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ABSTRACT 6 

The most recent virus from the Coronaviridae family infecting humans, SARS-CoV-2, has 7 

resulted in a global pandemic. As part of the surveillance efforts, SARS-CoV-2 genomes are 8 

increasingly being made publicly available. Methods that include both short- and long-read 9 

sequencing have been used to elucidate SARS-CoV-2 genomes; however, many of these 10 

untargeted approaches may require deeper sequencing for greater genome coverage. For this 11 

reason, sequence capture or amplicon-based approaches for SARS-CoV-2 genome sequencing 12 

have been developed. The present study evaluated a modified sequence capture approach, 13 

namely, tailed amplicon sequencing, to determine SARS-CoV-2 near complete genome 14 

sequences from the saliva of infected individuals. Particularly, the suitability of saliva samples 15 

stored at room temperature using OMNIgene®•ORAL OME-505 was evaluated. The tailed 16 

amplicon sequencing approach poses the additional advantage of being a cost-effective method 17 

for library preparation. Different known SARS-CoV-2 variants were identified across the 18 

infected subjects, with an average of > 99.4% genome coverage. This methodology also enabled 19 

robust genomic surveillance using phylogenetic analyses. The present study supports the 20 

suitability of saliva stored at room temperature using collection devices for SARS-CoV-2 variant 21 

detection. Importantly, the present study supports the use of tailed amplicon sequencing 22 
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approaches as an alternative, cost-effective method for SARS-CoV-2 detection in saliva for 23 

genomic surveillance.  24 

 25 
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INTRODUCTION 30 

Human saliva is home to over 700 microbial species, and serves as protection against 31 

bacterial, fungal and viral infections that could potentially reach the respiratory tract (Kilian et 32 

al., 2016).  It is composed of water and the secretion of salivary glands, dental plaque, as well as 33 

nasal and bronchial secretions; thus, several different viruses in human saliva can be identified, 34 

some of which may cause disease. The interactions with viruses and specific saliva components 35 

can be virus-specific, complex and can potentially influence their detection as a result of the 36 

biological functions of saliva (Y. Li et al., 2020). Viruses including, but not limited to hepatitis A 37 

(Leon et al., 2015), hepatitis B (Khadse et al., 2016; Parizad et al., 2016), cytomegalovirus (De 38 

Carvalho Cardoso et al., 2015), Epstein Barr virus (Kwok et al., 2015), Zika virus (Bonaldo et 39 

al., 2016), and Severe Acute Respiratory Syndrome-Associated coronavirus (SARS-CoV) (Wang 40 

et al., 2004), have all been detected in the saliva of infected individuals. This has prompted the 41 

investigation of saliva as a potential sample type for the diagnosis of several of the mentioned 42 

viruses, and of potential emerging and re-emerging viral pathogens.  43 

The most recent virus from the Coronaviridae family known to infect humans, SARS-44 

CoV-2 has also been identified in the saliva of infected individuals (Y. Li et al., 2020). While the 45 
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origin of SARS-CoV-2 is a subject of ongoing research and speculation, it shares 96% identity 46 

with a bat coronavirus (Zhou et al., 2020), 90% with coronaviruses present in pangolins (Zhang 47 

et al., 2020), and 80% with SARS-CoV (Zhou et al., 2020). SARS-CoV-2 is known to also be 48 

transmitted through aerosol droplets, which may also include salivary droplets. Several studies 49 

have identified SARS-CoV-2 in saliva (Han and Ivanovski, 2020; Y. Li et al., 2020), and have 50 

proposed its use as an alternative to nasopharyngeal (NP) and oropharyngeal (OP) sample 51 

collection, which pose additional discomfort and the need for trained personnel (Yoon et al., 52 

2020). In addition, with the availability of at-home collection kits, subjects are more willing to 53 

self-collect saliva(Valentine-Graves et al., 2020). Supervised, self-collected saliva has shown to 54 

perform similarly to clinician-collected NP swabs for the detection of SARS-CoV-2 in terms of 55 

virus detection and quantification (Noah et al., 2020). Success of detection methods for SARS-56 

CoV-2 depends, among many things, on the persistence and inactivation of the virus and nucleic 57 

acids. For example, SARS-CoV-2 is detectable using reverse transcription PCR (RT-PCR) for an 58 

average of 18 to 20 days, and up 21 to 26 days in some instances (To et al., 2020; Yoon et al., 59 

