
Dysbiosis and structural disruption of the respiratory microbiota in 1 

COVID-19 patients with severe and fatal outcomes  2 

 3 

Alejandra Hernández-Terán1, Fidencio Mejía-Nepomuceno1, María Teresa Herrera2, Omar Barreto3, 4 

Emma García3, Manuel Castillejos4, Celia Boukadida5, Margarita Matias-Florentino5, Alma Rincón-5 

Rubio5 Santiago Avila-Rios5, Mario Mújica-Sánchez6, Ricardo Serna-Muñoz1, Eduardo Becerril-6 

Vargas6, Cristobal Guadarrama-Pérez7, Víctor Hugo Ahumada-Topete4, Sebastián Rodríguez1, José 7 

Arturo Martínez-Orozco6, Jorge Salas-Hernández8, Rogelio Pérez-Padilla1, Joel Armando Vázquez-8 

Pérez1*. 9 

Affiliations 10 

1Departamento de Investigación en Tabaquismo y EPOC. Instituto Nacional de Enfermedades Respiratorias 11 

Ismael Cosío Villegas, INER. 12 

2Departamento de Investigación en Microbiología. Instituto Nacional de Enfermedades Respiratorias Ismael 13 

Cosío Villegas, INER. 14 

3Coordinación de Atención Médica. Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, 15 

INER. 16 

4Departamento de Unidad de Epidemiología Hospitalaria e Infectología. Instituto Nacional de Enfermedades 17 

Respiratorias Ismael Cosío Villegas, INER. 18 

5Centro de Investigación en Enfermedades Infecciosas, CIENI. Instituto Nacional de Enfermedades 19 

Respiratorias Ismael Cosío Villegas, INER. 20 

6Laboratorio de Microbiología. Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, 21 

INER. 22 

7Servicio de Urgencias Médicas. Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, 23 

INER. 24 

8Dirección General INER. Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, INER. 25 

 26 

*Corresponding author: Joel Armando Vázquez-Pérez, joevazpe@gmail.com 27 

Keywords:  28 

SAR-CoV-2, respiratory microbiota, severity, COVID-19, dysbiosis 29 



Abstract  30 

COVID-19 outbreak has caused over 3 million deaths worldwide. Understanding disease 31 

pathology and the factors that drive severe and fatal clinical outcomes is of special 32 

relevance. Studying the role of the respiratory microbiota in COVID-19 is particularly 33 

important since it´s known that the respiratory microbiota interacts with the host immune 34 

system, contributing to clinical outcomes in chronic and acute respiratory diseases. Here, 35 

we characterized the microbiota in the respiratory tract of patients with mild, severe, or 36 

fatal COVID-19, and compared with healthy controls and patients with non-COVID-19-37 

pneumonia. We comparatively studied the microbial composition, diversity, and microbiota 38 

structure across study groups and correlated the results with clinical data. We found 39 

differences in diversity and abundance of bacteria between groups, higher levels of 40 

dysbiosis in the respiratory microbiota of COVID-19 patients (regardless of severity level), 41 

differences in diversity structure among mild, severe, and fatal COVID-19, and the 42 

presence of specific bacteria that correlated with clinical variables associated with 43 

increased mortality risk.  Our data suggest that host-related and environmental factors could 44 

be affecting the respiratory microbiota before SARS-CoV-2 infection, potentially 45 

compromising the immunological response of the host against disease and promoting 46 

secondary bacterial infections. For instance, the high levels of dysbiosis coupled with low 47 

microbial structural complexity in the respiratory microbiota of COVID-19 patients, 48 

possibly resulted from antibiotic uptake and comorbidities, could have consequences for the 49 

host and microbial community level. Altogether, our findings identify the respiratory 50 

microbiota as a potential factor associated with COVID-19 severity. 51 

 52 

 53 

 54 

 55 

 56 



Introduction 57 

The Coronavirus Disease 2019 (COVID-19) outbreak, declared a pandemic by the World 58 

Health Organization on the 11th of March 2020, is caused by the Severe Acute Respiratory 59 

Syndrome Coronavirus 2 (SARS-CoV-2). As of May 2021, SARS-CoV-2 has infected 60 

more than 150 million people and caused over 3 million deaths worldwide1. COVID-19 61 

shows a wide spectrum of clinical manifestations ranging from asymptomatic infection and 62 

mild respiratory symptoms to severe pneumonia and death, 2,3 which has been related to 63 

demographic factors and comorbidities. To date, it has been shown that the aberrant 64 

immune response against SARS-CoV-2 antigens is critically involved in severe clinical 65 

outcomes and other secondary inflammatory conditions that remain after COVID-19 3,4. 66 

Studying the role of the human microbiota in COVID-19 is particularly relevant since it´s 67 

known that the respiratory microbiota interacts with the host immune system, contributing 68 

to clinical outcomes in chronic and acute respiratory diseases 5. The respiratory microbiota 69 

has a central role in shaping pulmonary immunity by boosting innate and adaptive immune 70 

responses. Suggesting that host immunity is regulated by interactions with the bacterial 71 

communities in the respiratory tract. 72 

Some studies suggest that the interactions between microorganisms and the host immune 73 

system are species-specific, denoting that even minor variations in the diversity and 74 

composition of the microbiota could have significant consequences on host´s health 6. For 75 

COVID-19, severe to fatal clinical outcomes are often associated with the presence of 76 

comorbidities that are known to display altered (dysbiotic) microbiota 7 (e.g., diabetes type 77 

