI) for which larger databases exist, such as 
ADNI (http://adni.loni.usc.edu/about/). As a reference, using MRI alone on the ADNI database 
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of N=1409 cases (294 patients with probable AD, 763 patients with MCI, and 352 healthy 
controls), (Basaia et al., 2019) reported an accuracy of 76% for stable MCI cases, using 
sophisticated deep neural net classifiers. Interestingly, this is only 4% more than achieved here 
using standard SVMs on a smaller set of MRI cases, though these authors did achieve a higher 
performance of 87% for those MCI cases who subsequently converted to confirmed AD, 
reinforcing the above point of heterogeneity within typical MCI cases. 
 
Furthermore, in situations with many more features than cases, overfitting is likely (Cawley and 
Talbot, 2007; Cristianini and Shawe-Taylor, 2000; Han and Jiang, 2014). This is a situation where 
late combination might increase generalisation to new datasets, by virtue of the combination 
of decisions being more robust to over-fitting (Kuncheva, 2014; Wolpert, 1992). Indeed, the 
simulations in Panel d of Supplementary Figure 2 confirm that Late combination can be better 
than Intermediate combination when more noise features are added i.e., is more robust 
against addition of weak (in terms of accuracy) classifiers trained on noisy features. Note 
however that Late combination is not always better than Intermediate combination, and multi-
kernel combination is not always better than simple feature concatenation (Early 
combination), as can be seen by comparing accuracy for the 8 COFs in Figure 2 with 
Supplementary Figures 3 and 4, i.e., in situations with relatively low numbers of features. These 
results depend on the regularisation parameters used, which would ideally be optimised as a 
function of the specific features too, but is beyond the present remit. 
 

Optimal MEG features for MCI classification 

 
Our finding that low and high Gamma frequencies provide the information that is 
complementary to MRI is consistent with some previous M/EEG studies of MCI or genetic risk 
that highlight the importance of the gamma band (Bajo et al., 2010; Luppi et al., 2020; 
Missonnier et al., 2010; van Deursen et al., 2008) (Koelewijn et al., 2019). However, other 
M/EEG studies of MCI (Garcés et al., 2013; Hughes et al., 2019; López et al., 2014; López-Sanz 
et al., 2018; Maestú et al., 2019; Nakamura et al., 2018) have argued that the alpha band is 
best for distinguishing MCI versus controls. One possibility is that the information about MCI 
status provided by Alpha power is correlated with the gray-matter atrophy provided by MRI, 
which is why we did not find any improvement when combining MRI with MEG covariance in 
this frequency band. However, it is worth noting that best classification accuracy with Alpha 
alone (~60%) was still considerably lower than for Gamma alone (~69%; Supplementary Table 
5). Another reason for this discrepancy in the literature may reflect the features used, for 
example, the amplitude or frequency of the prominent Alpha peak in MEG and EEG power 
spectra is a type of feature that is not simply (e.g. linearly) derivable from the Alpha covariance 
matrix used here. Other discrepancies may owe to the use of different and relatively small 
samples (N<100), possibly with different definitions of MCI patient, and to the wide range of 
methodological approaches (Yang et al., 2019). Thus, we do not wish to claim that Gamma 
frequencies, or more specifically covariance of planar gradiometers, are always the best MEG 
features to use for MCI classification. We only used the sensor covariance matrix as a simple 
but inclusive measure of functional activity and connectivity, and explored the range of 
frequency bands because of prior evidence that frequency matters. Nonetheless, future 
studies could use the present framework to ask whether specific MEG features offer additional 
information about MCI over other MEG features. 
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Supplementary material 
 
Supplementary material is available at xxx online.  
 
 
Code Availability 
The custom written codes to implement all validation analyses is available on GitHub 
(https://github.com/delshadv/MRI_MEG_Combination). All MEG and MRI features as well as 
other derived variables are available in comma separated value (.csv) files in “derived” 
directory within the repository. The raw data are available on the DPUK website 
(https://portal.dementiasplatform.uk/Apply) cited in main paper. 
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