2020). Saliva has also been suitable for antibody testing, showing that SARS-CoV-2 antibodies 60 

can be detected as early as 10 days (To et al., 2020). This further supports the use of saliva for 61 

the detection of SARS-CoV-2 nucleic acids and antibodies. Other factors affecting SARS-CoV-2 62 

detection include efficient viral lysis, with various commercially available kits and methods 63 

showing varying levels of efficiency (Chu et al., 2020).   64 

 The gold standard for the detection of SARS-CoV-2 in any sample type is RT-PCR or 65 

quantitative RT-PCR (RT-qPCR) (Takeuchi et al., 2020). As with any PCR-based method, 66 

success will depend on primer specificity; thus, the RNA target genome(s) sequence(s) should be 67 

known in order to increase sensitivity (D. Li et al., 2020). Other, less evaluated methods for the 68 
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detection and surveillance of SARS-CoV-2 in various sample types include high-throughput 69 

sequencing. RNA high-throughput sequencing was originally used in combination with other 70 

methods to identify the novel coronavirus in subjects suffering from pneumonia of unknown 71 

origin, showing a similarity close to 90% to coronaviruses present in bats(Wu et al., 2020). High-72 

throughput sequencing can continue to be used for the surveillance of known and novel SARS-73 

CoV-2 variants, and also to determine genetic diversity, which is usually not provided by RT-74 

PCR or RT-qPCR (Pérez Cataluña et al., 2021). Two approaches have been developed for the 75 

detection of SARS-CoV-2 in various sample types using high-throughput sequencing, namely, 76 

untargeted and amplicon-based. Untargeted high-throughput sequencing provides the advantage 77 

of detecting and monitoring both known and emerging SARS-CoV-2 variants, with the caveat of 78 

requiring deeper sequencing to obtain the needed genome coverage for identification, making 79 

this approach relatively more cost-prohibiting. Amplicon high-throughput sequencing, or 80 

sequence capture methods, have been more widely applied for the detection of SARS-CoV-2 as 81 

it represents a more cost-effective approach. One caveat of sequence capture approaches is the 82 

failure to cover the entire viral genome as the primers usually cannot cover the genomic ends 83 

(Gohl et al., 2020).  84 

Approaches, such as the ARTIC network, have developed methods for amplicon pool 85 

preparation for the sequencing of SARS-CoV-2 which involve a ‘lab-in-a-suitcase’ that can be 86 

used in remote and resource-limited areas (https://artic.network/1-about.html). In the ARTIC 87 

network protocol, the first cDNA strand is enriched by amplifying with two different pools of 88 

primers. This generates amplicons tiling the virus genome, which are then subjected to either 89 

Illumina or Oxford Nanopore library preparation and sequencing. More recently, a modification 90 

to the ARTIC network protocol, known as tailed amplicon sequencing, has been developed to 91 
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reduce library preparation cost and time (Gohl et al., 2020). The method has been shown to 92 

achieve results comparable to the ARTIC network protocol (Gohl et al., 2020). Briefly, in the 93 

tailed amplicon approach, the first cDNA strand is enriched using the ARTIC v3 primers. In this 94 

case, the primers also contain adapter tails that allow sequencing libraries to be created through a 95 

second indexing PCR. This, in turn, adds sample-specific barcodes and flow cell adapters. 96 

Notably, this modification to the ARTIC protocol has not been extensively tested in saliva 97 

samples. Therefore, the main aim of the present study was to evaluate the suitability of the 98 

modified tailed amplicon sequencing protocol for the detection of SARS-CoV-2 and its ability to 99 

discern potential variants in human saliva. 100 

 101 

MATERIALS AND METHODS 102 

Sample collection and RNA extraction 103 

Saliva samples were collected from various geographical locations in United States using 104 

the OMNIgene®•ORAL OME-505 device (DNA Genotek, Inc) and shipped to Clinical 105 

Reference Laboratory, Inc. for testing using the CRL Rapid Response™ COVID-19 Test. After 106 

testing, the remaining saliva samples collected and stabilized in the OMNIgene®•ORAL OME-107 

505 devices, were stored at room temperature for up to 15 days prior to RNA extraction (Table 108 

1). At a later point, one to fifteen days post diagnosis, eight randomly selected samples from a 109 

pool of samples which had previously tested positive for SARS-CoV-2 by the CRL Rapid 110 