II, obesity, age, and heart disease). Furthermore, in a wide range of microbiome-associate 78 

diseases (MADs), dysbiosis is a common feature that can impact disease progression 8,9. 79 



Nonetheless, few studies characterizing the respiratory microbiota in COVID-19 and the 80 

presence of dysbiosis are available to date 10–14. 81 

To gain insight into the association between respiratory microbiota and COVID-19 82 

severity; we characterized the microbiota in the respiratory tract of patients with mild, 83 

severe, or fatal COVID-19, and compared with healthy controls and patients with non-84 

COVID-19-pneumonia. We comparatively studied the microbial composition, diversity, 85 

and microbiota structure across study groups and correlated the results with clinical data. 86 

These analyses let us detect 1) differences in abundance of bacteria between groups, 2) 87 

higher levels of dysbiosis in the respiratory microbiota of COVID-19 patients, 3) 88 

differences in diversity structure among mild, severe, and fatal COVID-19 microbiota, and 89 

4) the presence of specific bacteria that correlated with clinical variables associated with 90 

increased mortality risk. In summary, our results demonstrate an increasing dysbiosis of the 91 

respiratory tract microbiota in COVID-19 patients coupled with a continuous loss of 92 

microbial complexity structure from mild to fatal COVID-19 that could potentially alter 93 

clinical outcomes. Altogether, our findings identify the respiratory microbiota as a potential 94 

factor associated with COVID-19 severity. 95 

 96 

 97 

 98 
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 100 



Results 101 

Study participants 102 

Since our sample set consists of upper and lower respiratory tract samples, we kept only 103 

upper respiratory samples for the main diversity and statistical analyses. Overall, a total of 104 

95 samples were analyzed (mild COVID-19 = 37, severe COVID-19 = 27, fatal COVID-19 105 

= 19, healthy control = 7, and non-COVID-19-pneumonia = 5). 106 

Demographic data, health-related characteristics, and symptomatology are described in 107 

Table 1. Overall, 52 patients were male (54.7%) with a median age of 45 years old (IQR: 108 

21). Regarding health conditions, 58.2% of the participants presented at least one 109 

comorbidity, being DM2 (17%), hypertension (17%), smoking (17%), and obesity (35%) 110 

the most widely represented in the cohort. The median days of symptom onset were seven, 111 

and 52.6% of the individuals received antibiotic treatment before hospitalization. 112 

Furthermore, we found important associations between some health/demographic 113 

characteristics and severity. For instance, patients with fatal COVID-19 were 114 

predominantly male (73.6%, p = 0.01), significantly older (median= 58, p = 6.57e-07), with 115 

higher BMI (median= 30.4, p = 0.05), and most of them received previous antibiotic 116 

treatment (78.9%, p = 0.002) compared with patients with severe and mild COVID-19. 117 

Also, a higher number of days after symptoms onset was found in the non-COVID-19-118 

pneumonia group (median= 10, p = 0.01).  119 

 120 

 121 



The respiratory microbiota composition differs among severity levels for COVID-19 122 

and controls  123 

From the 95 analyzed samples belonging to the upper respiratory tract, we identified a total 124 

of 4514 Amplicon Sequence Variants (ASVs). Regarding the analysis of the relative 125 

abundance (Fig. 1A), p_Firmicutes, p_Bacteroidetes, and p_Proteobacteria were the most 126 

dominant phyla among our severity groups and controls. In general, these phyla are present 127 

in all group samples but there are changes in the relative abundance associated with the 128 

disease severity. In general, we found p_Firmicutes, p_Actinobacteria, p_TM7, and p_SR1 129 

significantly increased in COVID-19 patients, while p_Bacteroidetes and p_Proteobacteria 130 

were found significantly decreased (Supplementary Table S2).  131 

The relative abundance analysis at the genus level revealed genera that significantly differ 132 

among COVID-19 patients and controls (Fig. 1B, Supplementary Table S2). In general, we 133 

found g_Veillonella, g_Staphylococcus, g_Corynebacterium, g_Neisseria, 134 

g_Actinobacillus, and g_Selenomonas significantly enriched in the COVID-19 patients but 135 

reduced in the healthy controls. In contrast, we found g_Haemophilus and g_Alloiococcus 136 

enriched in the healthy controls but reduced in the COVID-19 patients. Moreover, there 137 

were differences in the abundance of some genera among the severity levels for COVID-138 

19. For example, g_Streptococcus and g_Staphylococcus showed an increasing abundance 139 

from mild to fatal COVID-19. In contrast, g_Haemophilus and g_Actinomyces showed the 140 

opposite pattern, where the highest abundance is associated with mild COVID-19 and the 141 

lowest with the fatal COVID-19. Also, we found g_Corynebacterium highly abundant only 142 

in severe COVID-19, while g_Actinobacillus were found highly abundant only in fatal 143 

COVID-19. 144 



Besides, we compared the most abundant phyla for severe and fatal COVID-19 in the upper 145 

and lower respiratory tract (Supplementary Figure S3). In particular, we found differences 146 

at phylum and genus level. For instance, for severe COVID-19 patients, we found a higher 147 

abundance of p_Firmicutes, g_Neisseria, and g_Haemophilus in the lower respiratory tract. 148 

In contrast, we found p_Actinobacteria, p_Fusobacteria, p_SR1, and 149 

g_Staphylococcus enriched in the upper respiratory tract. For fatal COVID_19 patients, we 150 

found p_Proteobacteria, g_Streptococcus, g_Neisseria, and g_Capnocytophaga enriched in 151 

the lower respiratory tract albeit, in the upper respiratory tract, we found p_TM7, p_SR1, 152 

g_Corynebacterium, and g_Staphylococcus. Nonetheless, it is worth mentioning that 153 

regardless of the differences found in phyla abundance, we found no differences in beta 154 

diversity analyses.  155 

Alpha diversity 156 

Respecting diversity calculated with the Shannon-Wiener index (Fig. 2), we found healthy 157 

controls as the most diverse group and the non-COVID-19-pneumonia group (p < 0.05) as 158 

the less diverse. Although among severity groups the differences are not considerable, we 159 

did find significant differences among severe and fatal COVID-19 groups (p < 0.05).  160 

Beta diversity 161 

The beta diversity analyses showed differences in the microbiota composition among 162 

severity levels for COVID-19 and controls (Fig. 3A-B, Supplementary Table S4). 163 

Particularly, the PCoA analysis (Fig. 3A) showed differences among severity levels and 164 

control groups.  Such differences are supported by the PERMANOVA result (F = 2.7, p = 165 

0.007). Additionally, the dysbiosis analysis in terms of the Ružička metric allowed us to 166 



determine that the microbiota associated with COVID-19 (regardless of severity level) 167 

showed significantly higher levels of dysbiosis compared with healthy control 168 

(Supplementary Table S4).  169 

The LefSe analysis allowed the identification of differentially abundant taxa associated 170 

with the compared groups (Fig. 3B). We observed that all the COVID-19 severity groups 171 

and the two control groups showed differentially abundant taxa or biomarkers. In particular, 172 

for mild COVID-19, we found g_Prevotella melaninogenica and g_P. pallens, 173 

g_Veillonella parvula, g_Neisseria subflava, g_Fusobacterium, and g_Actinomyces as 174 

highly abundant. For severe COVID-19, we found g_Megasphaera and o_CW040 as the 175 

most prevalent. In the case of fatal COVID-19, g_Rothia dentocariosa, g_Streptococcus 176 

infantis, and g_Veillonella dispar were the most significant. Moreover, the higher number 177 

of differentially abundant taxa were found to be associated with healthy controls (e.g., 178 

g_Streptococcus, g_Flavobacterium, and g_Oribacterium, and f_Veillonellaceae). Finally, 179 

for the non-COVID-19-pneumonia group, we found g_Corynebacterium, g_Prevotella 180 

nigrescens, g_Capnocytophaga, and f_Enterobacteriaceae as the most abundant. 181 

Clinical variables associated with mortality risk correlate with specific microbial 182 

groups in the respiratory microbiota 183 

The Kaplan-Meier survival curves led to the detection of clinical variables that significantly 184 

correlated with survival probability (Fig. 4-A). For instance, we found that APACHE 185 

scores above 8 points, levels of Blood Urean Nitrogen (BUN) lower than 40 mg/dl, 186 

lymphocytes under 1.25x103/µl, myoglobin above 110ng/ml, troponin above 3.5ng/ml, and 187 

urea under 80mg/dl represent high risk by negatively affecting survival probability.  188 



The Lefse analysis allowed us to detect bacteria either enriched or depleted in the different 189 

risk factor groups for the analyzed variables (Fig. 4-B). We found g_Neisseria subflava 190 

depleted in the high-risk samples for troponin and APACHE. Moreover, g_Veillonella 191 

dispar interestingly was found depleted in the low-risk samples for APACHE, BUN, 192 

myoglobin, and urea. Nonetheless, we also found some bacterial groups that are constantly 193 

enriched in the samples with high-risk for several clinical variables. For instance, 194 

g_Corynebacterium was found enriched in the high-risk samples for lymphocytes count 195 

and urea, while g_Actinomyces was enriched in BUN and urea. Besides, four ASV´s of 196 

Prevotella genus (g_Prevotella melaninogenica; g_Prevotella; g_[Prevotella]; 197 

g_[Prevotella]_s) were found significantly enriched in the high-risk samples for 198 

myoglobin, BUN, troponin, and lymphocytes count.  199 

The structure of the respiratory microbiota is different among severity levels for 200 

COVID-19 201 

The network analysis for the microbiota associated with the severity levels for COVID-19 202 

revealed differences at a structural level (Fig. 5A-B). The graphic representation of the 203 

networks showed a different arrangement for each one and a continuum of loss of 204 

complexity across COVID-19 severity groups (from mild to fatal) (Fig. 3A). Particularly, 205 

the network of the microbiota associated with mild COVID-19 was the largest and more 206 

connected one (nodes= 148, edges = 4758) compared to severe COVID-19 (nodes=84, 207 

edges=688) and fatal COVID-19 (nodes=74, edges=75). Interestingly, in patients with fatal 208 

outcome, the network of the respiratory microbiome was highly disaggregated and poorly 209 

connected with multiple isolated nodes (nodes = 74, edges = 75). 210 



The metric calculation of the networks illustrates that the topology associated with each 211 

COVID-19 severity level is different (Figure 3B, Supplementary Table S5). For instance, 212 

the mild COVID-19 network exhibited the highest values for the average number of 213 

neighbors, density, and clustering. In contrast, the severe disease network was characterized 214 

by greater centralization, and heterogeneity, while the fatal disease network showed the 215 

highest values for diameter, characteristic path length, and connected components.  216 