Response™ COVID-19 Test were selected to be sequenced. The only criteria used for sample 111 

selection was an initial Ct value <30 (Table 1). The randomly selected samples were extracted 112 

using the Zymo Quick RNA/DNA Viral MagBead kit (Cat. No. R2141) following 113 

manufacturer’s instructions.  114 
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 115 

Sample processing, sequencing and bioinformatic analyses 116 

The extracted RNA was then prepared and sequenced using previously described 117 

methods in Gohl et al., 2020 (Gohl et al., 2020). Briefly, the integrity of the extracted RNA was 118 

analyzed as described previously. After RNA quality and integrity was checked, RT-qPCR was 119 

also performed as described previously. RNA was also processed through the amplicon-based 120 

sequencing method that utilizes adapter tails with the ARTIC network v3 primers, allowing for a 121 

more efficient library preparation (Itokawa et al., 2020). Sequencing was also performed as 122 

previously described using a MiSeq 600�cycle v3 kit following manufacturer’s instructions. 123 

After sequencing, the paired ends were joined using PANDAseq (Masella et al., 2012) . 124 

Unaligned reads were aligned to Wuhan-Hu-1 SARS-CoV-2 genome (MN908947.3) using BWA 125 

(Li and Durbin, 2010; Wu et al., 2020). The Ivar software package was used for trimming and 126 

filtering reads (Grubaugh et al., 2019). Ivar was also used to call variants and generate consensus 127 

sequences. The consensus sequences were then strain typed using Pangolin (github.com/cov-128 

lineages/pangolin). Genome coverage plots were created using custom R scripts. Phylogenetic 129 

tree was created using the Nextstrain web interface (Hadfield et al., 2018)(v0.14.2, commit: 130 

f62d906, build 655).  131 

 132 

RESULTS AND DISCUSSION 133 

The present study evaluated a modified sequence capture approach, namely tailed 134 

amplicon sequencing, for the detection of SARS-CoV-2 in the saliva of infected individuals [21]. 135 

Detection of SARS-CoV-2 in the saliva of infected individuals, both symptomatic and 136 

asymptomatic, has expanded the toolbox of methods for the detection and diagnostics of the 137 
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virus. While RT-PCR and RT-qPCR are the standard methods for the detection of SARS-CoV-2 138 

in various sample types, tailed amplicon sequencing approaches are also capable of identifying 139 

SARS-CoV-2 in the saliva of infected individuals. Notably, results from the present study 140 

showed that the tailed amplicon sequencing approach was successful in the identification of 141 

various SARS-CoV-2 variants in human saliva (Table 1). Results also showed the suitability of 142 

OMNIgene®•ORAL OME-505 for sufficient SARS-CoV-2 RNA recovery for tailed amplicon 143 

sequencing. Moreover, storage of saliva samples at room temperature using OMNIgene®•ORAL 144 

OME-505 for up to 15 days further supports the capacity of this collection device to capture 145 

saliva composition at the time of collection, essential for SARS-CoV-2 diagnostics and 146 

surveillance. While upper and lower respiratory tract specimens were first to be recommended 147 

for SARS-CoV-2 diagnosis, saliva has gained acceptance as a suitable, non-invasive sample 148 

type. Indeed, saliva has been included in numerous FDA Emergency Use Authorizations for the 149 

purpose of SARS-CoV-2 diagnosis, including CRL Rapid Response™. The OMNIgene®•ORAL 150 

OME-505 saliva collection device, which has received EUA for SARS-CoV-2 sample collection, 151 

allows for self-collection and to circumvent the need to store samples on ice or frozen.  152 

 153 

Table 1. Summary of relevant metadata associated with saliva samples including: Pangolin 154 

lineage which indicates the strain identity, Nexclade clade identification which shows the 155 

phylogenetic lineage of the variant, qPCR Ct value for diagnosis, number of raw fastq reads, read 156 

depth on the genome after trimming primers, percent coverage of the genome after trimming and 157 

the number of variants (mutations) identified using iVar. 158 

 159 

 160 

Saliva Pangolin Nextclade Collection Diagnosis Days Fastqc Depth Coverage ivar num 
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sample 
ID 