 217 

 218 

 219 
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 229 



Discussion 230 

COVID-19 pandemic has raised major scientific efforts to identify factors associated with 231 

the different disease severity outcomes. Here, we characterized the respiratory microbiota 232 

as a potential factor affecting severity outcome for COVID-19. We assessed differences in 233 

diversity and structure of the microbial communities associated with a large cohort of 234 

patients and linked the results to clinical variables to get insights into the mechanisms by 235 

which the microbiota may impact host response against the disease.  236 

As well in recent studies investigating COVID-19 etiology 3, we found that demographic 237 

and health-related factors showed strong associations with severity. Male sex, high values 238 

for BMI, age above 50 years old, and previous antibiotic treatment were significantly 239 

associated with fatal COVID-19 patients (Table 1), thus potentially favoring the 240 

development of a fatal state of the disease. 241 

Likewise in previous work exploring COVID-19 associated respiratory microbiota 14,15 ,we 242 

found significantly lower microbial diversity in the microbiota of COVID-19 patients than 243 

in the healthy controls (Fig.1A). This result is relevant since, in general, more diversity is 244 

correlated with a better response of the microbial systems against perturbance (e.g., 245 

disease). A more diverse microbiota can persist after disease (e.g., by functional 246 

redundancy) or recovers to an earlier state (e.g., resilience) 16 having direct consequences 247 

on the host´s health 8. 248 

Furthermore, we found differences in the abundance of some bacteria among our study 249 

groups (Fig. 1A, Supplementary Table S2). In particular, as well as other respiratory dis-250 

eases 17, we observed an increased ratio of p_Firmicutes/p_Bacteroidetes in COVID-19 251 



patients. p_Firmicutes was detected highly abundant while p_Bacteroidetes where particu-252 

lar decreased in the microbiota associated to COVID-19 patients. This is of particular inter-253 

est since, in murine models, it has been proven that p_Bacteroidetes can down-regulate the 254 

expression of ACE2 18. Although the correlation was observed in gut microbiota, the par-255 

ticular low abundance of members of such phylum in severe and fatal patients in this work 256 

opens the question about if this process could also take place in the respiratory tract.   257 

 258 

Regarding the analysis at the genus level, the most significant differences were found in 259 

potentially pathogenic bacteria (Fig. 1B, Supplementary Table S2). We identified a gradual 260 

increase of g_Streptococcus from mild to fatal COVID-19. Although g_Streptococcus is 261 

usually a commensal member of the respiratory microbiota, it can become pathogenic in the 262 

face of environmental disturbs. In higher abundance, such genus it has been linked to viral 263 

acute respiratory infections 19,20. Furthermore, genera such as g_Veillonella, 264 

g_Staphylococcus, and g_Actinomyces also exhibited high abundance in the different sever-265 

ity levels for COVID-19. Specifically, g_Veillonella and g_Actinomyces have been found 266 

as opportunistic pathogens in COVID-19 21. Moreover, g_Staphylococcus is one of the 267 

most common causal agents of secondary infections in respiratory diseases such as influen-268 

za 22. 269 

 270 

           Regarding beta diversity, we found some differences among the analyzed groups. For 271 

instance, we observed in the PCoA analysis that the samples belonging to severe and fatal 272 

COVID-19, as well as to the non-COVID-19-pneumonia group, are more alike in terms of 273 

microbial composition than the healthy controls and the mild COVID-19 patients (Fig. 2A). 274 



Moreover, our dysbiosis analysis let us detect that the microbiota of COVID-19 showed 275 

higher levels of dysbiosis than the healthy control (Supplementary Table S4). Several 276 

MADs exhibit this behavior in which microbiota instability (dysbiosis) is present not by the 277 

dominance of one or a few bacteria but by a higher heterogeneity/stochasticity of microbial 278 

groups 9.  279 

Dysbiosis implies a disruption in the bidirectional interactions between the host immune 280 

system and the microbial communities, potentially altering functions provided by these 281 

communities and reshaping the whole host-microbiota interaction 8,23. It has been shown 282 

that microbiota stability is a hallmark of the health and homeostasis of the host 6,8,20. For 283 

instance, some reports suggest that there is a homeostatic mechanism that keeps lung 284 

epithelium in an interferon prime state with antiviral activity against other respiratory 285 

infections such as influenza. This particular antiviral response is stimulated by specific 286 

pathogen-associated molecular patterns (PAMPs) that are induced by the microbial 287 

communities 24. In this sense, the modification of microbial communities  (e.g., dysbiosis)  288 

showed in COVID-19 patients could be modifying the specific PAMPs that stimulate this 289 

homeostatic antiviral response, allowing for better conditions for respiratory virus infection, 290 

encompassing SAR-CoV-2.  291 

A common question when studying MADs is whether dysbiosis enhances disease or is 292 

caused by it. For COVID-19, the clinical outcome is highly correlated with comorbidities 293 

such as hypertension, diabetes, and obesity 7, which are often associated with dysbiosis in 294 

the gut microbiota 21. This remark, together with the highly distributed antibiotic uptake in 295 

COVID-19 patients (53.6% in our cohort, regardless of severity), merits a reflection on the 296 

possibility that most of the patients could be dysbiotic at the time of the disease.  In other 297 



respiratory diseases such as COPD and asthma, it has been shown that dysbiosis in the 298 

respiratory microbiota can lead to a deregulated immune response, increasing inflammatory 299 

processes 6,8,25.  Considering that aberrant immune responses are determinant in COVID-19 300 

progression, a previous dysbiotic respiratory microbiota could be affecting disease 301 

progression.  302 

The LefSe analysis (Fig. 3B) shows a differential abundance of microbial groups. For 303 

example, we found that most of the groups associated with the healthy controls belong to 304 

the so-called "normal" respiratory microbiota (e.g., g_Streptococcus, g_Oribacterium, and 305 

f_Veillonellaceae ) 26. In contrast, when we look at the results of the microbiota associated 306 

with COVID-19 and non-COVID-19-pneumonia groups, other potentially pathogenic 307 

microbial groups appear. In particular, in patients with non-COVID-19-pneumonia we 308 

found bacteria associated with nosocomial infections such as g_Corynebacterium  27,28. For 309 

mild COVID-19, we found some microbial groups associated with disease or bacteremia 310 

like g_Prevotella melaninogenica, g_V. parvula and g_Neisseria subflava 7,28. For the case 311 

of severe COVID-19, we found g_Megasphaera that has been associated with the risk of 312 

ventilator-associated pneumonia (VAP) in other studies characterizing COVID-19 313 

microbiota 12. Additionally, we found g_Rothia dentocariosa highly abundant in deceased 314 

patients. This bacteria has been found as the causal agent of secondary pneumonia in H1N1 315 

infection 22 and more recently have been associated with disease progression in previous 316 

studies characterizing COVID-19 respiratory microbiota, being proposed as a biomarker for 317 

the disease 13,14.  318 

From a clinical standpoint, it makes sense that a higher mortality predictor such as 319 

APACHE score correlates with low survival in COVID-19 patients. Other clinical factors 320 



such as BUN or urea have also been used as severity markers in respiratory diseases such as 321 

community-acquired pneumonia 29. Acknowledging that multiple pathophysiological 322 

considerations still unexplained in SARS-CoV-2 infection, and the multisystemic 323 

involvement that has been observed in COVID-19 30, biochemical markers of organ 324 

dysfunction such as lymphopenia, elevated myoglobin, and troponin serum levels as those 325 

found in this study, can help predict mortality in these patients 31. Although the association 326 

of these factors with specific microbial groups in the respiratory tract has not been 327 

previously reported, the findings in this study open the path to further study the relationship 328 

between respiratory microbiota and clinical outcomes. The identification of pathogenic 329 

bacteria such as g_Actinomyces g_Prevotella and g_Corynebacterium in association with 330 

two or more clinical factors further supports the current research line trying to correlate the 331 

gut-lung axis with pulmonary disease 32.  332 

Recent studies, as well as this work, suggest that particularly anaerobic bacteria inhabiting 333 

the respiratory tract may be involved in COVID-19 pathogenesis and host immune system. 334 

In particular, g_Prevotella has been found to increase in studies with patients with severe 335 

disease and have been co-related to cardiac injury and higher risk mortality 31,33. In this 336 

work, we found this specific genus associated with four clinical variables that predict 337 

mortality in patients with COVID-19 (Fig. 4A). This finding is of special interest 338 

considering previous evidence of g_Prevotella enhancing a Th17 mediated response 339 

through IL-8, CCL20, and IL-6 secretion 33,34; both the Th17 response and its cytokines are 340 

currently associated with the host’s immune response to SARS-CoV-2 35.  341 

Finally, the co-occurrence arrangement of ecological networks lets us identify structural 342 

patterns that reflect variations in the biological properties of the microbial communities 343 



associated with COVID-19. For instance, we found that all networks are distinguishable in 344 

terms of topological metrics such as density, clustering, and heterogeneity. It is worth 345 

mentioning that such metrics are potentially related to the stability of the systems likewise 346 

to other ecological properties such as resilience and redundancy 36. In particular, we found a 347 

striking pattern of reduction of structural complexity from mild to fatal COVID-19. The 348 

loss of complexity is showed by a reduction in the number of nodes, edges (connections), 349 

density, and clustering. Passing through from a highly connected and dense network (mild 350 

COVID-19) to a highly disaggregated, unconnected network (fatal COVID-19) (Fig. 5AB, 351 

Supplementary Table S5).  352 

Those structural changes can lead to the generation of hypotheses regarding consequences 353 

at the microbial community level. For instance, changes in structural patterns could 354 

potentially be reflected in alterations in the ecological relationships among microorganisms. 355 

A common feature in MADs is that commensal/neutral bacteria can become pathogenic at 356 

the face of disease 21. That is the case of bacteria such as g_Prevotella, g_Veillonella, 357 

g_Streptococcus, g_Actinomyces, or g_Megasphaera, which have been found as 358 

opportunistic pathogens in other studies characterizing COVID-19 microbiota 12,19–21 and 359 

that were also found in this work (severe and fatal associated microbiota (Fig. 2B)). The 360 

shift from neutral to deleterious interactions in specific bacteria could be the result of a loss 361 

of interactions that maintain the function and stability of the microbial systems. Which in 362 

turn, could cause an exacerbate growth of microbial groups potentially pathogenic, but also 363 

the depletion of beneficial bacteria, altering the whole environment and possibly 364 

compromising functions provided by the microbiota to the host. 365 

 366 



Conclusions 367 

Overall, this work provides insights into the role of the respiratory microbiota in COVID-368 