Lineage Clade Location Ct value from 
sample 
collection 
to RNA 
extraction 

Raw 
Read 
Pairs 

after 
trimming 

(%) After 
Trimming 

variants 
identified 

A B.1.2 20G Belton, MO 27.01 15 192151 2316.21 99.96 18 
B B.1 20C Wilmington, 

DE 
14.01 12 260188 2413.47 99.44 21 

C B.1.2 20G Bronx, NY 16.50 3 233789 2547.39 99.73 29 
D B.1.1.222 20B Blacklick, 

OH 
17.40 7 137894 1571.84 99.96 29 

E P.2 20B Orient, OH 17.64 11 166102 2166.38 99.76 27 
F B.1.427 20C Manhattan, 

KS 
17.90 4 135078 1527.50 99.91 30 

G B.1.2 20G Carson, CA 18.28 2 212666 2146.30 99.81 22 
H B.1.1.7 20I/501Y.V1 Topeka, KS 18.55 7 202621 2527.93 99.83 39 
 161 

Interestingly, the tailed amplicon sequencing approach tested in the present study 162 

provided near complete genomes (>99.4 % average genome coverage) for all eight samples 163 

tested (Table 1 and Figure 1). In addition, the tailed amplicon method produced a relatively 164 

uneven genome coverage balance. Indeed, this has been noted previously when comparing the 165 

tailed amplicon method with the ARTIC network protocol (Gohl et al., 2020). One feasible 166 

explanation for this unevenness in genome coverage is the better balance of the untailed primers 167 

utilized in the ARTIC network protocol. Nevertheless, near complete SARS-CoV-2 genomes 168 

were obtained in the present study, which may improve insights into virus mutations, evolution, 169 

and adaptation (e.g., increased transmissibility and infectivity) compared to evolutionary 170 

relationships across spike protein sequences alone. Unlike specific genes, complete or near 171 

complete genomic sequences provide the most high-resolution information that allows 172 

determination of variant and strain relatedness during outbreaks and pandemics. Thus, the 173 

development of cost-effective and less time-consuming protocols to determine genomic 174 

sequences is of importance. In addition, near complete genome information may also aid in the 175 

classification of SARS-CoV-2 variants into strains. SARS-CoV-2 strain level resolution using 176 

tailed amplicon sequencing approaches could potentially aid to bridge mutations within SARS-177 
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CoV-2 genomes at a global scale, which in turn may aid to understand virus transmission and 178 

population dynamics. Variant level resolution of SARS-CoV-2 may also facilitate the 179 

identification of novel target regions for vaccine development and therapeutics, particularly 180 

regions across SARS-CoV-2 genomes that may be shared across variants and potential strains. 181 

 182 

Figure 1. Representative example of SARS-CoV-2 genome coverage. Graph illustrates that the 183 

combination of sample collection and sequencing methodology is sensitive enough to capture 184 

most of the genome with very high coverage. 185 

 186 

Near complete genomic sequences obtained using the tailed amplicon sequencing enabled 187 

deciphering phylogenetic relationships across the various SARS-CoV-2 variants identified in the 188 

saliva of the infected individuals in comparison with known clades (Figure 2). Results show 189 

that, overall, the tailed amplicon method described above is sensitive enough to resolve, not only 190 

large-scale genomic differences across different clades, but also differences within clades. 191 
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Phylogenetic relatedness may further contribute to the understanding of the pathogenic dynamics 192 

of SARS-CoV-2 and associated strains over time and link these genetic variations to specific 193 

geographical regions, which in turn can target genomic surveillance efforts.  194 

 195 

 196 

Figure 2. Phylogenetic analysis of the SARS-CoV-2 variants using Nextstrain clades. Figure 197 

shows that the methodologies described above are sensitive enough to resolve, not only large-198 

scale genomic differences across different clades, but also differences within clades. 199 

 200 

 201 

 202 

CONCLUSIONS 203 
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 The present study evaluated tailed amplicon sequencing as a suitable approach for the 204 

detection of SARS-CoV-2 variants in the saliva of infected individuals collected using 205 

OMNIgene®•ORAL OME-505. Near complete genome sequences were obtained using the 206 

evaluated method, which in turn facilitated phylogenetic analysis with various SARS-CoV-2 207 

variants. Near complete or complete genome sequences from SARS-CoV-2 variants continue to 208 

be invaluable in disease control and prevention efforts during the COVID-19 pandemic; thus, the 209 

evaluation of time- and cost-effective methods such as tailed amplicon sequencing is essential.  210 
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