19 disease. Our data suggest that host-related and environmental factors could be affecting 369 

the respiratory microbiota before SARS-CoV-2 infection, potentially compromising the 370 

immunological response of the host against disease and promoting secondary bacterial 371 

infections. For instance, the high levels of dysbiosis coupled with poor microbial structural 372 

complexity in the respiratory microbiota of COVID-19 patients, possibly resulted from 373 

antibiotic uptake and comorbidities, could have consequences at the host and microbial 374 

community level. On the one hand, increased dysbiosis in diseased patients could be 375 

modifying the PAMPs that stimulate a homeostatic antiviral response, allowing for better 376 

conditions for SAR-CoV-2 replication. Additionally, the loss of structural complexity may 377 

provoke the appearance of opportunistic pathogens that, through ecological competition, 378 

can cause the depletion of beneficial bacteria and promote secondary bacterial infections 379 

that worsen the clinical outcome. In summary, the findings of this work contribute to 380 

understand the pathology  of  COVID-19 by identifying the respiratory microbiota as a 381 

potential factor affecting disease outcome. Further investigations looking for the specific 382 

mechanisms by which dysbiotic microbiota in the respiratory tract compromise 383 

immunological responses against virus infections are needed.   384 

 385 

 386 

 387 



Methods 388 

Ethics statement 389 

The Science, Biosecurity and Bioethics Committee of the Instituto Nacional de 390 

Enfermedades Respiratorias revised and approved the protocol and the consent procedure 391 

given by the participants or their legal guardians (B-0520). Additionally, the Institution 392 

requested an informed consent for the recovery, storage, and use of the biological remnant 393 

to research purposes. 394 

Study design 395 

As part of a surveillance program at the Instituto Nacional de Enfermedades Respiratorias 396 

Ismael Cosío Villegas (INER), 115 initial respiratory samples (oropharyngeal swabs, 397 

nasopharyngeal swabs, and tracheal aspirates) were collected between March 2020 and 398 

October 2020. Additionally, we included seven subjects without respiratory symptoms and 399 

negative SARS-CoV-2 RT-PCR test (healthy), and five patients with pneumonia that were 400 

hospitalized but negative to SARS-CoV-2 (non-COVID-19-pneumonia control group). 401 

Patients with COVID-19 were classified into three mutually exclusive categories of 402 

severity: a) mild COVID-19 (patients with moderate symptoms that did not required 403 

hospitalization), b) severe COVID-19 (patients that required hospitalization and were 404 

subject to Invasive Mechanical Ventilation (IMV)), and c) fatal COVID-19 (deceased 405 

patients). Overall, a total of 37 patients with mild disease, 38 with severe disease and, 40 406 

with fatal outcome were included in the study.  407 

 408 



DNA extraction and 16S rRNA sequencing 409 

Respiratory samples, either nasopharyngeal swabs, oropharyngeal swabs or tracheal 410 

aspirates, for all 127 patients were collected and centrifugated for 15 min at 4,800 g, and 411 

the pellet was used for DNA extraction. DNA was extracted using the QIAmp Cador 412 

Pathogen Mini Kit extraction (Qiagen N.V., Hilden, Germany) according to the 413 

manufacturer´s instructions. V3-V4 16S rRNA region was amplified by PCR using the 414 

primers reported by Klindworth et al (2013) 37 (for more information see Supplementary 415 

Material S1). Library preparation was done according to the Illumina 16S metagenomic 416 

sequencing protocol with few modifications. Briefly, 16S amplicons were purified with the 417 

DNA clean & concentrator kit (Zymo Research, Irvine Cal., USA). Dual indices and 418 

Illumina sequencing adapters were attached in a second PCR step using Nextera XT Index 419 

Kit V2 (Illumina, San Diego Cal., USA). Finally, amplicons were purified, pooled in 420 

equimolar concentrations, and sequenced in a MiSeq Illumina instrument generating 421 

paired-end reads of 250bp. 422 

Sequence data processing 423 

Illumina raw sequences were processed with QIIME2 (v.2020.8) 38. Sequences denoising, 424 

quality filtering, and chimera checking were performed with DADA2 39.  From the original 425 

number of reads (13,533,440), we kept a total of 9,499,204 with an average of 73,637 426 

sequences per sample. The Amplicon Sequence Variants (ASVs) were aligned with 427 

MAFFT 40 and used to construct a phylogeny with fasttree2 41. ASVs taxonomy was 428 

assigned with the Näive Bayes classifier sklearn 42 using the Greengenes 13.8 database 43. 429 



All ASVs identified as mitochondria (N=10), and chloroplast (N=32) were removed.  Raw 430 

data were deposited in the NCBI Sequence Read Archive (SRA) (PRNAJ726205). 431 

Diversity, compositional, and statistical analyses 432 

Since our sample set contains both upper (Oropharyngeal swabs [OPS], Nasopharyngeal 433 

swabs [ NPS]) and lower (Tracheal aspirates [TA]) respiratory tract samples, and it is 434 

known that these sites vary in microbial composition, we used only upper respiratory 435 

samples for the main analyses. After this process we kept a total of 95 samples (mild 436 

COVID-19 = 37, severe COVID-19 = 27, fatal COVID-19 = 19, healthy control = 7, and 437 

non-COVID-19-pneumonia = 5). We also characterized TA samples to compare levels of 438 

severity in the microbiota of the upper and lower respiratory tract. 439 

Composition analyses 440 

In order to determine if the samples associated with different severity levels and controls 441 

differed in the most abundant phylum and taxa, we plotted a bar graph by using the median 442 

and standard error of each taxon in the analyzed groups. Besides, we performed a Kruskal-443 

Wallis test to determine if there were any significant differences followed by a paired 444 

Wilcoxon rank-sum test in the "vegan" R package 44. 445 

Alpha diversity 446 

We calculated the Shannon-Wiener diversity index with the "microbiome" R package 45. To 447 

detect potential differences among groups we conducted a Wilcoxon rank-sum test in the 448 

"vegan" R package 44.  449 

Beta diversity 450 



We carried out a Principal Coordinates Analysis (PCoA) with weighted UniFrac distance at 451 

ASV level in the "phyloseq" R package 46. Potential differences in beta diversity were 452 

addressed with a Permutational Analysis of Variance (PERMANOVA) with 999 453 

permutations performed with the "vegan" R package 44. Additionally, we tested for 454 

dispersion and stochasticity as a proxy of dysbiosis in microbial communities 47. For this, 455 

we calculated the Ružička similarity metric in the "CommEcol" R package 48 and 456 

performed a Wilcoxon rank-sum test to detect potential statistical differences between 457 

healthy controls and diseased groups in their intra-treatment sample similarities. Dysbiosis 458 

was assumed when the similarities between the healthy microbiota samples were 459 

significantly higher than the similarities between the diseased microbiota samples 9. 460 

Finally, to detect differentially abundant taxa associated with severity levels and controls, 461 

we performed a Linear Discriminant Analysis (LDA) with effect size (LefSe) at the ASV 462 

level using the web-based tool MicrobiomeAnalyst 49. Only taxa with a LDA score higher 463 

than 1.5 and a p-value < 0.01 were used. All diversity and statistical analyses were 464 

performed in R program (v.1.3.1) 50. 465 

Clinical data analyses 466 

In order to analyze the clinical data associated with our patient´s cohort, we transform each 467 

clinical variable into a binomial category according to its data distribution. We used cut-468 

points based on the 25 and 75 percentiles for each variable. For example, for a given 469 

variable, we classified all samples with values above or equal to the 75 percentile as "1", 470 

and all samples with values under the 75 percentile as "2". Subsequently, we constructed 471 

Kaplan-Meier survival curves in SPSS Statistics (version 21) (Chicago, Illinois, USA) by 472 



using the hospitalization days as time variable, the mortality status (either deceased or 473 

alive) as a dependent variable, and the specific clinical qualitative variables as exposure 474 

variable. Only those curves statistically (p < 0.05) and biologically meaningful were 475 

retained for subsequent analyses.  476 

Also, to determine if there were differentially abundant bacteria associated with the several 477 

risk factors for the clinical variables obtained from the Kaplan-Meier curves, we performed 478 

a second LefSe analysis. From this result, only taxa with a LDA score higher than 1.5 and a 479 

p-value < 0.01 were used. 480 

Network structure inference 481 

We inferred the network structure for the microbiota associated with the different severity 482 

levels. Network calculation was performed in the software CoNet36 by using read counts 483 

summarized at the ASV level. One network was constructed for each severity level 484 

(samples; mild COVID-19: 37, severe COVID-19: 27, and fatal COVID-19: 19). Only co-485 

occurrences statistically supported by the three tested methods (Pearson, Spearman, and 486 

Kendall) with a correlation > 0.85 and a p-value < 0.01 were established as edges in the 487 

graphs. Also, we applied a multi-test correction using the Benjamini-Hochberg procedure. 488 

Network visualization was performed in Cytoscape (v. 3.8.2) 51.  489 

To further characterize the structure, we computed metrics of the topology of each network 490 

using the NetworkAnalyzer plug-in in Cytoscape 51 and visualized them with a spider chart 491 

constructed in R program. 492 

 493 



 494 
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Figure legends 620 

Table 1. Demographic data of the cohort. Only upper respiratory samples (OPS and NPS) are 621 

included in the information.  Abbreviations: BMI= body mass index, DM2= Diabetes Mellitus Type 622 

2.  *Respiratory diseases: either asthma, COPD, or ILD. P values denote statistical significant 623 

differences given by Wilcoxon rank-sum test  (* < 0.05, ** < 0.005, *** < 0.0005). 624 

Figure 1.  Main composition at phylum and genus level among severity levels for COVID-19 625 

and controls. A: median abundance of most abundant phyla in the analyzed groups. B:  median 626 

abundance of most abundant genera in the analyzed groups. Asterisks denote global statistical 627 

differences given by Kruskal-Wallis test (p-values: * < 0.05, ** < 0.005, *** < 0.0005). 628 



Figure 2. Alpha diversity of the respiratory microbiota among severity levels for COVID-19 629 

and controls. Boxplot of the Shannon-Wiener index value for all analyzed groups. Asterisks denote 630 

statistical significant differences given by Wilcoxon rank-sum test (*p < 0.05).  631 

Figure 3. Beta diversity of the respiratory microbiota among severity levels for COVID-19 632 

and controls. A: PCoA with weighted Unifrac distance and PERMANOVA result that test 633 

differences in the community arrange among groups. Each ellipse represents an analyzed group 634 

specified in the legend. B: Differentially abundant taxa obtained through LefSe analysis for each 635 

group. Only features with a LDA score higher than 1.5 and a p < 0.01 were included. ASV: 636 

Amplicon Sequence Variant.  637 

Figure 4. Correlation among clinical variables affecting survival probability and bacteria in 638 

the respiratory microbiota. A: Kaplan-Meier curves for the clinical variables with a statistical 639 

significant difference in survival probability.  Variables were classified into two categories 640 

specified in the legend “factor”. All curves were constructed with hospitalization days and outcome 641 

(either deceased or alive). B: Bacteria that are significantly depleted or enriched in samples with the 642 

different risk factors for the clinical variables obtained trough Kaplan-Meier curves. Risk factor 643 

(either high or low) corresponds to the result of the survival curves (panel A). ASV: Amplicon 644 

Sequence Variant. APACHE: Acute Physiology and Chronic Health Evaluation, BUN: Blood Urea 645 

Nitrogen. 646 

Figure 5. Network structure of the respiratory microbiota among severity levels for COVID-647 

19. A: Co-occurrence/exclusion networks for mild, severe and fatal COVID-19. Each node 648 

represents a microbial group at ASV level and each edge an interaction (either co-occurrence or co-649 

exclusion). Colors denote phylum identity. Number of samples used to construct the network (N), 650 

number of nodes and number of edges are reported in the figure. B: Spider chart of the topological 651 

metrics associated to each network. 652 
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Table 1. Demographic data of the cohort 658 

 659 

 660 

 All (N= 95) Healthy control 

(N=7) 

COVID-19 

Mild (N=37) 

COVID-19 

Severe (N=27) 

COVID-19 

Fatal (N=19) 

Non-COVID-19-

pneumonia (N=5) 

p value 

Age (years), median (IQR) 

 

45 (21) 35 (18) 37 (18) 47(21) 58(16.5) 49(13) 6.75e-07 *** 

Gender        

Female, n (%) 43 (45.2%) 5 (71.4%) 18 (48.6%) 12 (44%) 5 (26.3%) 3 (60%) 0.016 * 

Male, n (%) 52 (54.7%) 2 (28.5%) 19 (51.3%) 15 (55.5%) 14 (73.6%) 2 (40%)  

Smoking, n (%) 15 (17%) 0 0 8 (29.6%) 7 (36.8%) 0 ns 

NA 8 1 4 0 1 2  

BMI (kg/m2), median (IQR) 27.6(6.9) 26.2(2.6) 27.34(7.9) 28.9(4.6) 30.4 (9.8) 24.9(2.3) 0.05* 

Obesity        

Not obese, n(%) 48 (50.5%) 5 (71.4%) 16 (43.2%) 16 (59.2%) 8 (42.1%) 3 (60%) ns 

Class I, n (%) 16 (61.5%) 0 9 (81.8%) 7 (77.7%) 2 (25%) 0  

Class II, n(%) 7 (29.9%) 0 1 (9%) 2 (22%) 4 (50%) 0  

Class III, n(%) 3 (11.5%) 0 1 (9%) 0 2 (25%) 0  

NA 21 2 12 2 3 2  

Comorbidities        

DM2, n (%) 15 (17%) 0 3 (8%) 7  (70.3%) 5 (26.3%) 0 ns 

Hypertension, n (%) 15 (17%) 0 3 (8%) 4 (14.8%) 8 (42.1%) 0 ns 

Respiratory disease*, n (%) 4 (4.5%) 0 3 (8%) 1 (3.7%) 1 (5.2%) 0 ns 

NA 36 2 17 1 8 8  

Days after symptoms onset, n (IQR) 7 (6) NA 5 (5) 6.5 (4.7) 5 (5) 10 (3) 0.01* 

Antibiotic treatment, n (%) 50 (52.6%) 1 (14.2%) 11 (29.7%) 21 (77.7%) 15 (78.9%) 2 (40%) 0.002** 

Symptoms        

Cough, n (%) 50 (52%) 2 (28.5%) 11 (29.7%) 20 (74%) 15 (78.9%) 2 (40%) ns 

Fever, n (%) 48 (50.5%) 2 (28.5%) 10 (27%) 19 (70.3%) 15 (78.9%) 2 (40%) ns 

Dyspnea, n (%) 42 (44%) 0 4 (10.8%) 18 (66.6%) 17 (89%) 3 (60%) ns 

Headache, n (%) 40 (42%) 1 (14.2%) 15 (40.5%) 13 (48%) 11 (57.8%) 0 0.001** 

Myalgia, n (%) 38 (40%) 2 (28.5%) 12 (32.4%) 13 (48%) 10 (52.6%) 1 (20%) 0.003** 

Arthralgia, n (%) 36 (37.8%) 2 (28.5%) 10 (27%) 13 (48%) 10 (52.6%) 1 (20%) 0.04* 

Fatigue, n (%) 20 (21%) 0 3 (8%) 8 (29.6%) 9 (47%) 0 ns 

Rhinorrhea, n (%) 26 (27.3%) 1 (14.2%) 6 (16%) 12 (44%) 6 (31.5%) 1 (20%) ns 

Chest pain, n (%) 13 (13.6%) 0 5 (13%) 4 (14.8%) 4 (21%) 0 ns 

Diarrhea, n (%) 16 (16.8%) 0 4 (10.8%) 8 (29.6%) 4 (21%) 0 ns 

Cyanosis, n (%) 7 (7.3%) 0 0 3(11%) 4 (21%) 0 ns 

Vomiting, n (%) 5 (5.2%) 0 1 (2.7%) 3 (11%) 1 (5.2%) 0 ns 

NA 105 0 70 12 0 23  
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